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Distance between states

and statistical inference in quantum theory

N. HADJISAVVAS

Laboratoire de Mecanique Quantique, BP 347, 51062 Reims, France

Ann. Inst. Henri Poincaré,

Vol. XXXV, n° 4, 1981,

Section A :

Physique théorique.

ABSTRACT. - We define the distance between two quantal states as a
global measure of the difference of their respective statistical predictions.
The expression of this distance in the usual Hilbert space formalism is
found. This concept is then used to study the projection postulate and the
statistical inference problem in Quantum Theory.

RESUME. - Nous définissons la distance entre deux etats quantiques
comme une mesure globale de la difference de leurs predictions statistiques
respectives. L’expression de cette distance dans le formalisme Hilbertien
habituel est determine. Par la suite, ce concept est utilise dans l’étude
du postulat de projection et du probleme de Finference statistique en
Mécanique Quantique.

I. INTRODUCTION

Quantum Mechanics, as it stands today, is a physical theory describing
the microsystems exclusively from the observational point of view. It
would be thus natural for it to be connected with other theories treating
the observation on a general level and in purely abstract terms, as Estima-
tion Theory and Information theory. However, if numerous works on this
subject appeared lately [1 ] [2 ] [3 ], the elaboration of this connection is
far from been achieved. In particular, only few concrete results have been
found [4 J [5] ] [6] § other results have no clear physical interpretation,
even if they are sometimes very suggestive [7].
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288 N. HADJISAVVAS

Much of tiiis effort is principally concentrated on the problem of
specifying (or estimating) the state of a quantal system by using the available
information about it. This is a crusial question, for Quantum Mechanics
gives precise statistical predictions on the results of future measurements
when the state is known, but on the other hand it says little about the
determination of that state. This is especially true for the quantum statis-
tical mechanics, where in general the available information is not sufficient
to determine the state.
The study of this question was originated by Jaynes [8 ]. He proposed

the so-called « maximum entropy principle » as a way to specify the state
which best represents some statistical data. Later the study of a similar
subject was undertaken by the present author [9 ], and Gudder, Marchand
and Wyss [1 D ], i. e. that of finding a state using the available information
and an initial state.
The scope of our paper is to advance the study towards this later direc-

tion. We divide the work in two parts : in the first, we define a concept of
distance between states, we discuss its physical interpretation, and derive
its mathematical properties. In the second part, we use this concept for the
study of the problem of the change of the state provoqued by a new infor-
mation on the system. We consider two cases, depending on the nature
of this information. As a result, we derive the so-called « projection postu-
late » from another, physically much more appealing postulate.

II. THE DISTANCE BETWEEN TWO STATES

OF A SYSTEM

1. The definition of the distance.

Let us first specify some constraints to which an appropriate distance
should obey. From a mathematical point of view, the distance d(pl, p2)
of two states pi and p~ should satisfy the following conditions :

It would be also desirable for the distance to satisfy the triangle inequality :

i. e. to be a metric. We note however that there exist some « distances »,

as the information discrimination of Kullback [11], which are not

metrics [12 ].
Several different distances satisfying conditions a), b) and c) have been

defined up to now [13-17]. Among these, there are two which shall
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289DISTANCE BETWEEN STATES AND STATISTICAL INFERENCE IN QUANTUM THEORY

retain our attention because they are the only ones defined on the basis
of physical considerations, namely : the distance p2) of Gudder [13] ]
and the distance defined by Jauch, Misra, Gibson [18] ] [19],
and independently, by Kronfli [20] ] and Hadjisavvas [9].
Gudder’s distance is introduced as follows. Let E be the set of all « statis-

tical » (or « density ») operators (i. e. positive operators of unit trace) in
the Hilbert space corresponding to a physical system. As well known,
the statistical operators represent the states of the system. E is known to
be convex : If 0  a  1 and Wi, W2 E L then the « mixture » aWl + ( 1- a)W2
also belongs to E. Now Gudder qualified two states represented
by the statistical operators Wl, W2 as « close » if there exists a mixture
containing mostly W1 equal to a mixture containing mostly W~: that is,
if there exist W3, W4 ~ 03A3 and a small À such that

Afterwards, based on this conception of closeness, he defined the distance
between the two states by

The property of the quantal states to form mixtures corresponds to a
certain physical fact. But it seems highly improbable a priori that a distance
which takes into account only this secondary property while neglecting
all the other aspects of the concept of state, can properly express the diffe-
rence between two states. That is why we shall rather be concerned with
another distance put forward by Jauch, Misra and Gibson. The definition
of this second distance makes use of the von Neumann-Jauch [27] ] [22] ]
formalism of « quantum logic » which we briefly recall:
To any physical system corresponds a set L of « propositions ». If the

system does not possess any superselection rules, one admits that this
set L is isomorphic to the set of all projectors in a complex separable
Hilbert space. In this formalism, the states are probability measures on L
and are represented, via the Gleason’s theorem [23 ], by statistical operators.
The relation connecting the physical concepts of proposition and state
with their mathematical representatives is the following: if to the propo-
sition « a » and to the state p there correspond, respectively, the projection
operator E and the statistical operator W, then the probability to find,
by making a suitable measurement, that the proposition « a » is true, is
given by the formula :

We now have :

DEFINITION 1. - The distance between any two states pi, p~ is given
bv the expression:

Vol. XXXV, n° 4-1981.
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The justification of this definition can be based on the following argument
which, if not unshakable, is much stronger than the usual arguments
(when they exist) in favour of other definitions. As we already pointed
out in the introduction, Quantum Theory describes the microsystems
exclusively through their behaviour upon measurement. In particular, a
quantal state does not only yield statistical predictions, but it can also be
completely defined by these predictions (this is one of the aspects of
Gleason’s theorem). Accordingly, the distance between two states pi, p2
can be measured by the difference between the statistical predictions
yielded by pi, p2. Now for a given proposition a E L, the difference of the
statistical predictions of pi, p2 about a is . Accordingly,
an appropriate distance should be based on the study of the whole set of
values of the function

We shall prove in the following subsection that the set of values of this
function is an interval of the form [0, d ]. Now if d is small, then the diffe-
rence of predictions p2(a) I is small for any a and thus the two

states pl, p2 should be considered as close to each other. If on the contrary d
is big, then pl(a) - p2(a) | is close to d for an infinite number of proposi-
tions a, so that the distance between should be big. That is why d
seems to be an appropriate measure of this distance, and this explains the
choise of the definition 1.

Jauch, Misra and Gibson put forward this distance for the sole purpose
of defining a topology in the set of states, in order to take correctly limits
in a rigorous study of the scattering process. They determined the topology
introduced by p2), but they did not give the expression of the distance
in the Hilbert space formalism. Our scope here is to use the distance in the

statistical inference problem in Quantum Theory. We need for this the
expression of d( p i, p2) for any pair of states, pure or mixtures. This expres-
sion, together with some other properties, is given in the following
subsection.

2. Explicit form of the Hilbert sp ace formalism.

We start by briefly recalling some definitions and results of trace

theory [24 ]. An operator A in a complex separable Hilbert space H is

said to belong to the trace class iff the series A fn) converges
for at least one basis { In In that case, the expression Tr A = 03A3(fn, Af")

n= I

is independent of the particular basis { fn The trace class is denoted
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291DISTANCE BETWEEN STATES AND STATISTICAL INFERENCE IN QUANTUM THEORY

by Li(H) and is known to be a Banach space with respect to the norm
) A III = Tr . The statistical operators are by definition, the positive
elements with unit norm in Li(H).

If a self-adjoint operator belongs to LI (H), then its spectrum is discrete :

~ ~n and one has : Tr A = ~,n and ) ) A = ~ Furthermore,
n n

the usual bound norm of operators is given in this case by II = sup .

neN

Some conventions on notations : L(H) is the Banach space of all conti-
nuous operators on H. For any subset, r c H, we denote by [F] ] the alge-
braic subspace generated by F-that is, the set of all finite linear combinations
of elements of r - and by F the topological closure of r. For any vector g,
we denote by the projector on the one dimensional subspace contain-
ing g. For any operator A, R(A) will be his range. If A is self adjoint, then A +
and A - are his positive and negative parts.
We now give the explicit form of d(pl, p2) in the most general case :

THEOREM 1. Let pl, p2 be any two states, represented by the statistical
operators Wl, W2 respectively. Then

Proof - Since Wt, W2 E L 1 (H) one also has Wl - W2 E Li(H). Let

Wi 2014 W2 = be the spectral decomposition of Wi 2014 W2, where 03BBn
n

are its eigenvalues complete orthonormal set of eigen-
vectors. Then, by the definition one has :

On the other hand,

and

Thus :

Vol. XXXV, n° 4-1981.
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Since Tr WI = Tr Wz = I, we 03A303BBn = Tr (WI - Wz) = 0 so that

Substitution in (4) gives

Using (3), (5), (6) we obtain :

But "WI - W211I 1 = [ = 2 Substitution in (7) then gives the

desired result. /
We note a remarquable fact : the distance which seemed to us as the

most « natural » among all distances defined up to now is given, up to a
constant, by the distance introduced by the natural norm
of the mathematical space Li(H) associated to states. However, in spite
of the fact that the expression II WI - W2 111/2 is general and elegant,
it is hard to calculate in practice. Fortunately, when at least one of the
states is pure, the expression of the distance becomes simpler as shown
by the following result :

PROPOSITION 1. - Let pi be a pure state represented by a normalized
vector g and p2 any state represented by a statistical operator W. Then :

a) The space R(P(f] - W)+ is one-dimensional.
b) 

Proo, f: Let F be the projector on W) +. Then

Now = F f ~ ~ F f ) I has one-dimensional range, and the same

Annales de l’lnstitut Henri Poincaré-Section A



293DISTANCE BETWEEN STATES AND STATISTICAL INFERENCE IN QUANTUM THEORY

must be true for the right member of (8). Now by corollary 1, ref. [25 ]
one has

and thus W)+ has also a 1-dimensional range. This proves a).
Now b) is a obvious consequence of a) and of relation (7). )t
When the states pi, p2 are both pure, their mutual distance acquires

a very simple form :

COROLLARY 1. are two pure states represented by the vectors j’
and g, then

Proof - We just have to calculate the eigenvalues of - p(g]’ This
has been made, for exemple, in ref. [18 ] and gives the result :

which, combined with relation (7), proves the corollary. /
We finally prove the proposition concerning the values of I

mentionned in the preceding subsection :

PROPOSITION 2. - For any pair of states p~ the range of the func-
tion f defined on the set of all propositions L by

is the entire interval 10, ~ ~ ~~ ~ ~ ~ ~ .

Proof. - We already know, by virtue of theorem 1, that

Now be a basis basis of

R(Wi - W2) - . We denote by Ro the one between these two subspaces
that has the smallest dimension, say Ro = R(WI - W2) + . Then we can
suppose that I c J. The idea of the proof is to « turn » continuously Ro
from its initial position until it falls on R(WB 2014 W~)’ .
For any i E I and t E [0, 1 ] define :

Obviously

Vol. XXXV, n° 4-1981. 1 1
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and also

Now corollary 1 and proposition 1 imply the relation

Inserting this in relation (10) and using (9), we get Vt, t’ E [0, 1 ] :

.which shows that the function t - E(t) is continuous. Hence the function
t - h(t) := Tr ((Wi - W2)E(t)) is also continuous and, consequently, its

range is an interval. For t = 0, E(0) is the projector on Ro = R(WI - W2)+,
thus

For t = 1, E(l) is the projector on R1 c R(Wi - W2)-, thus h(1)  0.

If at is the proposition corresponding to E(t) then f(at) = I h(t) so that f

takes on all the values from 0 to IWI - 2 W2111 as was to be proved, t)
With proposition 2 we concluded our study of the distance p2)

and turn now to applications.

III. STATISTICAL INFERENCE IN QUANTUM THEORY

The purpose of this section is to give an application of the defined distance
to the problem of statistical inference in Quantum Theory. Before doing
so, we shall try to elucidate further what we mean by the denomination
« state of the system ». This will help us to justify in the following sub-
sections our choices of 4definitions and methods. However, we think that
these choices and methods may be justified and useful even for an under-
standing of the concept of state different from ours, or in different contexts.
Their use is not necessarily bound to our personal conceptions on the
interpretation of Quantum Theory.

Annales de l’Institut Henri Poincaré-Section A
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1. The « subjective » and the « objective » state.

There are many different concepts which have been called by the commun
name « state of the system » by quantum theorists. These concepts differ
by the organisation level to which they apply-level of an individual system
or of a statistical ensemble of systems- but also by the different concep-
tions that they express. Throughout this work we shall follow the conven-
tional Quantum Theory.
The states are usually seen as a result of a certain preparation of the

system. Let us reproduce J. M. Jauch’s definition [21 ] « A state is the
result of a series of physical manipulations which constitute the preparation
of the state. Two states are identical if the relevant conditions in the prepa-
ration are identical ». And Jauch explains furthermore that the relevance
or not of a condition is not a priori known, but is a question of physics.

It is clear that the concept of state so defined has an objective character :
a preparation defines a state independently of what the observer thinks
or knows about it. In the framework of Quantum Theory, this state is

represented, as well known, by a statistical operator. Accordingly, the
fundamental problem which a physicist has to solve if he wants to predict
the future behaviour of systems produced by a given preparation, is to
determine the corresponding statistical operator. In order to do this, he
can make use of all the information available about the preparation. This
information is usually of two kinds :

a) It may consist of statistical results of measurements made on a large
set of systems produced by that preparation. In that case, using induction,
he assumes that these results will also be observed in future measure-
ments, i. e. characterize the state produced by the preparation and not the
particular ensemble of systems which was used for the’ measurement.
Such information will be called indirect.

b) It may concern the preparation itself (assembling of the instruments,
boundary conditions, etc.), i. e. have a direct character.

The ensemble of all available information, direct or indirect, will be
denoted by J.

In practice, the available information on the preparation is rarely
sufficient to determine uniquely the corresponding state. If, for exemple,
it is indirect and consists in the knowledge of mean values, dispersions, etc.
of some observables, it is well known that there exist in general infinitely
many states in which these observables have the given mean values and
dispersions. We shall call these states « states compatible with J » and
note the set of corresponding statistical operators by S J.
The available information J on a preparation will be called « complete »

if it determines the state uniquely, i. e. if the set S J contains only one element.
When J is incomplete, as it usually happens, the state corresponding to
Vol. XXXV, n° 4-198 1 .
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the preparation is unknown and one can be only sure of its belonging
to Sj. In this case, it is in general not possible to give objective predictions
concerning the results of measures on systems so prepared, i. e. specify
the relative frequencies which will be actually realized. However, in
practice one always tries to make use of the available information, even
if it is incomplete, in order to give predictions who correspond to a « reaso-
nable degree of belief » [8 ] [26 ] even if it is not certain that they will be
verified by the experience. In other words, one tries to find between all
elements of Sj, the « most probable » or the one that constitutes the « best
estimation » with respect to the available information. This research is
in the classical probability theory, the subject of the problem of statistical
inference. But one cannot simply transpose to quantum mechanics the
methods used in probability theory, for two distinct reasons. First, the
quantum-theoretical algorithms are often different from those of the

theory of probability. Second, quantum mechanics is a physical theory,
so that our available information may have a non statistical character

(direct information about the aparata used in the preparation, etc.).
At this point we think that it would be useful to enlarge our language.

Given a preparation, we shall say that our information J about this prepara-
tion defines a certain « subjective state » of the physicist or a state of know-
ledge. By opposition to the subjective state, we shall call from now on the
state of the system defined by the preparation itself « objective state ». We
saw that each objective state has a mathematical representative (i. e. a

statistical operator) with the help of which all objective statistical predic-
tions concerning the system may be obtained. Now we postulate that the
subjective state also has a mathematical representative which can be
used to obtain statistical predictions, but in this case these predictions
will be subjective and they will simply reflect our knowledge about the
system in the best possible way. Thus this representative will be the statis-
tical operator described earlier as the « most probable » between the
elements of Sj, or the « best estimation » of the objective state.
We summarize the content of this ’subjection in the following mnemonic

definitions :

DEFINITION 2 (Direct and indirect information). - An information
concerning the preparation of a system is called indirect if it consists of
statistical results of measurements performed on a large number of systems
produced by the preparation. It is called direct if it concerns the preparation
itself. The total amount of the available information will be denoted by J.

DEFINITION 3 (Objective and subjective state). - We shall say that a

preparation defines the objective state of the system, and that an amount
of information J about the given preparation defines the « subjective
state » or « state of knowledge » of the observer. Both of these states are

represented by statistical operators.
Annales de l’lnstitut Henri Poincaré-Section A
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DEFINITION 4 (Complete information). - An amount of information J
concerning a given preparation is called complete if it determines uniquely
the objective state. In this case the subjective and the objective state are
represented by the same statistical operator.

In this new language, the statistical inference problem is translated as
follows : for a given incomplete amount of information J, find the statistical
operator that represents our state of knowledge.

After these remarks on the concept of state, we turn now to the applica-
tion of the distance to the statistical inference problem. From now on
states and statistical operators will be denoted by the same symbol. Since
we shall primarily be concerned with subjective states, we shall sometimes
drop the adjective « subjective ».

2. Modification of the subjective state due to additional information.

Jaynes was one of the first to study a particular case of the statistical
inference problem in Quantum theory, namely the case of information
of purely statistical character (i. e. indirect). He defined a new concept,
the entropy of a quantal state, and proposed the following solution to the
problem : for a given amount of information J, let S be the set of all statistical
operators compatible with J in the sense defined previously. Then the
subjective state is represented by the element of S which has the greatest
entropy. This solution is nowadays considered as correct. In fact, as we
have shown elsewhere [27 ], this « maximum entropy principle » proposed
by Jaynes is implied by the principle of Laplace, at least in the classical
case. Yet it has been understood that it is applicable exclusively on the
case of indirect information (i. e. mean values of some observables are

given). Its application to other cases produces paradoxes [28 ].
We shall study a different case of the statistical inference problem which

can be stated as follows ; suppose that our state of knowledge on a physical
system is Wo. At a given time we acquire new data which change our state
of knowledge. The problem is to determine the final state Wl in terms of
the state Wo and of the new data. In what follows, we shall use the Heisen-
berg picture, so that there will be no dynamical evolution of the state in
time. States can change only when our information on the system changes.
We shall consider two different cases, according to the nature of the

new information which changes the state, direct or indirect (Cf. def. 3).

2.1. The case of indirect information.

2.1.1. Physical investigation.
When the new information is indirect, we can state our problem as

follows. For a given preparation, suppose that our information about it

Vol. XXXV, n° 4-1981.
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permitted to choose in any way (which we do not specify) a statistical
operator Wo representing this particular state of knowledge. In order to
test whether or not Wo represents also the objective state which this prepa-
ration defines, we can mesure some observables on a great number of
systems produced by the preparation. This provides some statistical data
which may be identical or not to those predicted by Wo. If they are identical,
then we have an indication that Wo is close to the statistical operator
representing the objective state, or even that it might be equal to it. There-
fore, we maintain Wo as a representative of the subjective state. If the
statistical data differ from those predicted by Wo, then we are obliged to
choose another WI as representing our state of knowledge, since this later
is changed. The problem of the statistical inference is here to find this WI
on the basis of Wo and of the new statistical data.
The solution we propose to this problem is based on the following

qualitative argument. Let S be the set of all density operators who give
predictions in accordance with the new statistical data. Obviously Wi must
be one of them. But on the other hand Wi has to take into account, as far
as possible, the knowledge contained in Wo. This condition can be fulfilled
if Wi, while belonging to S, is chosen so as to give the closest possible
statistical predictions to those given by Wo, and this for all imaginable
measurements. By definition 1 of the distance between states, this is equi-
valent to saying that d(Wo, WJ should be as small as possible. In other
words, Wi should minimize the distance d(Wo, W) taken between Wo
and an element WeS.

It may be that this argument, because of its qualitative character, is not
decisively convincing. However, it is quite in the spirit of the arguments
used in classical statistical inference. We thus raise its conclusion to the
status of a postulate.

POSTULATE 1. - Let Wo, WI represent the subjective states before and
after the acquiring of an information consisting of some statistical data.
Let furthermore S be the set of all density operators giving predictions in
accordance with these statistical data. Then WI is an element of S which
satisfies the relation :

This is the translation of the physical problem into mathematical language.
Indeed now we have to specify S and find between its elements the one
which satisfies relation (11).
The first part of the problem, i. e. the determination of S in the case of

an indirect information, is simple. Indeed, quantitative statistical data

are generally of three kinds :

, a) Mean values, dispersions, etc. of some observables are given.

Annales de l’Institut Henri Poincaré-Section A
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b) The probabilities of the answer « yes » are determined for some
propositions.

c) One may determine completely the probability density of the values
of some observables.

Now all these results can be expressed as mean values of some self-
adjoint operators. In case a) this is evident, since dispersions are expressed
by the mean values of squares of operators. For case b), it is sufficient to
remember that propositions are also represented by operators (projectors).

As for the case c), let us note that if C = f ÀdEÀ is the spectral decomposition
of the operator C, then the probability distribution of the values of C in
the state W is given by the formula : 1(2) = Tr But Tr (AW) for
any self adjoint operator A is, by definition, the mean value of A in the
state W. Thus the giving of the probability distribution of C is equivalent
to the giving of all the mean values of the projectors E~.
We conclude that, indeed, any indirect information can be expressed

by the giving of the mean values ki, i E I of some observables Ci. Accordingly,
the set S of all states compatible with an indirect information has the
form:

where E is the set of all density operators and Ci are observables defined
for the studied system.
The first part of the mathematical problem raised by the postulate i. e.

the determination of the set S for the case of indirect information is
thus solved. The second part the finding of the operator W1 in S that
satisfies rel (11) is much more difficult. In fact, we have only found some
partial results. In order to facilitate the mathematical treatment, we shall
suppose from now on that Ci are continuous operators. If this is the case,
then the structure of S is given by the following proposition.

PROPOSITION 3. - The set S defined by (12) is convex and closed (in

Proof - a) For any W’, W" E S and any a, b E !R+ such that a + b = 1,
one has :

Consequently, aW’ + bW" E S, so that S is convex.
b) The functions

being continuous [29] ] it follows that the sets are closed. But

S so that S is closed..
I

Vol. XXXV, n° 4-1981. &#x3E;
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The result of the proposition allows us to apply the theory of best approxi-
mation of an element of a Banach space by elements of a closed, convex
subset [30] ] [31 ]. In our problem, the Banach space will be Li(H), and
we shall have to find, according to our postulate, the best approximation
of Wo by an element W1 of S, with respect to the norm 11’111 i (cf. Theorem 1).
The theory of best approximation for convex sets is still far from being
sufficiently developed; yet it yields general criteria characterizing Wi,
which are much simpler that condition (11). These criteria are given in
the mathematical section 2 .1. 2 by the following theorems : for a general S
(cf. relation (12)) by the theorems 3 and 4. For the special case of an S
defined by the mean value of one observable C, cf. Corollary 2. Finally,
these criteria enable us, in some special cases, to completely determine Wi 1
(cf. Theorem 6). -

2.1.2. Approximations in the space L1(H).

Throughout this subsection, S will be a closed convex subset of E and Wo
a density operator not belonging to S. Our scope is to give criteria charact-
erizing the « element of best approximation », i. e. the unknown statistical

operator Wi which satisfies rel. (11).
We shall make use of the basic result of the approximation theory of

convex sets in normed spaces, due to I. Singer [31 ], which runs as follows :

THEOREM 2 (1. Singer). - Let E be a normed space, G a convex subset
of E, xe E""’Ö and go E G. Then = inf ~ x - if and only

g=G

if there exists an fEE * (the topological dual of E) such that

In the case we study, Singer’s theorem implies the following result :

THEOREM 3. - If Wi E S, then a necessary and sufficient condition in
order to have

is the following. There exists a hermitian operator A such that

and

Proof - We apply Singer’s theorem to the case E = G = G = S,
x = Wo, go = Wi. It is well known [29] ] that the dual ofLi(H) is isomorphic
to L(H). The duality is established via the continuous bilinear form

where

Annales de l’lnstitut Henri Poincaré-Section A
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Thus, if relation (13) is true, then an element B E L(H) exists such that :

and VW E S : Re [Tr (B(WI - W))]  O. Setting A = B + 
B* 

we find:
2

And also

= 1. N
The problem of finding the element of best approximation is thus trans-

formed by Theorem 3 to a pair of simpler problems. We should first find
the general solution of the pair of equations (14) and then examine if there
exists one between these solutions that satisfies the condition (15). We
establish now a theorem which solves the first of these two problems.

THEOREM 4. - The general solution of the system of equations (24)
with respect to the hermitian operator A is the following :

where F, F’ are, respectively, the projectors on

and B is a hermitian operator the range of which is orthogonal to R(Wo - Wl)
and such that II B II  1.

Proof - We first show that if B is as described above, then A defined
by (16) satisfies the relations (14).

If x E R(F) then Bx = 0 and thus (x, Ax) = (x, Fx) = ) ) ( x ~ ~ 2 which
shows that II A 1. On the other hand, for any x E H write

where xi e R(F), x2 E R(F’), x3 E R(B) and x4 | R(F) E8 R(F’) E8 R(B). Then

thus proving that II = 1. Besides, if we set for simplicity W = Wo - Wi
then
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Now obviously W = (F - F’) I W I is the polar decomposition of W
so that

which together with the former relation, shows that conditions (14) are
satisfied.

Let us now prove that any solution of (14) has the form (16). If

is the spectral decomposition of W, then (14) implies

Since A 1, we deduce that

Now if A = r 03BBdE03BB is the spectral decomposition of A one has :

and analogously,

Therefore, if we set by definition B = A - (F - F’), we have Bt/1n = 0
whenever 0. This implies that R(B) is orthogonal to R(F - F’) = R(W).
Since A = B + (F - F’) and II A II = 1, this orthogonality implies in its

turn that II B II x 1 as was to be demonstrated. -
The following proposition is useful for proving the unicity of the element

of best approximation for the cases of interest.

PROPOSITION 4. - If the inequality (13) characterizing the elements of
best approximation has two solutions with respect to Wi, say Wi, W~ then
any A obeying conditions (14) and (15) obeys also the same conditions
with W~ in the place of Wi.

Proof - Suppose that Wi, W~ are solutions of (13) and that A obeys
conditions (14), (15). Then one has

and, by virtue of (15),
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Replacing these expressions in (14) we find

which easily implies

Let us sum up the results obtained up to now.
Theorem 3 shows that WI is an element of best approximation if and

only if there exists a common solution A of the equations (14) which also
satisfies relation (15). The theorem 4 gives the general solution of (14).
Remains now the second part of the problem, that is of finding for which WI
there exists among the solutions of (14) one which satisfies condition (15).
This came out to be considerably more difficult. We have only established
some partial results, replacing condition (15) by simpler ones, as we pass
from the general to more special cases. These new conditions will be

sufficiently simple to enable us, for example, to prove the projection
postulate.
We considered up to now a quite general set of states S, which was only

bound to be closed and convex. From now on we shall make a particula-
rization, by defining S as the set of all states for which the mean value of
an observable C is a number k. We shall make use of the following theorem.

THEOREM 5. - Let S = {W E L : Tr (WC) = k ~ , where C is a given
hermitian (continuous) operator. Then any element of S is a mixture of

pure states belonging to S.

In other words, the theorem states that if Tr WC = k, then W can be

written as a mixture I such that ’11/1 n : (1/1 n’ = k. The proof
n

of this statement is easy for finite-dimensional spaces. For the more general
case of a separable Hilbert space considered here, we gave a proof in
reference [25 ].
Theorem 5 has an immediate corollary which provides simpler alter-

natives to condition (15).

Then condition ( 15) is equivalent to each of the following two conditions :

a) 
b) Wl can be written as a mixture of pure states e S which maximize

the expression (~ Af) for E S.

a) ==&#x3E; (15) : Any WeS can be written by virtue of Theorem 5, in the
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form : W where Condition a) now gives
j

i. e. condition (15).

a) =&#x3E; b) : Using again Theorem 5, we can write : W1 = I with
E S. Applying condition a) we get ~

which easily implies ( f , Af ) &#x3E; ( f, Af ), Vi, E S.

b) ~ a) : Obvious. -
Combining now Theorems 3 and 4 with the preceding corollary, we

obtain two criteria characterizing the element of best approximation.
The first is condition a) above, which should be fulfilled by the element
of best approximation Wi and the operator A, defined by relation (16).
It is considerably simpler than condition ( 15), since it involves comparaison
of Wi with pure states only. The second, condition b), does not involve
any comparaison at all; it expresses a relation between A, which depends
on Wi, and WI itself. We shall see in the next subsection that, in simple
cases, finding a WI which satisfies b) is a kind of eigenvalue problem which
can be easily solved.

2.2. A case of direct information. The projection postulate.

We now come to the second of the two cases considered in the beginning
of the Section III-2, in which the information that changes our state of
knowledge is direct (cf. Definition 2) i. e. it concerns the preparation itself.
In fact, we shall consider only a very special subcase, since our goal is to
study the « projection postulate » in quantum mechanics. This subcase
can be stated as follows : suppose that the subjective state of a quantal
system is Wo. If we carry out on this system a measurement of the first

kind, which means, in von Neumann’s terminology, that the system is

not destroyed by the measurement and that an eventual second measure-
ment, immediately subsequent to the first would have the same result,
our problem is to find the subjective state Wi after the measurement.
We shall now bring forward some explanatory remarks.
a) The initial subjective state Wo is entirely arbitrary. In particular, it

may correspond to a « complete » amount of information (cf. Definition 4)
so that it can be mathematically identified to the initial objective state of
the system. Here, we stay in the general case where the subjective state may
differ from the objective state.
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b) The two subjective states Wo and Wi correspond to different prepa-
rations, and thus to different objective states, in opposition to the case
studied in subsec 111-2.1. Indeed, the measurement is part of the preparation
corresponding to WI,
The problem has a trivial solution only when the measurement is

complete, that is when it is a simultaneous measurement of a complete
commuting set of observables. The state Wi is then represented by the
unique common eigenvector of these observables which corresponds to
the result found. Unfortunately, this is usually not the case. All measure-
ments of observables with continuous spectrum in particular the position,
momentum, the energy of a free particle, etc. are necessarily incomplete.
This is also the case for the observables with degenerate spectrum, when
only one such observable is measured. There exist then infinitely many
states for which the result observed is true, and the Quantum Mechanical
formalism generally applied [22] ] cannot determine Wi uniquely.
The choice of the state after the measurement Wi depends, of course,

on the particular experimental arrangement which has been used. However
we shall make the hypothesis that we ignore completely the experimental
arrangement, and that our information consists only of the nature of the
observable measured and of the observed result. This hypothesis is not too
restrictive nor as abstract as it may sound. Indeed, some information
about the experimental arrangement can be included in the result of the
measurement. For instance, the position of the apparatus in space implies
a localization of the particle, and this can be considered as a part of the
result. On the other hand, the Quantum Mechanical formalism never
makes a reference to the experimental arrangement when stating its funda-
mental principles.

Before we propose a solution to that problem, we shall expose briefly
some opinions expressed by other authors. We shall see that each one is
implicitely or explicitely attached to a different concept of state.

According to the opinion of von Neumann [22 ], Prygovecki [32 ] and
others, the problem has no solution : one cannot determine the state after
an incomplete measurement. The authors are right, if by the name « state »
one understands « objective state » (Definition 3).

Contrarily to von Neumann, some other authors [33 ] [36 ] supply the
quantum mechanical formalism with an additional postulate which permits
to determine the state Wi after the measurement uniquely, if the initial
state was pure; it is the so-called projection postulate. According to this,
if the initial state was represented by the vector f, then the final state will
be represented by the projection of f onto the subspace formed by all the
state vectors for which the result of the measurement would be certain i. e.,
in the vocabulary of subsec. III-1, by all the state vectors compatible with
the result of the measurement. As for the domain of applicability of this
Vol. XXXV, n° 4-1981.
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postulate, some authors apply it without distinction to all cases. Others,
like A. Messiah and C. Piron affirm that the measurement should be
« ideal » (cf. [35 ], p. 167 and [3~ ], p. 68 for the definition of « ideal » measure-
ment given by these two authors). However, Messiah and Piron (and
especialy Piron who does it explicitly) use the name « state » to designate
only pure states, and in addition these later are supposed to have an objective
character and describe individual particles (cf. [36 ], p. 19).

In the present context, where « state » means subjective state, the problem
is more difficult. Indeed, by definition, to any amount of information
corresponds a unique subjective state. Accordingly, we cannot affirm, as
von Neumann did, that the problem has no solution. On the other hand,
we should not make any additional hypothesis concerning the nature,
ideal or not, of the measurement.
Our amount of information is precisely given : we know the quantity

measured, the result of the measurement, the fact that the measurement
was of the first kind, and that the subjective state was Wo before the measure-
ment takes place. The statistical operator Wi corresponding to the sub-
jective state after the measurement should represent this amount of infor-
mation.
The solution we shall propose and the arguments on which it is based

will be analogous to those in the preceding subsection 2.1. We first translate
the problem into a mathematical language : we carry out a measurement
of the first kind on a physical system. If the initial (i. e. before the measure-
ment) subjective state was Wo, we seek to determine the final state Wi.
Now the result of the measurement of a quantity K can be described by
the fact that a certain proposition « a » namely « the value of K belongs
to a Borel set B » was found true. Since the measurement is of the first

kind, we know that a second measurement would give the same result.
Accordingly, the probability of the same proposition « a » in the final
state Wl is equal to 1. By the von Neumann isomorphism, proposition « a »
corresponds to a projector E, and the relation (2) implies that

We found this condition by taking into account the nature of the obser-
vable K and the result found (used to determine the proposition « a »
and the projector E) as well as the fact that the measurement was of the
first kind. On the other hand, we know that the subjective state before
the measurement is Wo. Consequently, Wi has to take into account, as
far as possible, the information contained in Wo. By an argument identical
to that used in the preceding subsection, we conclude that this will be
realized ifWi, while satisfying condition (19) is the closest possible to Wo
in the sense of the distance d. We thus propose the following postulate :

POSTULATE 2. - Let a measurement of the first kind be carried out on a
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physical system. Suppose that the initial subjective state was Wo and that
the result of the measurement is represented by a projector E. Then the
final subjective state WI will be the closest to Wo between all states satisfying
condition ( 19). In order worlds,

If we accept this postulate on the basis of the physical arguments formu-
lated above, then the projection postulate becomes a theorem. Indeed,
one can prove the following.

THEOREM 6. - Given a pure state represented by the vector f, and a
projector E such that 0, then the only state satisfying conditions (20)

is also pure, and is represented by the normalized projection .

II 1

Proo, f. - The theorem is an immediate application of the results of
the preceding subsection. To see this, set Wo = W1 = P[g] where

g = Ef , B = - (E - P~j), A = F - F’ + B where F and F’ are theB = - (E - A = F - F’ + B and F’ are the

projectors on the one dimensional subspaces corresponding to the eigen-
values ± 1 - I ( f, g) I 2 of (cf. Corollary 1 ). By Theorem 4,
WI satisfies rel. (14). On the other hand, for any h E R(E) we have :

and thus

Consequently, (h, Ah) takes its maximal value on R(E) for h = g. By
Corollary 2, Wi satisfies (13) and by Theorem 1 it satisfies rel. (20). Finally
Wi = is the unique solution of (20) because of Proposition 4 and the
fact that (h, Ah) is maximized on R(E) only for h = 

This theorem is the exact mathematical translation of the « projection
postulate ». Indeed, Theorem 6 and Postulate 2 imply the following
corollary.

COROLLARY 3 (projection postulate). - Let a measurement of the first
kind be performed on a physical system. Suppose the initial subjective
state was a pure state represented by the vector f Then the final subjective
state is also pure and is represented by the projection of f onto the subspace
formed by all the state vectors for which the result of the measurement
would be certain.

Proof - Let the result of the measurement be represented by a projection
Vol. XXXV, n° 4-1981.
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operator E according to our previous discussion. By the von Neumann
isomorphism, E is exactly the projector on the subspace formed by all
the state vectors for which the result of the measurement would be certain.
On the other = Tr (WPf) was the a priori probability of
the observed result in the initial state f Therefore, Ef #- 0. Now by Postu-

late 2, W1 satisfies (20), and by Theorem 6, Wi = P[g] where g = Ef ~Ef~.

IV. PERSPECTIVES

We have shown how the concept of distance can be used to solve a

particular case of the statistical inference problem. However, if the method
is clearly indicated by a postulate, the concrete results are not general
enough. Two lines of research are thus open. The first one is to try to find
the final state Wi for non-pure initial states and for more general infor-
mational situations; the second, to compare physically the results with
these given by other distances (in any case, it is sure that, for instance, the
Bures distance [14] ] gives results different from ours).
There is another important question left. As we have shown else-

where [9] ] [37 ], when the amount of information is too poor, the subjective
state cannot be represented by statistical operators. In many cases, they
are correctly represented by positive continuous operators of infinite

trace, via a generalization of Gleason’s theorem. If would be thus interesting
to incorporate in some way these elements as possible initial states Wo
in our formalism.
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