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Asymptotic completeness
for the impact parameter approximation

to three particle scattering

George A. HAGEDORN (*)

Department of Mathematics
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Blacksburg, Virginia, 24061

Ann. Inst. Henri Poincaré,

Vol. XXXVI, n° 1, 1982,

Section A :

Physique théorique.

ABSTRACT. - We prove a theorem of Yajima on the asymptotic complete-
ness of the impact parameter model in three body scattering. The proof
depends on developing suitable analogs of the Faddeev equations which
allow one to study time dependent Hamiltonians directly. With these
equations for the propagator, the physics of the problem is more trans-
parent than it is in Yajima’s proof. As a corollary of our methods we show
that for high impact velocities, the Faddeev-Watson multiple scattering
series is convergent for the impact parameter approximation.

1. INTRODUCTION

The impact parameter model in three body quantum scattering is

supposed to approximate a system in which the masses of two of the three
particles are very much greater than the mass of the third. The extremely
massive particles are assumed to move classically in straight lines with
constant velocities. The motion of the third particle is then determined

by the Schrodinger equation with the time dependent effective potential
which is generated by the very massive particles.

(*) Supported in part by the National Science Foundation under Grant MCS-

8100738.
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20 G. A. HAGEDORN

This model is of interest because calculations involving the full three
body system are prohibitively complicated [12] ] [13 ], and because charge
transfer reactions such as He + + + H - He + + H~ should be fairly
accurately described by the approximate treatment (especially at high
impact velocities).
The time dependent Hamiltonian for the particle of small mass in the

impact parameter model is

1
where Ho = - 2m A. The positions of the very massive particles 1 and 2

at time t are given by al + vlt and a2 + v2t, respectively, and particle 3
interacts with particles 1 and 2 via the two-body potentials VI and V2,
respectively. To avoid trivialities, we assume vi 1 # v2.
For reasonable choices of Vi and V2 which decay sufficiently rapidly

at infinity, physical arguments suggest that there are only three possible
types of motion which particle 3 can exhibit as t - + 00. It can behave
like a free particle ; it can be bound to particle 1; or it can be bound to
particle 2. If this is indeed correct, the scattering is called asymptotically
complete.

Yajima [18] ] has proved asymptotic completeness of this model for a
large class of potentials Vi and V2 in three or more dimensions. His proof
relies on a very clever method of Howland [7] which involves the study
of a time independent Hamiltonian in a higher number of dimensions.
Although this method yields a proof of asymptotic completeness, we
feel that the method completely obscures the physics of the problem.
The purpose of this paper is to provide a proof of Yajima’s theorem which
is based on a method which more clearly illustrates the physics.
The two conditions we impose on VI and V2 coincide with those used

by Yajima. The first hypothesis is :

Here denotes the Sobolev space [19] ] of functions whose

weak first partial derivatives belong to Lq. &#x3E;

If VI and V2 satisfy (H1), then W,,i E for p = (l/s - 1/n)-1 &#x3E; n

and for ~/2~~~. Furthermore, Vi x)
and ( 1 + x2r:ð/2 both belong to L~ for nib  q ~ p. These

results imply that Vi and V2 are Ho-compact operators, from which it

Annales de l’Institut Henri Poincaré-Section A



21ASYMPTOTIC COMPLETENESS FOR THE IMPACT PARAMETER APPROXIMATION

follows that Hl(t)=Ho+ V1(x-al -Vlt), and

H(t) = Ho + Vi(x - a 1 - + V2( x - Q2 - are self-adjoint on the
domain of Ho. Furthermore ( [14 ], Theorem II, 27; [18 ]), these hypotheses
guarantee that H1(t), H2(t) and H(t) generate strongly continuous unitary
propagators U1(t, s), U2(t, s) and U(t, s), respectively. For H(t) this means

1) U(t, s) is unitary on L 2(n) and is strongly continuous in (t, s) ;
2) U(t, s) = U(t, r)U(r, s) for - oo  t, r, s  oo ;

3) if 03C8 E D(HÕ), then U(t, E D(Hð) and = H(t)U(t, 
where the derivative is understood as the strong derivative in the space
~_ 1 - ~ * 1 - dual space of w1.2(~n).
The analogous statements hold for and H2(t).
Our second condition on VI and V2 is that and H2(t) have no non-

negative eigenvalues or resonances. To state this more precisely we first
note ( [3 ], Proposition 3.1) that M~(z) = A~(z - is an analytic
compact operator valued function for z E CB [0, oo) which is norm continuous
in the closed cut plane. As I z I - oo, I - 0, and we denote
M~(E + iO) = lim M/E + fs) for E E [0, oo). Our second hypothesis is

Using methods of Agmon [1 ], one can show that if (H1) is satisfied,
then 1 E + iO)) for some E &#x3E; 0 implies that has a positive
eigenvalue E (for all t). There are regularity conditions ( [11 ], Section XIII,13)
which may be imposed on the potentials to guarantee that these eigenvalues
are absent. However, (H2) will fail at E = 0 for some elements of any
reasonable vector space of potentials, but this failure of (H2) is non-generic
if (H 1) is satisfied. For example, if Vj is replaced by and (Hl) is satisfied,
then 1 E only for a discrete set of £ E R.

If (H1) and (H2) are satisfied, then and H2(t) have only finitely
many eigenvalues. These eigenvalues are isolated, negative, independent
of t, and have finite multiplicities. The projection onto the span of
the eigenfunctions of Hit) satisfies II (1 + x2)~’P~°~(t)(1 +  oo for
any y E R. For proofs of these facts, see [11 ]. We define

Our main result is the following :

THEOREM 1.1. - If (H1) is satisfied then the following strong limits
exist :

Vol. XXXVI, n° 1-1982.



22 G. A. HAGEDORN

The ranges of S2o (s), and are mutually orthogonal, as are
the ranges of and If in addition (H2) is satisfied, then
asymptotic completeness holds in the strong sense that

for all values of s.

Remarks 1. Physical arguments indicate that hypothesis (H2) should
not be needed, but we have not yet been able to prove the theorem without it.

2. The only difficult part of the theorem is the last statement, which
is the only result we will prove. Yajima’s proofs of the other statements
are straight forward and very simple ( [18 ], p. 158-159), and we have no
improvements to suggest.

3. Yajima states his results in a somewhat more general form. First
of all, he allows N extremely massive particles where we have taken only 2.
Our proof easily generalizes. Second, he requires that the extremely massive
particles move in straight lines only in the distant past and far future.
The trajectories may be curved for some finite period of time. This genera-
lization is a trivial one (see Lemma 1 of [18 ]).

4. To prove asymptotic completeness we will develop time dependent
analogs of the three body Faddeev equations [2] ] [3] ] [5] ] [7] ] [16] ] by
summing graphs as in [5 ]. These equations allow us to view the motion
of particle 3 generated by H(t) as a series in which each term corresponds
to a sequence of collisions of particle 3 alternately with particles 1 and 2.
Furthermore, after a large time we show that it is unlikely for particle 3
to encounter Vl, then later encounter V2, and then later encounter Vi
again. Similarly, the sequence V2 followed by Vi, followed by V2 is unlikely
for large times. Since these multiple scatterings are unlikely the Faddeev
series for the adjoints of wave operators i = 0, 1, 2, converges
if s is sufficiently large and V1 belongs to a dense set. From this we can
conclude the asymptotic completeness. ‘

As a corollary of the proof of Theorem 1.1 we obtain the following
theorem, which may very well be useful for answering some questions
raised in [12 ]. ,

THEOREM 1.2. - Choose VI and V2 so that hypotheses (Hl) and (H2)
are satisfied. Then for sufficiently large values of the Faddeev
series for ( 03C8, 03A9±i(0)03C6 &#x3E; is convergent for all 03C6, 03C8 ~ L1 n L2.
Remarks 1. - The Faddeev series for  ~, is quite complicated

(see Section 5 for formulas), but we hope that the first few terms can be
computed numerically. The terms involved are far less complicated in
the impact parameter model than in the full three body problem [13].

Annales de l’Institut Henri Poincaré-Section A



23ASYMPTOTIC COMPLETENESS FOR THE IMPACT PARAMETER APPROXIMATION

2. Theorem 1.2 is not surprising. It is physically very reasonable,
and its analog in the full three body problem is true [6 ].

3. Of course Theorem 1. 2 remains true if we replace ( §, 
for any s.

The paper is organized as follows. In Section 2 we derive the analogs
of the Faddeev equations. In Section 3 we prove the estimates which show
that the Faddeev series converges for suitable large times and that multiple
scatterings are unlikely. Asymptotic completeness is then proved in Sec-
tion 4. Theorem 1.2 is proved in Section 5.

2. TIME DEPENDENT FADDEEV EQUATIONS

In this section we will formally derive an infinite series expression
for U(t, -s)~. Given the estimates from Section 3, an argument presented
at the end of this section establishes the convergence of the series to U(t, 
for all t/1 if t &#x3E; s and s &#x3E; 0 is sufficiently large or if t  sand - s &#x3E; 0

is sufficiently large.
This series is analogous to the series for e- in the full three body

problem which is obtained by formally Fourier transforming the iterates
of the Faddeev equations for (z - with respect to the variable z.

The simplest way to formally derive our series is to use a graphical
symbolism similar to that introduced by Weinberg [17 (see also [5 ] [14 ]).
The formal Dyson expansion for U(t, s) is

If we identify each term in this series with a graph in which the vertical

Vol. XXXVI, n° 1-1982.



24 G. A. HAGEDORN

links represent and the horizontal lines represent free propagation
of particles, then we can identify the above series with the sum of all graphs :

Here the top horizontal line represents particle 1 (infinitely massive) ; the
bottom horizontal line represents particle 2 (infinitely massive) ; and the
middle line represents the particle whose evolution is governed by U(f, s).
To each non-trivial graph G whose associated operator is

number represents the degree of connectivity of the graph G. We can
resum (2.1) by first summing all graphs G with the same N(G), then summ-
ing over all possible N(G)’s, and then adding on the trivial graph Uo(t, s).
The sum of all non-trivial graphs with N(G) = 0 is

The sum of all non-trivial graphs with N(G) = 1 is

For’ general n, the sum of all graphs with N(G) = n is

where j = 2 and k = 1 if n is odd, and j = 1 and k = 2 if n is even.

Annales de l’Institut Henri Poincaré-Section A



25ASYMPTOTIC COMPLETENESS FOR THE IMPACT PARAMETER APPROXIMATION

So, by summing over the N(G) and adding Uo(t, s), we have

This is the formula which we will use to prove asymptotic completeness
in Section 4. To rigorously justify equation (2.2) we must show that the
series converges and that it converges to the correct result. We will establish
that this is the case when ~ E f/ and either 0  s  t and s is large or
t  s  0 and - s is large.

Therefore, by a density argument we have

So, by applying U(t, s) to both sides we obtain

By the same method of proof we have

and

Vol. XXXVI, n° 1-1982.



26 G. A. HAGEDORN

Estimates from Section 3 together with some density arguments show
that (2 . 6) is valid for any ~ E ~.
The estimates from Section 3 also show that the iterates of equation (2 . 6)

converge for all # E !/ if s is large and t &#x3E; s, or if - s is large and t  s.

However, the iterates of (2.6) give the same result as equation (2.2) by
some trivial algebra. So, we conclude from Section 3 that the right hand
side of (2 . 2) converges to the left hand side whenever # E ~, ( s ~ is large,
and either 0  s  t or t  s  O.

Remarks 1. Equation (2.2) is physically interpreted as a « multiple
collision expansion ». The propagator is written as a sum of terms in
which particle 3 alternately interacts with particles 1 and 2. This heuristic
picture makes it clear that (2 . 2) should converge for I s large and 0  s  t
or t  s  0 since it should be very unlikely for particle 3 to oscillate very
many times between particles 1 and 2 as time evolves between s and t.

2. In Section 5 we prove that this multiple collision expansion converges
for s = 0 and all t if v2 ( is large. Intuitively this is also very reasonable.

3. CONVERGENCE OF THE FADDEEV SERIES

In this section we prove the estimates necessary for establishing conver-
gence of the series (2.2). These estimates bear considerable resemblance
to those used to prove asymptotic completeness for the usual three body
problem [3] ] [5] ] [7] ] [16 ].
The crucial result we will prove is Lemma 3.6, which shows that the

operator valued function

belongs to (0), dt) for large s, and that its L1 norm tends to zero as s
tends to infinity.

Annales de l’Institut Henri Poincaré-Section A



27ASYMPTOTIC COMPLETENESS FOR THE IMPACT PARAMETER APPROXIMATION

We being with some standard results :

and any value of s (The norm in the first integral is the L2 norm ; the norm
in the second is the operator norm from L2 to L2).

Proof - The operator Uo(t, s) has a well known integral kernel [10] ]
with which one can show by an interpolation argument that

is bounded with bound dominated by - s ] -n~p 1- 2 i~ for’ s 
1  p ~ 2, and + q -1 - 1. Since # E LP for all p E [1, 2 ], we therefore
have !! Uo(t, [c t - s ]-~’’-2-’) Since hypothesis (HI) implies

 r  n + s, A~ maps L~ into L~ for all q in a neighbor-
hood of (2’~-~’~)’~(~&#x3E; 3). So, for allp in a neighborhood of (2 -1 + n -1 ) -1
we have !! aj - Vjt)Uo(t, s)t/111  [c It - s ]-n(p-1-2-1). By choos-
ing p so that p -1 - 2 - 1 &#x3E; n -1 for I t - s I large and p -1 - 2 -1  n for
I t - s small we see that the first integral of the lemma converges.
The second integral is dealt with in a similar manner after remarking

that Bk(x - ak - maps L2 into LP(lRn) by Holder’s inequality fpr
all p in a neighborhood of (2 -1 + II 

’ 

,..
Henceforth we will write Bit), and for multiplication by

A/x - aj - Vjt), and Vj(x - aj - Vjt), respectively. We
also will occasionally work in different frames of reference in which vj = 0
for j = 1 or 2. By abusing notation somewhat we will use U(t, s), s), etc.
for all of the obvious operators in the different frames of reference, rather
than subject the reader to more notation.

LEMMA 3.2. - Assume hypotheses (HI) and (H2). Then 

where F(t, s) is uniformly bounded and monotone decreasing in s for
t &#x3E; s. Furthermore li m (sup F(t, s)) = 0.s r t&#x3E;s

Proo, f. Since Bk is bounded, it suffices to prove the lemma with Bk
replaced by 1. The norm in the integrand is then dominated by

Vol. XXXVI, n° 1-1982.



28 G. A. HAGEDORN

where { }Nl= 1 is an orthonormal basis for Ran Pk composed of eigenfunc-
tions of Hk (we have chosen a frame of reference in which and Hk(s) are
independent of s). By Holder’s inequality this quantity is dominated by

where p - 1 = 2-1 - n-1. Simon [15] has proved that E D(Ho)
for some a &#x3E; 0, so ( [10 ], Theorem IX, 28) the third factor in each of these
terms is bounded. As remarked in Section 1, the first factors are bounded,
so we need only show that the second factors are in However, that
follows by elementary computation since 6 &#x3E; 1. jt

Proof - In the frame of reference in which A~, P~ and B~ are time inde-
pendent, the integral in question has no s dependence, so the uniformity
in s is obvious. So, we need only show 0)(1 - L~((0, oo), dt).

Let x(t) denote the characteristic function of the set [0, oo), and define

All three of these operator valued functions belong to L/((0, 00), dt) by
trivial modifications of Lemma 3.1. All three have operator valued Fourier
transforms which are analytic compact operator valued functions in the
open upper half plane and which are continuous in the closed upper half
plane [3 ]. Furthermore all three Fourier transforms tend to zero in norm
as ! I z I - oo in the closed upper half plane.
The function F(t) = 0)(1 - P;)B; satisfies

and

and

By hypothesis (H2) and standard calculations [14 ], ( 1 - K1(z))-1 exists
Annales de l’Institut Henri Poincaré-Section A



29ASYMPTOTIC COMPLETENESS FOR THE IMPACT PARAMETER APPROXIMATION

except when z is an eigenvalue of H. All such eigenvalues are negative
and there are finitely many of them.

In contrast we will now show that (1 - K2(z)) - exists for all negative z.
The analytic Fredholm theorem shows that (1 - K~o)) ~ fails to exist
only if there is a non-zero § E such that § = Using the
explicit formula for 1(2(ZO) we have § = Ho)’~(l 2014 Pj)BjcP. If

zo  0, then we have 03C61 = (zo - in L2. Clearly 03C6 = 
and cjJl = (zo - Ho)’~(l 2014 Applying zo - Ho to both sides of
this equation we have + (1 - 

has no eigenvalues. Now we have

Since ~ 1 is non-zero, this contradicts zo  0.
To prove F(t) belongs to L~((0, oo), dt) we mimic the proof of

Theorem XVIII of (91, with certain alterations to accommodate the poles

Choose 8 &#x3E; 0 so that - B is greater than all eigenvalues of H~. Define

Let w3(x) = 1 - w2(x). Here b is a large number to be chosen
later.

By repeating the arguments on page 62 of [9 ], (1 - 
is the Fourier transform of some function Q3(t) which belongs to

L1(( - 00, (0), dt) if b is sufficiently large. Fix such a number b so that
Q 3 (t) is in L~((- 00,00)). Note that the poles of (1 - K 1 (z)) -1 will cause
no trouble in these arguments since ~3~) is zero on an open set of real
numbers containing the poles.
Next we repeat the arguments of the proof of Theorem 9 D of Chapter 2

of [4 ] to see that ( 1 - for some which also

belongs to L 1(( - 00,00)). Similarly, there exists Q2 E L 1(( - 00,00)) such
that Q2(X) = (1 - K2(x))- lw2{x). Here we have used the information

Vol. XXXVI, n° 1-1982.



30 G. A. HAGEDORN

obtained above concerning the location of poles of (1 - K~(z)) ~ and

Due to the exponential fall off of eigenfunctions, of H~,

where Pj = B~ is a bounded operator on Consequently,

We now define

This function belongs to L 1 (( - oo, oo)), and its Fourier transform equals

It follows ( [9 ], p. 62-63) that f(t) = 0 a. e. for t  0, and that F(t) = f(t).

Remark. Theorem 9 D of Chapter 2 of [4] ] says that on a compact
set, an analytic function of the Fourier transform of an L 1 function is

equal to the Fourier transform of an L 
1 function. Theorem XVIII of [9] ]

is the same result for the whole real line (not just a compact set) when the
analytic function is z/(l - z). Extensions of these theorems to operator
valued functions which are Bochner measurable is a routine exercise.

COROLLARY 3.4. - Assume hypotheses (Hl) and (H2). Then for any s
we have

Furthermore, in d), e) and f), hm Fi(s) = 0.s-+ 00
Annales de l’Institut Henri Poincaré-Section A



31 ASYMPTOTIC COMPLETENESS FOR THE IMPACT PARAMETER APPROXIMATION

and dominate the integral of the norm of the sum by the integral of the
sum of the norms. Furthermore, we can put the norms inside the r integral.
The term involving a single integral is uniformly bounded by a trivial
modification of Lemma 3 .1. Lemmas 3 .1 and 3 . 3 show that the remaining
term is uniformly bounded.

Parts b)- f ) follow from Lemma 3 . 2 and part a)..
Most of the rest of this section will be devoted to proving a result similar

to c), which is stronger in some sense. We will prove

This result, combined with parts d)- f ), will be enough to show that (2 . 2)
converges and that multiple scatterings are unlikely after some large time s.

LEMMA 3 . 5. - Assume hypotheses (H1) and (H2). Then we

have

Proof - Consider first part a). Choose a frame of reference in which Vj
has no time dependence, and replace the operator inside the norm by its
adjoint. Next, change variables by replacing t by q = t - s and r by
p = r - s. The integral in a) is then equal to

By the proof of Lemma 3.1, the integrand is dominated by a fixed L 1
function, and so the dominated convergence theorem shows that we need
only show for fixed p, q that I = 0.

From the proof of Lemma 3.1 it is not hard to prove [3 ] that B j Uo(p, q)Aj
is compact for q ~ p. Furthermore, it is clear from that proof that

tends to zero strongly as s - 00. Thus,

tends to zero in norm as s - oo. Thus, a) is proved.
To prove b) we first note that the estimates in the proof of Lemma 3.1

show that it is sufficient to prove b) when A~, B~, and Vk have been replaced
by functions in ~(~) (which we again denote by Aj, Bj, and Vk, respectively).
Vol. XXXVI, n° 1-1982. 2



32 G. A. HAGEDORN

Furthermore, those estimates show that it is sufficient to prove the result

arbitrarily small s &#x3E; 0.
Choose a frame of reference in which A~ and B~ are time independent.

Then by changing variables we have

so that all the s dependence is in the V~ factor. Since Hilbert-Schmidt
norms dominate operator norms, we have

which is the square of an L1 function of p, independent of s. So by the
dominated convergence theorem, we need only show that

tends to 0 as s - oo for each fixed positive p. However, by the above
calculations and several more applications of dominated convergence, we
need only show that for each fixed value of p, q, x, y we have

The quantity on the left hand side is equal to

Annales de l’Institut Henri Poincaré-Section A



33ASYMPTOTIC COMPLETENESS FOR THE IMPACT PARAMETER APPROXIMATION

This tends to 0 as s - oo by the Riemann-Lebesgue Lemma since ~ 7~ v~,

Remark. - In the last step of the above proof it is essential that

(s/4(p - q) + s/4q)(vk - vj) is never zero. In some vague sense the non-

vanishing of this factor is related to the fact that it is extremely unlikely
for the particle to be near V~ at time s, near Vk at time r and near VJ at time t.
Geometrically, if this were likely, the particle would have to more or less
reverse the direction of its momentum during the collision with Vk.

Proof - It follows from parts d), e), and f ) of Corollary 3 . 4 that we
need only show

The integrand in the inner integral can be rewritten as I +. II + III +. IV,
where

and IV. This will imply the lemma. We can rewrite I(t, r, s) as a sum of
four terms :

Vol. XXXVI, n° 1-1982.



34 G. A. HAGEDORN

Each term here is a product of uniformly bounded factors times an operator
valued function which has all the desired properties by trivial modifications
of Lemma 3.5. Thus, I(t, r, s) is controlled.

Using the same ideas (rewriting as above) one may control II, III and IV
after using Corollary 3.4 a) to see that all factors involving U j with j =1= 0
are integrable with L~ 1 norms bounded independent of s. II

PROPOsITION 3 . 7. - For sufficiently large values of s &#x3E; 0 and all ~ E ~,
hypotheses (HI) and (H2) imply the convergence in L2 of the series (2.2)
for U(t, uniformly for all t &#x3E; s.

Proof - As outlined in Section 2, one obtains equation (2 . 2) by iterating
equation (2.6) and collecting terms. If we do this several times we obtain

Uo(t, plus two terms containing a single integral plus two terms contain-
ing a double integral, and so on, until we reach two « error terms » which
contain an N-fold integral whose integrands contain factors of U(t, ri).
Lemma 3.1 shows that the inner-most integral (in all of the terms containing
integrals) is convergent and yields a result whose norm is bounded uni-

formly by a constant, C, which may be taken to be the same constant for
each term. Corollary 3.4 b) then shows that all of the integrals are conver-

gent. However, Lemma 3.6 shows that if s is sufficiently large, then as we
evaluate each consecutive pair of integrals after the inner-most one, our
result has its norm reduced by a factor of 8, where 8 &#x3E; 0 is arbitrary. Thus,
a term containing 2m + 1 integrals has its norm bounded by A term

containing 2m integrals can be dealt with in the same way, except that we
must use Corollary 3.4 b) to estimate the outermost integral. Thus, such a
term is bounded by C.

From this analysis it is clear that for large s and t &#x3E; s the « error terms »

tend to zero as we iterate (2.6) more and more times. Furthermore, as we
take the number of iterations to infinity, the series (2.2) applied is

convergent in norm for t &#x3E; s and s large. The sum of the norms of the
individual terms is bounded by

So, for s large, t &#x3E; s, and 03C8 E the right hand side of equation (2. 2)
converges to U(t, .

Remarks 1. Lemma 3 . 3 is indispensable for the proof of our theorem.
The critical idea for this proof comes from Theorem XVIII of the classical
book of Paley and Wiener [9]. We feel that it is remarkable that it is not

Annales de l’Institut Henri Poincaré-Section A



35ASYMPTOTIC COMPLETENESS FOR THE IMPACT PARAMETER APPROXIMATION

widely used in scattering theory, particularly because Percy Deift has
informed us that it plays a role in inverse scattering theory.

2. Although we assumed above that ~ belonged to ~ a density argu-
ment shows that the result remains true if we only require ~ E L1 n L2.
We will use this fact in the next two sections without comment.

4. ASYMPTOTIC COMPLETENESS

In this section we prove the final statement of the theorem in Section 1.
We so do by more or less explicitly constructing the adjoints of for

large values of s.
We begin the proof by remarking that it suffices to show that any

t/JEL1 nL2 can be written 
because L1 n L2 is dense in L2. Next we notice that it is sufficient to do so
for only one value of s because [Ran S2i {t)~ = U(t, s) [Ran and

U(t, s) is unitary. Finally, we will only consider n,’(5). The proofs for 
are similar.

By Proposition 3 . 7 we may fix s so large that the series (2.2) converges
to U(t, for all !/ n L2 and all t &#x3E; s. For fixed § E L n L 2 we
notice that equation (2.2) has the form

where Fo, F1 and F2 are L 1 (s, oo)) functions with values in In this

equation we replace Uj(t, r) by

Using the explicit form of the F’s and Lemma 3. 3 we can conclude that
fort&#x3E;s,

where Go, G1 and G2 are L1((s, 00)) functions with values in 

Vol. XXXVI, n° 1-1982.
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Then from equation (4.1) we have

As t tends to infinity this quantity tends to zero. Thus,

Remark. In the above proof, our definitions of and 

may seem unmotivated. Our motivation comes from experience with
N-body problems. See Section III of [5 ].

5. CONVERGENCE OF THE FADDEEV SERIES

FOR Qf (0)

In Section 4 we used a convergent series for U(t, s) to construct

~ ~, more or less explicitly for large values of s. (See equa-
tions (4 . 2)-(4 . 4).) In this section we show for any s that if ) v 1 - V2 I is

large, can be constructed by using the series for U(t, s).
It is our hope that the series we obtain for ( §, will be used to

study the behavior of cross sections for various processes in the impact
parameter approximation.
By formally taking adjoints of the operators which occur in equa-

tions (4.2)-(4.4), one obtains formal expressions for ~i (s). More explicitly,
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after some rearranging we have

We argue below that the right hand sides of (5 . 1)-(5 . 3) make sense if

the integrals are interpreted as improper integrals, lim tsdr1 ... , and the

limits are taken in the very weak sense that matrix elements between
L 1 n L 2 functions are supposed to converge. With this interpretation
Vol. XXXVI, n° 1-1982.
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one may use the proof of the orthogonality of the ranges of the wave ope-
rators to rewrite (5.2) and (5.3) as

We should note that the terms which we have explicitly written in for-

mulas (5.1)-(5 . 3’) are precisely those which arise from those terms in (2.2)
which we have explicitly written. More terms in (5 .1)-(5 . 3’) may be generat-
ed by computing more terms in (2.2). Similar formulas can be obtained
for 

If we are content to for e L/ n L2 and large
values of s, then our proof of Theorem 1.1 shows that the Faddeev series

(which arises from (5.1)-(5.3) by taking the matrix elements) converge.
However, to compute cross sections it is not sufficient to have information
about s) for large s &#x3E; 0.

For simplicity, take s = 0. By mimicking the proof of Theorem 1.1, it
is clear that Theorem 1.2 can be proved by constructing

if we can show that

and

To prove Theorem 1.2, one simply uses the construction in the proof of
Theorem 1.1, with Lemma 3.5 replaced by (5.4) and (5.5). An analog
of Lemma 3.2 is required, but its proof is essentially the same as that of
Lemma 3 . 2. The s independent estimates in the other lemmas of Section 3
are also uniform in vi - v21. .
To prove (5.4) we follow the proof of Lemma 3.5 a) to see that it is

sufficient to prove s - lim p)Aj(p) = 0 for each p ~ 0 in the

frame of reference in which VJ has no p dependence. In that frame is

multiplication by a function of and as 00,

p)Aj converges to zero strongly.
To prove (5.5) we mimic the proof of Lemma 3.5 b). This shows that

it is sufficient to prove equation (3.1) remains valid when lim is replaced
by lim 

 

and s = 0. That is, 
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The quantity on the left hand side may be written as

This limit is zero by the Riemann-Lebesgue Lemma for q ~ 0 p - q &#x3E; 0,
and q &#x3E; 0. So, (5.5) is valid.
With equations (5.4) and (5.5) verified, it is a routine exercise to show

that all the lemmas of Section 3 hold when lim is replaced by 
j 

lim 
- w

and s is set equal to 0. The arguments in Section 4 then show how to construct
by the Faddeev series for 03C8 ~ L1 n L2 when vi - v2 | is large.

Thus,  ~,  is equal to its convergent Faddeev
series for large vi - ~2 !. ql e L2, and t/1 n L2. The argument for

is similar.
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