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A spectral theory for order unit spaces

M. C. ABBATI and A. MANIÀ
Istituto di Scienze Fisiche dell’ Universita, Milano, Italy

Ann. Inst. Henri Poincaré,

Vol. XXXV, n° 4, 1981,j ]

Section A :

Physique théorique.

ABSTRACT. 2014 We develope a spectral theory for order unit spaces, in
terms of F-projections, which generalizes the spectral theories of Alfsen
and Shultz. We discuss the relationship between quantum logical or

operational descriptions of physical systems and the spectral theory for
order unit spaces.

INTRODUCTION

The existence of a spectral theory for order unit spaces has been proved
crucial not only from the point of view of the functional analysis, but also
in the axiomatic approach to statistical physical theories. In fact, an impor-
tant problem for axiomatic approaches to statistical theories is to cha-
racterize vector spaces which are isomorphic to the Hermitian part of
a W*-algebra. In recent papers [5 ] Alfsen, Shultz and Størmer characterized
the JBW-algebras in the class of order unit spaces admitting a spectral
theory in terms of projective units and gave a Gelfand-type representation
theory of JBW-algebras in terms of JC-algebras [7] [28]. Moreover Alfsen,
Hanche-Olsen and Shultz showed how a C*-algebraic structure can be
obtained from a given JC-algebra [5 ].

Therefore it is interesting to characterize order unit spaces admitting
a spectral theory. In a previous paper the authors developed a spectral
theory for a particular class of ,u-complete order unit spaces in terms
of decision effects [1 ]. These order unit spaces are associated to sum
logics admitting a p-complete set of expectation value functions. The
concrete representation of sum logics remains an open question. By adding
some conditions on the « spectral » order unit spaces arising from sum

Annales de l’lnstitut Henri Poincaré-Section A-Vol. XXXV, 0020-2339/1981/259/$ 5,00/
© Gauthier-Villars



260 M. C. ABBATI AND A. MANIA

logics one could obtain JB-algebras. Then Alfsen’s representation theory
could be used.

Therefore a spectral theory for order unit spaces may be of interest
also in the representation theory for sum logics. However, the p-complete-
ness requirement on sum logics is not generally satisfied and the duality
for quantum logics does not completely correspond to duality for order
unit spaces r 18] ] [20]. Therefore we develope here a spectral theory for
not necessarily complete order unit spaces. In this theory we do not assume
any duality as in the spectral theories in terms of decision effects or pro-
jective units.

1 THE SPECTRAL THEORY

In this section we develope a spectral theory for not necessarily complete
order unit spaces. In this theory we do not use any particular duality.
The spectral theories of Alfsen and Shultz [4 ], Bonnet [8] ] [9] ] and the
authors [7] ] are generalized. We follow the notations adopted in [1 ].
Definitions and generalities on ordered linear spaces can be easily found
in the classical literature, f. i. in [3 ] [19 ] and [22 ].
From now on we denote by (E, E + ), or simply by E, an order unit space

with positive cone E + and order unit e. Let Q be any subset of the order
Q

. 

interval [o, e ]. For every subset D of Q, D denotes the infimum of

D -if there exists- in the partially ordered set Q. Analogously, D is
Q Q V

defined. In the case Q = [o, e ], D and D are simply denoted
by A D and V D, respectively. The map ’ : [o, e] ] - [o, e] ] is defined,
for r E [o, e ], by r’ = e - r. We denote by Q’ the image of the set Q under
the map ’. If the map ’ is restricted to Q u Q’ and o E Q, then (Q u Q’,  , ’)
becomes a poset with involution (for the definition, see § 3).

Let Q be a subset of [o, e ], with {o, e ~ ~ Q. Q is said to be normalized
provided q E 1 implies q = o.

DEFINITION 1.1. - Let Q be any subset of [o, e] ] containing 9 and e.
A map s i R - Q is a Q-valued resolution of the unit if

Q

i) for real ~,, s(a~) = B/ ~ s(~), ri  ~, ~ ;

ii) there exist r, Å in R such that = o and s(~,) = e.
For every Q-valued resolution s of the unit
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261A SPECTRAL THEORY FOR ORDER UNIT SPACES

is a bounded not empty set and there exists I s = sup { ~, ~, ~. E cr(~)}.
To introduce the natural definition of a Riemann-Stieltijes integral, it is

convenient to use the term partition of the real interval [a, ~3 ] to denote
a finite sequence A = { = o, n( 11 ) ~ such that ~, o = a, ~,n  ~ +1, ~n~ " = {3.
The norm 1/B1 of A is defined as 1/B = 

DEFINITION 1.2. - Let S be a Q-valued resolution of the unit. A real
function / is norm integrable with respect to s on some real interval [cx, {3),
provided there exists r( f, s) in E with the following property : for all s &#x3E; 0,
there exists 5 &#x3E; 0 such that

whenever A is a partition of [a, ~8] ] with norm I /B  6 and the an’s belong
to [~n, ~n + I] ] for 0 ~ n  n( 11 ).

If f is norm integrable with respect to s on [a, the element r( f , s)
in formula ( 1.1 ) is unique. Then r( f , s) is called the norm integral of f

with respect to s on [a, 03B2) and is denoted by r In particular,

if f is the identity map i : À H 03BB, the corresponding net in (1.1) is a Cauchy
net. Thus, if E is norm complete the identity map is norm integrable with
respect to every Q-valued resolution of the unit on every interval [a, {3).
The norm integral of the identity map i with respect to s on the interval

[ - I s 1,1 s + s) does not depend on E, for 8 &#x3E; 0. It is called the norm mean

of s and denoted by ~(/.). If E is not complete, we consider E as canoni-

cally embedded in his Cauchy completion E and the Cauchy nets in (1.1)
correspond to norm integrals in E. These definitions can be obviously
extended to the case {3  a.

The following lemma concerning Q-valued resolutions of the unit
with Q and Q’ normalized sets, will be very useful.

LEMMA 1.1. - Let Q be a normalized subset of [a, e ] and a be the norm
mean of some Q-valued resolution s of the unit. Then

i) s(0) = o if and only if a &#x3E; o ;

ii) 
If also Q’ is normalized, then
iii) s(À) = e for all À &#x3E; 0 if and only if o ;

I s I.

Proof - ii) We remark that for ~|  I s I and s &#x3E; 0
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where

and

so that statement (ii) follows from

i) First, assume that s(0)=0. By appling formulae (1.2) and (1.3)

in the case ~ = 0, we obtain ~0 03BBds(03BB) = o and o  03BBds(03BB) = a.
Jo

Conversely, let a be positive and let o. Then there exists ~  0

with s(r~) 7~ o. Since Q is normalized, there exists x in the dual cone Et,
= 1 such that x(s(~)) = 1, i. e. x(s’(r~)) = 0. By applying (1. 3) and

(1.2) we obtain

contradicting the hypothesis a &#x3E; o. We conclude that a  o implies s(0) = o
and statement i) is proved.

iii) The proof is analogous to i) and is omitted.
iv) We remark that a is the norm mean of the resolution of

the unit )~ - ~ - 
Analogously, a - ~a~ e is the norm mean of the resolution of the unit

À - 5(/). + II a II). Hence | s |  a follows from

and the statements i) and iii). ///
We recall that a projection of E is any extreme point p of [o, e ] or, equi-

valentely, every p E [o, e such that n V(P’) = { o }, where denotes

the order ideal generated byp. The set P(E) of all projections of E is a norma-
lized subset of [6’, e ] and the map ’ is an orthocomplementation on P(E).
For every proj ection p, the linear manifold C(~) : == + V (p’) is the

direct sum of and V~p’). Elements of are said to be compatible
with p. We denote by np the corresponding canonical projection of C(p)
into its direct summand V(p). Letp and q be mutually compatible projections.
We say that p commutes with q if V+ (p)
and nq’p’ E V+ (p’). In this case q commutes with p and p’ and 
Whenever p  q, then p commutes with q, moreover 03C0qp = 

and = q’ [1 ].
Annales de l’lnstitut Henri Poincaré-Section A



263A SPECTRAL THEORY FOR ORDER UNIT SPACES

The following proposition characterizes Q-valued resolutions of the
unit, whose norm means belong to P(E).

PROPOSITION 1. 2. - Let Q u Q’ be a normalized subset of [0, e ]. Let
p E P(E) be the norm mean of some Q-valued resolution s of the unit. Then
s is the unique Q-valued resolution of the unit representing p and satisfies

Moreover p belongs to Q’.

~’roof. Since p E [o, e ], by Lemma 1.1 we obtain i) and iii). To prove ii),
first we prove that s is constant on (0,1) and hence on (0,1 ]. Let 0  r  1.
Then

implies that s(r) - s(1J) belongs to V(p). From

we obtain that s(r) E V(p’) and that s(r) - E n V(~’) = { ~ } so

that 5(r) = It follows easily that = s’(1). Hence ii) holds and
p belongs to Q’. /// 
The following lemma will be useful for our spectral theory.

LEMMA 1. 3. - Let E be an order unit space and P be a subset of P(E).
Assume moreover that (P, ~,’) is an orthocomplemented lattice such

p

that for p, q in P p A q exists and 

i) q E for p, q E P implies q  p.
ii) Two elements p, q in the lattice P are compatible if and only if p

commutes with q. In this case, p A q = npq and p V q = (~p~’)’. In parti-
cular, if p and q are orthogonal p V q = p + q.

iii) P is orthomodular.

Proof i) We first prove that q E for p, q E P implies q E V(p A q).
Actually, q E if and only if there exists a E (0, 1) such that o  p.
Due to the assumptions on P, we get p A q, so that q E V(p A q).
Since V(p A q), there exists a E (0, 1) such that

Now, P is an orthocomplemented lattice. Then p A p’ = o for every
p E P. We conclude that q = p p and i) holds.

Vol. XXXV, n° 4-1981.



264 M. C. ABBATI AND A. MANIA

ii) Let p commute with q. Then p = + with o  03C0qp  p I1 q
and A q’. Therefore, Moreover,

and V(p) and, since p is
a maximal element n [o, e ], p = p A q + p A q’. Since p A q e V(q)
and p A q’ E V( q’), p A q equals 1Cqp. Therefore, p V q = ( p’ A q’)’ equals
(~q.p’)’ = p + q - 1Cqp.

Moreover, 7rq’P and 1Cp,q are orthogonal elements in P such that
p = + and q = + Therefore there exist in P mutually
orthogonal elements and r such that po + r = p and qo + r = q,
i. e. p and q are compatible elements in the lattice P.

Conversely, suppose that p and q are compatible in P. Standard argu-
ments show that po = p A q’ E V+ ( p) n V+ ( q’), qo = q A p’ E V+ ( q) n V+ ( p’)
and r = p n V+ ( q).
We conclude that p commutes with q. In particular, orthogonal p and q

commute, moreover nqP = o holds. Hence p V q = p + q.
iii) For p  q we get q = p + (q - p) = p + np,q = p V (p’ A q), i. e.

P is an orthomodular lattice. ///
Let P satisfy the assumptions of Lemma 1.3. For every P-valued reso-

lution s of the unit and p E P commuting with for all real A, the map sp
is defined by

The meaning of sp is clarified by the following proposition.

PROPOSITION 1.4. i) The map ~, - above defined is a P-valued

resolution of the unit. Moreover, I s = Max sp. I ).
ii) If sand sp have means in E and V(p) and V(p’) are closed, then the

norm mean a of s belongs to C(p) and 1!pa = if moreover a &#x3E; o,

then 03C0pa  o. "
iii) If 7~ is a continuous map and the norm mean of s belongs to C(p)

then sp has norm mean in E.

Proo, f. i) By Lemma 1. 3 the map ~ f---+ sp(~) has range in P ~ P(E).
Therefore, to prove the first statement in i) it is enough to prove that for
every real £

For ~  03BB, s(~)  s(..1) implies s(..1) A p. Let for
some reP and every ~  Then A r A p and

Annales de l’lnstitut Henri Poincaré-Section A



265A SPECTRAL THEORY FOR ORDER UNIT SPACES

which implies (r 11 p) V p’ so that 11 p  (r 11 p) V p’) 11 p = r I1 p  r, ~
as required. Using the formula 

-

one easily obtains that o~) u {0 } = ~(sp) U o-(Sp.) u {0 }, so that state-
ment i) follows. 

rii) Using Formula ( 1. 4) it is easily checked that ~.dsp.(~,) also exists and

a = ~,dsp.(~,) + ~dsP-(~,). Since V(p) is closed, E V(p) and, simi-

larly, E Yep’).

Let a be positive. Then by i), Lemma 1.1 s(0) = o, so that sp(O) = o
and hence o. This proves ii).
The proof of iii) is trivial. ///
Remark that s’(0) commutes with for all real /L Hence the resolution

~ : = of the unit is defined and has the simple form :

In the sequel we are particularly interested in some special projections,
introduced by Bonnet [8 [ - e, e = [ - p, p ]
is said to be an F-projection. We denote by F(E) the set of the F-projections
of E. For p E F(E) the order interval [ - p, p ] equals the relativized unit
ball and therefore the ideal V( p) is a norm closed subspace of E.

In this section we shall characterize those order unit spaces, every
element of which is the norm mean of some P-valued resolution of the

unit, where P is assumed to be a set of F-projections such that o E P = P’.

Remark. Let a E E + and let - a be the norm mean of some P-valued
resolution s of the unit, with P as above. As a consequence of iii), Lemma 1.1,

it is easily obtained that - a = r and for every integer n

so that o  s(-1 )  na. Hence s(-1), n~ N} is contained in B ~7 (B ~/ j
Moreover, we obtain

Vol. XXXV, n° 4-1981.



266 M. C. ABBATI AND A. MANIA

Assume indeed, E P and Then Since

we get s - 1  q. By s0 - B / s - 1 

follows. We deduce that there exists (P n V(a)) = s(0) and a E V(s(0)).
From now on we assume that E satifies the following axiom.

AXIOM I. - There exists a subset P of F(E) such that P’ and for
every a E E+

p

i) there exists (P n V(a)) ; 
p

ii) a belongs to the order ideal generated by (P n V(a)).
p 

If Axiom I is assumed, the element ~ (P n V(a)) is denoted by e(a).
p

Then there exists /B {?~P, a E V(q)} and equals e(a).
PROPOSITION 1.5. - Let E be an order unit space satisfying Axiom I.

i) P is an orthocomplemented lattice and consists exactly of the pro-
jections p such that e(p) belongs to V(p). For every subset D of P

p

a) there exists A D if and only if exists ; in this case,

p

b) there exists V D if and only if D exists ; in this case,

ii) P equals F(E) and is orthomodular.
iii) If E is a Banach space, then P is a (7-lattice.

Annales de l’lnstitut Henri Poincaré-Section A



267A SPECTRAL THEORY FOR ORDER UNIT SPACES

Proof. i) In the case a = e, condition i) of Axiom I guarantees that
there exists p e P such that V(p) = E. Therefore e belongs to P. Since
P ~ -P’ implies P’ ~ P" = P, the map ’ is an involution ori (P, ), where

denotes the ordering induced on P by E + . From e = p p’ for every
p E P we conclude that (P, ~,’) is an orthocomplemented poset. Let

D ~ P admit the infimum in [o, e ], denoted by p.Then p  e and e( p) E F(E)
imply p  e(p). From p  q, for q E D we obtain p E V(q) and hence

p

e(p) = A for all q E D so that We get/ B 
p

p = e( p) E P so that p = AD= /BD’ Conversely, suppose that there
exists /B D. For every r in [o, e ], with rq for all q E D, we get e(r)EV(q)

so that r  e(r)  q. We deduce that there exists A D and equals  D.
The dual statements in b) hold, since the map ’ is an involution on [o, e ]
and on the subset P of [o, e ].
To prove that P is a lattice, one needs just to show that, for p, q in P,

there exists p V q, since in this case p A q exists and equals ( p’ V q’)’.
From {~ } ~ V(p + q)  V(e(p + q)) one gets p, q 5 e( p + q). For

every r e P such r, p + q belongs to V(r) and hence e(p + r.

We conclude that there exists p V q and equals e(p + q).
Finally, let e( q) E V( q) for some projection q. From q  e( q) E V( q) and

iv), Proposition 2.1 of [1 ], one obtains q = e(q) E P.
Conversely, for pEP  F(E), condition ii) of Axiom I implies that

e(p) = p ~ 
ii) Let p E F(E). For every q E P n V(p), .q ~ p. Hence

Therefore, e( p) E V( p). By i) of this proposition we obtain that p E P so
that P equals F(E). By Lemma 1. 3 F(E) is an orthomodular lattice.

iii) Finally, let E be complete. For every sequence { pn, n ç P

there exists in E + the element a = 2 - npn. For every integer n, pn ~ ).
n

Suppose conversely that for some r E P and all integer n, r. Then

a E V(r) implies r. We conclude that e(a) = and that
P is a o-lattice. ///

Let s be an F(E)-valued resolution of the unit. Suppose that the norm

Vol. XXXV, n° 4-1981.



268 M. C. ABBATI AND A. MANIA

means a and a + of sand s +, respectively, belong to E. Then one easily
shows that

If E is consistent with a suitable spectral theory (f. i. if E is a Banach space),
then a + belongs to E for every a E E. Therefore, the following definition
is of interest for every spectral theory in terms of F-projections.

DEFINITION 1. 3. - We say that a E E admits an orthogonal decomposition
if an F-projection p exists such that a E C(p) and 7rpa. Then

p is said to induce an orthogonal decomposition of a.

Let p induce an orthogonal decomposition of a E E. Then 
and e( - so that e(npa) induces the same orthogonal
decomposition as p. Moreover, one easily shows that

a &#x3E; o if and only if and if and only if (1. 5)
The next lemma will be crucial for our spectral theory.

LEMMA 1. 6. - Let p, q be F-projections such that a E C(p) n C(q) with
Then p A = o.

Proof. Since 03C0qa + = a = both a and

03C0qa = a - nq,a belong to V(p’ V q’). Therefore p’ V q’, i. e.

p But and hence

which implies p A e(nqa) = o. ///

COROLLARY 1. 7. - Let a = al - a2 = a3 - a4 be orthogonal decompo-
sitions of some a in E such that e(al) commutes with e(a3). Then al = a3
and a2 = a4.

Proof. - By Lemma 1. 6, e(a 1 ) 11 e’(a 3) = e(a 3 ) A e’(a 1 ) = o. Hence,
by i i ) Lemma 1. 3

and the statements follows. ///

PROPOSITION 1. 8. - Let ~==~+2014~-bean orthogonal decomposition
of a. Then

Proof. By Lemma 1. 6, e(a + ) 11 p’ = o for every p commuting with
e(a + ), such that a E C( p) and o. By ii) Lemma 1. 3, e(a + ) ̂  pp. ///

Annales de l’lnstitut Henri Poincaré-Section A



269A SPECTRAL THEORY FOR ORDER UNIT SPACES

PROPOSITION 1. 9. - Assume that every a E E admits a unique orthogonal
decomposition and that

Then, for every F-projection q
i ) a E C( q) if and only if a + and a - belong to V+ ( q) + V+ ( q’). In this case

ii) the map nq is a closed continuous positive linear map of C(q) onto
V(q) ;

iii) a projection p belongs to C(q) if and only if p commutes with q.

Proof. For every a E C( q), let p + and p- denote the F-projections
+ and + e((~q,a) _ ), respectively. We remark

that p + + p _ - + + + By (1 . 6),
~++~~~+/==~so that p + and p- are orthogonal. Moreover,
a = nqa + = (nqa)+ + (~q.a) + - (~qa) _ - Since

their difference a belongs to C(p + ) with

By the uniqueness of the orthogonal decomposition of a we obtain i).
ii) Let a E [- e, e n C(q), for some q E F(E). By statement i), nq is a

positive linear map of C(q) onto V(q) and - e implies - 
Therefore nq is a continuous map. C( q) be a sequence
converging to a E E and such that nq(an) converges in E. Since V(q) is closed,
lim nq( an) belongs to V(q). Also lim exists and belongs to V(q’). By
a = lim nqan + lim we obtain that nqa = lim TCqan- Hence, TCq is a

closed map.
iii) By statement i) of this proposition, ~=/?+ =(7r~)+ + 

for all p E P(E) n C(q). By statement ii)

It follows that o  p and o  nq’p. Hence nqP and nq’p belong to
V+ (p). Similarly, and nq’p’ belong to V+ (p’). We conclude that p com-
mutes with q, as required. ///
We are interested in orthogonal decompositions a = a+ - a- where

e(a + ) « bicommutes » with a according to the following definition.

DEFINITION 1. 4. - Let p E F(E) and a e E. We say that p bicommutes
with a if p commutes with every q E F(E) such that a E C(q).

If a E E admits an orthogonal decomposition a = a + - a- with e(a + )
Vol. XXXV, n° 4-1981.



270 M. C. ABBATI AND A. MANIA

. bicommuting with a, then by Corollary 1. 7, a admits a unique orthogonal
decomposition and

Moreover, one easily proofs that

where ?(3) denotes the F-projection e(a + ) + e(a _ ).

From now on, E is supposed to satisfy the following axiom.

AxIOM II. - E is an order unit space satisfying Axiom I and every ele-
ment a of E admits an orthogonal decomposition a = a + - a _ , where
e(a + ) bicommutes with a.

For every a in E and real £, = ~((~ 2014 a) + ) is defined. When a is
understood, sa is simply denoted by s and the corresponding maps 
and ~c~Sa~~,~~- are denoted by ni and respectively. The maps ~ : ~ -~ F(E),
5~) = ~((~ 2014 a) + ) are the basic tools for the spectral theory as the following
propositions show.

LEMMA 1.10. - For every a in E and with 11  /L

Proof. - Since ~,e - a = (~, - + (qe - a) then, for each F-projec-
tion p, Àe - a E C(p) if and only if E C(p) and in this case,

In particular, /L~ 2014 a E C(s(’1)) and by i), Proposition 1. 9

and

and therefore

and

Annales de l’lnstitut Henri Poincaré-Section A



271A SPECTRAL THEORY FOR ORDER UNIT SPACES

We conclude that

as required. I __ , 
.. , .

Thus, we obtain the main theorem of our spectral theory.

PROPOSITION 1.11. - For every element a of E

i) the map sa is an F(E)-valued resolution of the unit, with

ii) for every real T there exists in E

and equals 
iii) a is the norm mean of sa, i. e.

Proof. - i) We notice that (/ - a  (À + I )e. Hence,
for is negative and therefore (~e - a) + - o and s(~,) = o.
For II, , ~,e - a &#x3E; implies (~.e - a)+ &#x3E; 
Hence e belongs to V((/L~ - a) + ) and ~(/L) equals e. For 11  À, Lemma 1.10
implies that ~(~) and that

Therefore (..1e - a) + = lim (qe - a) + and hence, for any p E F(E) such
that p for all ~  03BB, we obtain that (03BBe - a) + E V( p) and that s(03BB)  p.
We conclude that s(~,) = V { ~), ~  /L} so that s is an F(E)-valued reso-
lution of the unit.

ii) For all partition A ={~0~~~~(A)}ofthe interval , r ] ,
for T &#x3E; 2014 ~ ~ we set

By statement i) of this proposition, we must only show that

By Lemma 1.10 and the formula

we get

Vol. XXXV, n° 4-1981.



272 M. C. ABBATI AND A. MANIA

and therefore,

Since 03C003BBoa = o, we get = ,(a) - 03C003BBn(a)). We obtain that, for
A

every partition A of the interval [ - ) ) a ) [ 1:] ]

with

i. I  I as required. the statement is
obvious.

iii) follows by choosing r in ii). ///

COROLLARY 1.12. 2014 P(E) = F(E).

Proof. Immediate from Proposition 1. 11 and Proposition 1. 2. ///

PROPOSITION 1.13. - Let s be any P(E)-valued resolution of the unit
with norm mean a and such that a E C(s(~)), for every real A. Then s = sa.

Proof. By Corollary 1.12, s is an F(E)-valued resolution of the unit.
For E C(s(~)) so that, for every partition A of the interval

[2014~J~+~], E &#x3E; 0 s~ belongs to C(~(/L)). Moreover,

and

By ii), Proposition 1. 9, the map 7rs(À) is continuous. From a E C(s(A)) and
a = lim s~ we obtain

I A 

Hence s(~,) induces an orthogonal decomposition of ~ 2014 a and therefore
5(~). We remark is a monotone decreasing net con-

verging to a, so that

is the limit of the monotone increasing net

From (~, - ~ 1 )(S(~ ~ ) - S(~o)) _ (~ - ~1)~1) ~ (~e - a) + E V(Sa(~)) we obtain
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~(/!,) for every partition A and every ÀI  h. We conclude that

sa(~,), as required. ///
Remark. If for every p E P(E), C(p) is closed (f. i. if E is a Banach space),

then the requirement a E in Proposition 1.13 can be removed.
In this case, sa is the unique P(E)-valued resolution of the unit with norm
mean a. Actually, for every real h, the vectors s^ - and hence a = lim s^
belong to C(s(03BB)). 

A

We conclude this section with a simple example of a not complete order
unit space E satisfying Axiom II, with F(E) a complete lattice and F(E)*
order determining on E (a definition of F(E)* is given in § 2). Consider
any abelian W*-algebra A. The Hermitian part A~ of A is an order unit
space whose F-projections are exactly the projections of the algebra A
and the states in the predual of A are an order determining set of completely
additive measures on P(Ah). Consider now the linear manifold E in Ah
generated by P(Ah). When ordered by the cone E+ consisting of linear
combinations with positive coefficients of elements of E results
an order unit space satisfying Axiom II. Actually, F-projections of E are
exactly the projections of A and the predual cone induces on E an order
determining set of F(E)-states.

2. Q-VALUED MEASURES

Let E be an order unit space with order unit e and let Q be a subset
of [o, e such that o E Q = Q’. In this section we investigate the relationship
between Q-valued resolutions of the unit and Q-valued measures on the
natural a-algebra of Borel sets of the real line.

DEFINITION 2.1. - A map m : Q is said to be a Q-valued measure
if

i ) = e ;

ii) ifAi and ~2 are disjoint Borel sets,

iii) for every increasing sequence {0394n} of Borel sets,

The support o-(m) of m is defined as the intersection of all closed subsets ~
of R such that = e. If is a compact set, the measure m is said to
be bounded and sup { ~. I, ~, E o-(m) ~ is denoted by m ~.
Vol. XXXV, n° 4-1981.
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PROPOSITION 2.1. - For every bounded Q-valued measure m, the
mapping 9(m) defined for real Å by

is a Q-valued resolution of the unit. Moreover,

Proof. The proof is standard. ///

PROPOSITION 2.2. - For every is an injective map.

Proo f . 2014 Let m, n be Q-valued measures such that ,Y(u1) = F(n). We
denote by B(n, In) the family of all Borel subsets A of the real line, such
that m(A) = n(A). For A E B(n, m),

so that also A" belongs to B(n, m). By hypothesis ( - oo, À) belongs to
B(n, m) for all real A. Since

and, by additivity, B(n, m) contains the ring of all disjoint unions of intervals
of the form (- oo, ~), [11, /~), [/L, + oo). Clearly, B(n, m) is a monotone

class. Hence by the lemma on monotone classes [17, § 6, Theorem B ],
B(n, m) = as required. ///

There are difficulties to extend any Q-valued resolution of the unit
to a Q-valued measure. Under the assumption that Q equals the interval
[o, e] ] of a ,u-complete order unit space, admitting an order determining
set of ~-normal functionals, the map ~ was proved to be a bijection of
the set of all bounded Q-valued measures onto the set of all Q-valued
resolutions of the unit [2 ]. Before to prove a similar statement for Q-valued
measures, we introduce some definitions.
We call Q-state every positive linear functional x on E such that x(e) = 1

Q

and that, if q == B / ~ qn ~, with {~ } ~ Q a monotone sequence, then

We denote by Q* the convex set of all Q-states.
The map " : E -~ Ab(Q*), defined for x E Q* and a E E by

is a linear positive map onto a subs pace E of the p-complete order unit
space Ab(Q*) of all bounded real valued affine functions on Q* ; it is an
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order isomorphism if Q* is order determining on E. In this case, for every
Q

increasing sequence { ~ } ~ Q, such that there exists { = q,

the supremum exists in E and equals q ; thus, every a-normal
linear functional on E is a Q-state.

PROPOSITION 2. 3. - Let Q be a a-poset (for the definition, see § 3) with
Q* order determining on Q. Then ~ is a bijection onto the set of Q-valued
resolutions of the unit if and onlv if :

Proof. - Assume Formula (2.1). By Proposition 2.2 we must only
prove that ~ is onto. We denote by Q the image of Q under the above
defined map

Note that if p, q E Q and then p + q’  e so p + q’ E Q and
( q - p)’ = p + q’ E Q and therefore ~ 2014 ~ E Q’ = Q.
For every Q-valued resolution s of the unit and every x E Q*, we denote

by J.1x the unique real valued measure such that, for real A

Let m : Ab(Q*) :

Actually, o  (0394)  1.

Let B(s) = { 1B E B(~) : m(d) E lj ). Arguing as in the proof of Propo-
sition 2.2 one easily proves that B(s) contains the ring generated by the
intervals of the form ( - oo, ~), [1}, À) and [~,, + oo) for all real with

~  h. As Q is a 03C3-poset, B(s) is a monotone class. By the lemma on monotone
classes [17], B(s) = B(fR). By assumption, Q* is order determining on Q.
So the map 

" 

is injective on Q and it makes sense to define m : B([R) -~ Q
by m(~) ~ - Then, by definition :

so the m(A) is the required bounded Q-valued measure

extending s.
Conversely, if ~ is onto and p + q x e, p, q E Q, define

///
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COROLLARY 2.4. - Let P(E) be a 6-lattice satisfying the conditions
of Lemma 1. 3 and such that P* is order determining on P. Then

i) P is an orthomodular (7-lattice and the restrictions to P of P-states
are an order determining set of probability measures on (P, x , ’) (for the
definition, see § 3) :

ii) the map ~ is a bijection of the set of all bounded P-valued measures
onto the set of all Q-valued resolutions of the unit.

Proof. - It is an obvious consequence of Lemma 1. 3 and Proposi-
tion 2 . 3. ///

Let E be a Banach space satisfying Axiom I. By Proposition 1.4 F(E)
is a 6-lattice satisfying the conditions of Lemma 1.3. If F(E)* is order

determining on F(E) we can assume P = F(E) in the above corollary.
For every bounded Q-valued measure m and x E Q*, a real valued pro-

bability measure mx on R is defined, for A E B(R), by 
.

Assume that Q* is order determining on E. Then, we can introduce
a weak integration with respect to bounded Q-valued measures, according
to the following definition.

DEFINITION 2 . 2. - Let m be a bounded Q-valued measure. A measurable
real function f is said to be weakly integrable with respect to m on the
Borel set A if, for all x E Q*, f is mx-integrable on A and there exists in
E a vector m r such that _

The vector m f in (2 . 2) is unique and is called the weak integral of f with
respect to m on A, denoted by

The weak integral on [R of the identity map i is called the weak mean of m.

Remark. For a bounded Q-valued measure m on R the norm mean
of exists in the completion E of E. By standard arguments one obtains
that the weak mean of m exists in E and

In particular, the norm mean of belongs to E if and only if the weak
mean of m belongs to E.
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We denote by Exp the map which associates to every bounded Q-valued
measure m, the weak mean of m, i. e.

The following corollary of Proposition 2. 3 concerns order unit spaces E
satisfying Axiom II. Every a in E is the norm mean of the F(E)-valued
resolution sa of the unit.

COROLLARY 2.5. - Let E be an order unit space satisfying Axiom II,
with F(E)* order determining.

i) Let m be a bounded P(E)-valued measure such that the weak mean a
of m exists in E and belongs to C(m(A)), for all Borel set A. Then = sa.

If C(p) is closed for all p E F(E), then every element a of E admits only one
bounded P(E)-valued measure with weak mean a.

ii) If E is complete, the map m - idm is a bijection of the set of all
bounded P(E)-valued measures onto E.

Proof. - The norm mean of the P(E)-valued resolution ~(m) of the unit
equals a and P(E) equals F(E) by Proposition 1.12. Hence, by point a),
statement i) of Proposition 1.5, by Proposition 1.2 and Proposition 2.2
we conclude that equals sa.
For every bounded P(E)-valued measure m, the norm mean a of 

equals the weak mean of m. The second part of i) follows by Remark under
Proposition 1.13 and by the injectivity of the map ~.

ii) The weak mean of every bounded P(E)-valued measure exists in

the Banach space E. By ii), Proposition 1.9, the map np is a continuous
closed positive linear map of C(p) onto V(p), for every p E F(E) = P(E).
Hence, C(p) is closed and the statement follows by Corollary 2.4 and by
the statement i) of this corollary. ///
An interesting question is to characterize order unit spaces with F(E)*

order determining. Any answer to this question will require some genera-
lization of Lodkin Theorem [20 ].

3. QUANTUM LOGICAL
AND OPERATIONAL DESCRIPTIONS

FOR PHYSICAL SYSTEMS

In this section we discuss the relationship between the spectral theory
of order unit spaces and the quantum logical or operational descriptions
for physical systems.
Vol. XXXV, n° 4-1981.
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In § 1 we proved that the posets of F-projections of order unit spaces
satisfying Axiom I are orthomodular lattices. In the sequel we show how
operational descriptions naturally arise from the quantum logical descrip-
tions. The relevant mathematical object in this procedure is the order
unit space of the expectation value functions of observables in a quantum
logical description.

Here we recall some definitions. Let (L, ~) be a bounded poset. A map
’ : L -~ L is said to be an involution on L if

The triple (L, ~,’) is said to be a poset with involution. Let (L, x , ’)
be a poset with involution. Two elements p, q of L are said to be orthogonal

q’ ; they are said to be compatible, provided there exists in L pairwise
orthogonal elements and r such that

A state on (L, ~,’) is a map x : L ~ [R+ such that

A probability measure on L is a state x such that, for every sequence { qn ~
of pairwise orthogonal elements of L admitting supremum,

If there exists in L the supremum of any increasing sequence, L is said to be
a a-poset. If, for every p e L there exists p V p’ and equals I, then the map ’
is called an orthocomplementation. If, moreover, there exists in L the supre-
mum of any orthogonal pair, then L is called an orthoposet. If a a-poset
is an orthoposet, it is called a a-orthoposet.
An orthoposet L is said to be orthomodular, provided p  q implies

that there exists r E L such that p  r’ and p V r = q. One can show that
r = p’ A q. It is well known that any orthoposet admitting a separating
set of states is orthomodular [14 ].

Let L be an orthomodular orthoposet. We denote by B(R) the natural

6-algebra of Borel subsets of R. A map m : L is an observable

provided :
i) ~(tR) = I ; i 

-

ii) for disjoint Borel sets Ai and ~2, (m(~2))’ ;
iii) for every sequence { 0394n } of pairwise disjoint Borel sets, there exists
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The support a(m) of an observable m is defined as the intersection of all
closed subsets A of I~ such that = I. If is a compact set, then m
is said to be a bounded observable.
The observable m is said to be compatible with p E L if for all A E B(R),

is compatible with p. Then the map mp is defined, for A E B(R) by

For p = ~([0, + oo )), mp is denoted by m + . Thus, [0, + (0).
By statement i), Proposition 3 . 8 of [29 ], mp is an observable whenever L is
an orthoposet. In this case, mp is interpreted as the observable « m condi-
tioned by p ».
We denote by u the unique observable such that t({ 1}) = I. Then u is

compatible with every p E L and up, called the « simple observable » cor-
responding to p, is characterized by the property that Mp({ 0 ~) = p’ and

In every standard quantum logical description for a physical system
a triple (2, ~ (9) is defined, where 2, the « logic », is an orthoposet
representing the set of the questions or propositions, which correspond
to the set of all physically admissible simple observables ; in the description
of statistical systems it is natural to assume that 2 is a a-orthoposet.
~ is assumed to be an order determining convex set of probability measures
on 2 and represents the set of all physical states of the system. (9 is a set
of bounded observables, representing the set of all physically meaningful
bounded observables. Then, it is natural to assume that (9 contains the
observable u and, for any proposition p commuting with an observable m
in (~, also mp belongs to C~.
The space of all real valued affine functions on ~, with pointwise

ordering and supremum norm is a pointwise p-complete order unit space,
with order unit the constant 1 function on ~. There is a natural embedding
of 2 into Ab(~). Actually, the map ": 2 ~ Ab(~), defined for 
and p E 2 bv

is a involution preserving monotone injective map with range J~ contained
in the interval [o, 1 ]. The poset J~ is order isomorphic to ~f. Thus, proba-
bility measures correspond exactly to 9-states, so that the set of
-states is order-determining on Ab(F). To every mE (!), the -valued
measure m is associated, where for x E  

A map is defined, which associates to every m~ W the
weak mean Exp  of i. e.
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Exp m is called the expectation value functional of m. For any simple
observable up, Exp up equals ~ .
Ruttimann [26 ] called 2 a « spectral logic », provided Exp is a surjective

map of the set of all bounded observables onto where ~ is the set
of all probability measures on We are interested in more general descrip-
tions, where 2 and F are not necessarily supposed to be total and the
range E of the map Exp may be strictly contained in However,
some other natural assumptions on E will be made.
The following proposition shows how « spectral » order unit spaces

of the type introduced in § 1 arise from quantum logical descriptions.

PROPOSITION 3.1. - Let 2 be a o-orthoposet, EX be an order determining
convex set of probability measures on 2 and (!) be a set of bounded obser-
vables containing the observable u and with the properties that

1) the range E of the map Exp is a linear manifold in 
2) for m and p E 2 compatible with m, mp belongs to ~. (3 .1)
Then

i) E is an order unit space with the constant 1 function on Y as order
unit and the map " is an involution preserving order isomorphism of 2
into [9, 1 ] ;

ii) E satisfies Axiom I with P == =~ if and only if :

for all p, q in 2 and real a E (0, 1), x( q) ,
V X E Y implies q ; (3 . 2)

iii) if (3.2) holds, then E satisfies Axiom II if and only if :

m compatible with p e Ef is equivalent to Exp m E C(p) . (3 . 3)

Proof. i) is obvious.
ii) Condition (3.2) implies that the image  of the set of all simple

observables is a normalized set. Actually, fi x od, a E (0, 1) implies
( 1 - and hence, by (3 . 2), p’ = I, i. e. p = o.

By Remark below Definition 2.2, every element in E is the norm mean
with to some ~-valued resolution of the unit. Assume now Condition (3 . 2)
and consider an element a in [c, 1 ] n V( $), for some q E file Every p E V(a),
p E 2~ belongs to V( q). Hence there exists a E (0, 1) such that 
so that (3.2) implies   q. Arguing as in the Remark below Proposi-

tion 1.4 we obtain that there exists V (2 n q. From

. we obtain q E F(E) and Axiom I is satisfied for P = 2.

Annales de l’Institut Henri Poincaré-Section A



281A SPECTRAL THEORY FOR ORDER UNIT SPACES

Conversely, assume that E satisfies Axiom I, with P = ~. Thus, 
for p, and a &#x3E; 0 implies o    03B1-1 q and ~V(). From  = F(E)
we obtain fi x Q and (3 . 2) holds.

iii) If conditions (3.1) and (3 . 2) hold, then m e w, m compatible with
p implies Exp m E Actually, for every ~ ~ ~ and every p e Ef
compatible with m, mp belongs to Uc and g(mp) = has norm mean

in E. By ii), Proposition 1. 4, Exp m E Therefore, it is enough to prove
that Axiom II is equivalent to the condition that 

.

We first assume that Exp m E C(p) implies m compatible with p. Let m E ~.
Then Exp m = Exp m + - (Exp m - Exp m + ) is an orthogonal decompo-
sition of Exp m with

We must only prove that e(Exp m+) bicommutes with Exp m. By ii) of
this proposition and ii), Proposition 1.5, any F-projection of E can be
represented as p for some p E 2. Then p commutes with + oo))
if and only if p and + 00)) are compatible in the lattice 2. Hence
Exp m E implies that + oo)) is compatible with p, i. e. e(Exp m+)
bicommutes with p.

Suppose now that E satisfies Axiom II and that Exp m E C(p) for some
mE (9 and p E Then, for every real ~,, Àe - Exp m ~ C( p) so that Axiom II
implies that Exp m) + ) commutes with p. For every Borel subset A
of the real line, the corresponding observable has mean in E. By ii),
Proposition 1.4, Exp m belongs to C(ih(A)) and by Proposition 1.13
we deduce that

so that ~(m)(~,) commutes with p for every real h. By Proposition 3.11
and Proposition 3 .12 [29 ], there exists a Boolean sub a-algebra B of

containing {  } and {F()(03BB), h E !R } so that, for every Borel set A,
in(A) E B. Hence, m is compatible with p and Condition (3. 3) holds. ///

Conditions (3.1), (3.2) and (3.3) characterize linear manifolds in Ab(y)
satisfying our spectral axioms. Condition (3.1) is a natural physical requi-
rement for quantum theories. Condition (3.2) generalizes the classical
« projection postulate » of von Neumann and enable us to regard J~ as a
set of F-projections. It is evident that, if this condition is satisfied, Y is
order determining on Ef. Conversely, if Y is strongly order determining
on F [14 ], Condition (3 . 2) is satisfied. Condition (3. 3) assures that for
p E Ef and m E (!), compatibility of m and p corresponds to compatibility
of Exp m and p.
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We propose to call a triple (2, ~, (9 z) a quantum logical description,
provided :

i) 5£ is a 6-orthoposet ;
ii) ~ is a convex set of probability measures 
iii) C~~ is a set of observables containing u and such that Exp (9!i’ is

a linear manifold ;
iv) Conditions (3.1), (3.2) and (3.3) are satisfied.

Examples of such descriptions are the ones associated to the projections
ofW*-algebras or JW-algebras [4 ].
A quantum logical description is, however, not the unique way to describe

a statistical system. At first Jordan [15 ], Segal [27 ], Haag and Kastler [16 ]
and Ludwig [21 ] emphasized the importance of order theoretical methods
in the algebraic approach to statistical theories. More recently the « opera-
tional » approach to the description of classical and quantum mechanical
statistical systems has been proposed by Davies and Lewis [10 ],
Edwards [11 ] [13 ], Mielnik [23 ] [24 ] [25 ] and others. This approach
was successful in characterizing in terms of order properties state spaces
of JB-algebras or C*-algebras [5 ] [6] ] [21 ]. Thus, physically meaningful
conditions can be formulated in the operational setting in order to obtain
the usual algebraic descriptions of physical systems.

The question of the more profitable operational setting remains still
open. In all operational descriptions of statistical systems the starting
point is, however, the set of all physical states, which is supposed to be
a convex subset S of some real vector space. The space Ab(S) of all real
valued affine functions on S, with pointwise ordering and supremum norm,
is a complete order unit space with the constant 1 function on S as unit.
The set of all simple observables is supposed to correspond to some sepa-
rating convex set Q in the order interval [o, 1 ] of the space A~(S). The
set Q contains the zero element and 1 - q for every q E Q. The assumption
that Q equals [o, 1 ] is strong, because it would exclude the classical sta-
tistical mechanics [13 ]. Elements of Q are interpreted as « effects » or
« counters ». Given an effect q and a state x, the number q(x) means the
statistically averaged answer of q to the individuals of the « statistical
ensemble » x. Then q2 means that the counter corresponding to
qi is « more sensitive » than the one corresponding to q2. The counters q
and aq, a E (0, 1) differ only by the scale factor a : the counter aq is supposed
to detect, for every ensemble x, only the fraction ax of x. As for observables,
they are represented by Q-valued measures.
A fundamental problem in any approch to statistical systems is to give

a suitable notion of « propositions ». In the quantum logical approach
they are given a priori and correspond exactly to the « properties » of the
physical system. In the W*-algebra or in the JW-algebra model they are
the extreme points in [o, e ]. In the operational approach one needs some
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additional requirements to characterize counters testing whether the
statistical ensamble satisfies or not some physical property. For instance,
Alfsen and Shultz introduced the « projective units » [4 ], Wittstock defined
the analogue notion of nh-projections [31 ] and the authors [7 ] defined
« decision effects » generalizing the classical notion introduced by Lud-
wig [21 ]. Here we use the weaker notion of F-projections, more natural
in spectral theories which not require duality. The condition characte-
rizing F-projections appears as a generalization of Ludwig’s « Sensitivity
Increasing Axiom » and means that, when compairing the sensitivity of
counters associated to « propositions », their sensitivity does not depend
on scale factors. Thus, we assume that the propositions set L consists of
F-projections of the space E = lin Q. In the description of statistical
systems it is natural to assume that L is a 03C3-poset and that L* contains S
[4] ] [11] ] [12] ] [13 ].
We are therefore interested in those operational descriptions (S, Q, L, 0)

where

i) S is a convex set ;

ii) Q is a separating convex set in Ab(S) such that 0 E Q = Q’ ~ [o, 1 ] ;
iii) L = F(E) is a o-poset such that L* contains S, where E is the linear

span of Q ;
iv) 0 is a set of bounded Q-valued measures and the subset OL of all

L-valued measures in 0 contains the one extending for every m E O

and p E L commuting with Moreover, E = Exp OL.
We call (S, Q, L, 0) a « spectral operational description ». These descrip-

tions are characterized by the quite natural requirement that every q E Q
appears as the integration of elementary measurament’s acts.
We conclude our paper with a trivial statement concerning the equi-

valence between quantum logical and spectral operational descriptions.

PROPOSITION 3 . 2. i) Let (2, ~, (!).p) be a quantum logical description.
Then the map is an involution preserving order isomorphism of 2 onto
F(E), with E = Exp ~. The quadruple (~, ~, F(E), (!)) is a spectral opera-
tional description, where

~ is any convex subset of [o, 1 ] with linear span E, such that o e a = fl’,
U~ is any set of ~-valued measures containing 16 for every c~ E ~. 

Moreover, E satisfies Axiom II.
ii) Let, conversely, (S, Q, L, 0) be a spectral operational description.

Then the pair (L, S) is a quantum logic satisfying Condition (3.2).
If, moreover, the linear span E of Q satisfies Axiom II, then the triple

(L, S, OJ is a quantum logical description, with E = Exp OL.
Vol. XXXV, n° 4-1981.
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This proposition is an improvement of an analogue statement of the
authors [2 ], where it was assumed that L consists of « decision effects »
or, equivalently, that L is a logic and S a strongly order determining set
of states of L.
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