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Symmetry breaking
for molecular open systems

E. B. DAVIES

Mathematical Institute, Oxford.

Ann. Inst. Henri Poincaré,

Vol. XXXV, n° 2, 1981,

Section A :

Physique théorique.

ABSTRACT. -- We study the modifications to the energy levels of a
molecule due to its interaction with an external boson (phonon or photon)
reservoir. In the Hartree approximation it is shown that this leads to a
non-linear functional, whose stationary states may break the symmetries
of the isolated molecular Hamiltonian. These symmetries may often be
restored by use of the generator coordinate method, which amounts to
dressing the molecule with its boson cloud. The significance of these cons-
tructions for recent discussions of molecular structure is discussed.

§ 1. INTRODUCTION

In spite of several recent articles on the « problem of molecular struc-
ture » by Essen [7], Woolley [27] ] [28], Primas [22 ], Pfeifer [19] ] [20],
Bader et al. [7] ] and others, there remain substantial disagreements about
what would constitute a satisfactory solution. One general point of agree-
ment, however, is that it is important to investigate the stability of mole-
cules with respect to their interactions with the external environment.
In order to assist future discussions of the problem, we thought that it
would be useful to study a simple model of a molecule interacting with
its environment for which substantial rigorous analysis is possible.
We consider the case where the environment is a free boson reservoir

(phonons or photons), but allow the interaction to be as general as pos-
sible, in order to demonstrate the stability of the states obtained most
convincingly. While our results and methods are a development of those
of Davies [2] ] [3] ] and Pfeifer [19], the analysis presented here is more
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150 E. B. DAVIES

satisfactory in several ways. Moreover the systematic use of group theory
allows a much deeper understanding of the relationship between the use
of the Hartree method and the symmetry breaking which occurs. We
comment in passing that our results may be regarded as an application
to quantum mechanics of general ideas concerning bifurcation and sym-
metry breaking reviewed by Sattinger in [24 ].
Our starting point is the Hamiltonian

(1.1)
on H (8) ff, where Jf is the Hilbert space associated with the molecule,
or some subspace generated by specified eigenvectors of the molecular
Hamiltonian Ho, which we assume to be self-adjoint and bounded below.
The boson Fock space ET has single particle space and the reservoir
Hamiltonian F is the free Hamiltonian whose single particle term Fi is
assumed to be self-adjoint, and strictly positive in the sense that

for all non-zero § in Dom Then the self-adjoint operator F1L
has dense domain in F1 for all 03BB E [R.
We shall assume that the interaction is of the form

( 1. 2)

where Ar are bounded operators onjf and a*(~’r) are smeared field ope-
rators on ~ . Somewhat more complicated interactions of the same gene-
ral type could also be treated by our method. The starting point of our
analysis is the following lemma.

LEMMA 1. -- If ~  oo for all r then Hi has form bound zero
with respect to Ho + F, so the self-adjoint operator H is well defined
by ( 1.1 ) interpreted as a form sum, with

Quad (H) = Quad (Ho + F) = Quad (Ho) n Quad (F) .
Proof -- The basic computation is

Annales c!e l’Institut Henri Poincaré-Section A .



151SYMMETRY BREAKING FOR MOLECULAR OPEN SYSTEMS

Now

implies that

so

and

Thus

The lemma now follows by application of standard quadratic form
techniques [4] ] [23 ].

Note. -- If we wanted HI to have operator bound less than one with
respect to Ho + F, or more weakly wanted H and Ho + F to have the
same domain we would need to know for all

4&#x3E; E Dom (Ho), where Q is the vacuum state. This happens if Q lies in
for all r, which implies  oo. The conditions  co

and II F1-1/2 1,.11 J  oo are not directly related.
Assuming II  CIJ one can rearrange the sum in (1. 2) so that

( 1. 3) below holds. We shall henceforth assume that this has been done.

LEMMA 2. -- If

(1.3)
then H is bounded below with

Proof --- From

we deduce

and hence

Vol. XXXV, n° 2-1981.



152 E. B. DAVIES

Hence

We next use the Hartree method to obtain an upper bound on the infimum

of the spectrum of H (that is on the ground state energy if there is a ground
state). We do the Hartree minimisation in two stages.

LEMMA 3. - If we define

then

Proof -- If 03C8 ~ F1, the (Glauber) coherent state  E ff is defined by

and satisfies the following well-known identities

Now the operator H03C6 on F defined by

is quadratic in the creation and annihilation operators, so

If we put

Annales de l’Institut Henri Poincaré-Section A



153SYMMETRY BREAKING FOR MOLECULAR OPEN SYSTEMS

then

so the infimum is as stated. For fixed the infimum is achieved, and the
associated Hamiltonian H+ on F does possess a ground state, if and only
if t/J = - has finite norm, that is

The condition that

for all r is an extra infra-red condition on the interaction to which Pfei-
fer [19 ] attaches great importance. If it holds then one expects the Hamil-
tonian H to have no ground state within the Fock sector although it is
bounded below. The physical explanation is that the molecule acquires
a cloud of « soft » bosons of infinite number but finite total energy. It is
then likely that the ground states of H are degenerate and associated with
inequivalent representations of the commutation relations by means of
some superselection rule which may be interpreted as a classical obser-
vable. In Section 5 we discuss Pfeifer’s claim [19] ] [20] ] that this pheno-
menon actually occurs for a realistic model of a molecule interacting
with the quantised electromagnetic field. We also note that Davies [2] ]

- 

gives a similar explanation for the existence of semi-classical solitary
wave solutions of a certain non-linear Schrodinger equation.
We thus see that the Hartree method leads one to an analysis of the

functional

( 1. 4)

Vol. XXXV, n° 2-1981.



154 E. B. DAVIES

whose domain is the set of § E~ with I = 1 which lie in Quad (Ho).
This is actually the restriction to pure states of the functional

(1.5)

whose domain may be taken to be

if we allow S(p) to take the values + oo for certain mixed states p. Since
the non-linear term in (1.5) is continuous and concave, the functional S
on X is lower semicontinuous and concave. Other functionals of this

general type have already been studied in [2] ] [3] ] [5 ] [13 ].
It is clear that the determination of the minima of S( 4» is equivalent

to the determination of the minima of H03BE, 03BE&#x3E; for Hartree states 03BE = 03C6 ~ 03C8.
While the solution of this problem in interesting for its own sake, it may
also be regarded as a first step towards the determination of the true ground
state (or states) of H.

If dimYt  oo then since 6 is continuous on the compact set of unit
vectors in it does have a minimum. A less trivial criterion, which is

applicable to any molecule confined to a finite box, is as follows.

THEOREM 4. -- If (Ho + i) - is a compact operator then the functional
defined on the set of unit vectors in Quad (Ho) by (1.4) does achieve its
minimum value.

Proof - By adding a constant we may assume that Ho ~ 0. Let

and let 03C6m ~H be a sequence with )[ = 1 and c. Since

we see that ( ~r" ~ is a bounded sequence. Thus II (Ho + 1)1~2~m ~ II
is a bounded sequence, and by the compactness of (Ho + 1)-1/2, { ~m ~
has a convergent subsequence, which we continue to label in the same way.

0 then

and

by standard techniques [4] ] [23 ]. Hence

so ~( ~) = c.

Annales de l’Institut Henri Poincaré-Section A



155SYMMETRY BREAKING FOR MOLECULAR OPEN SYSTEMS

Other criteria for the existence of a minimum to such functionals may
be found in [2] ] [13 ].

It is clear from [2] ] [19 ] that one must not expect the minimum of 
to be unique. This non-uniqueness is a consequence of the use of the Hartree
method, and a similar phenomenon occurs when one uses the Hartree-Fock
method to analyse the electronic structure of a molecule in the fixed-nucleus
approximation [8 ] [9] ] [14 ] [16]. Although the non-uniqueness is in one
sense spurious, it does correspond to traditional ideas about molecular
structure. For example in the Hartree-Fock analysis of the hydrogen
molecule [8 ], the singularity discovered at x = 2 might be interpreted
as a transition from a hydrogen molecule to two hydrogen atoms as the
nuclei are separated adiabatically; in the exact solution, of course, this
transition is not sharp. In the next section we shall apply the « generator
coordinate method » [11 ] [26] ] [28 ] to the Hartree states obtained by the
above procedure to find better approximations to the true ground state.

§ 2. GROUP SYMMETRIES -

We next investigate the functional 6(§) from the point of view of its
group of symmetries. While we shall confine ourselves for simplicity to
the case of a compact symmetry group ~, it is worth mentioning that the
analysis of a similar functional in [2] ] depended crucially upon its inva-
riance under the Euclidean group. In fact we shall be interested mainly
in the cases where ~ is finite or ~ = SU(2), the interpretation in the latter
case being that it describes the rotational symmetry of the Hamiltonian.
We suppose that the compact group ~ has representations U and V

on Y’f and ff respectively and that Ho, H and F all commute with Ug @ Vg
for all g E ~. It is then evident that

(2 .1 )
for all cp E Jf and g E ~. We shall see that we have yet another variational
problem where the minima break the symmetry of the functional being
minimised [15 ] [24 ]. From (2.1) one may only deduce that if S is the set
of unit vectors of § E ~f at which takes its minimum then S is ~-inva-
riant in the sense that § E S implies E S for all g E ~. Indeed the same
applies to local minima or even stationary points of 6. If ~ is a compact
Lie group then one obtains critical manifolds on which S is stationary.

It is tempting to identify the different isomeric forms associated with
a given Hamiltonian, and the critical manifolds on which 6 has a local
minimum. The different points on each manifold are then identified as
different orientations of the chosen isomer. For the hydrogen molecule
one expects the minimising manifold to coincide with the set of unoriented
lines through the origin, while for a more complicated unsymmetrical
Vol. XXXV, n° 2-1981.



156 E. B. DAVIES

molecule a suitable manifold would be the set of all right-handed 3-frames.
Application of the parity operator takes each manifold to a conjugate
manifold, the two manifolds corresponding to stereoscopic isomers of
the molecule.
We now suppose that dim H  oo and let 9V denote the complex

space of linear operators on Yt with the inner product

The representation U of ~ on Y’f induces a representation U on J9
by the formula ’" 

.

The following theorem provides a canonical form for the invariant
functionals in which we are interested.

THEOREM 5. - Suppose that the functional ~ on ié is given by

and is invariant in the sense that

for all p E if and g E ~. Then if/’ may be written as a linear combination
with negative coefficients of functions of the form

where { is an orthonormal basis within 3© of a linear subspace of ~
on which U acts irreducibly. 

’

Proof - There is a unique operator j~ on 9V such that

for all p E ~f, namely

This operator is non-negative, self-adjoint, and commutes with Ug.
Therefore it lies in the *-algebra Q/ of all operators on ~f which commute
with ~. We may write 

3/ = ££;EPi

Annales de l’Institut Henri Poincaré-Section A



157SYMMETRY BREAKING FOR MOLECULAR OPEN SYSTEMS

where Ài &#x3E; 0 and Pi are minimal projections in U, that is projections
onto irreducible subspaces for Ug. If ~ B* = 1 is an orthonormal basis

for one such subspace then

so

as stated.

Note. -- We have chosen in the above theorem to work with the complex
space if of all operators p on :Yr. Of course ~g has the property

and we could have restricted to the real space of self-adjoint p in :Yr. Cor-
respondingly if Ar = Cr + iDr where CY = C* and Dr = D* then

for all p = p*. We leave the reader to formulate a real version of Theo-
rem 5 with these hints.
We shall say that operators with the properties of Theorem 5

transform under ~ according to the relevant irreducible representation
of G. Our next criterion for symmetry breaking generalises Theorem 3.2
of [2].

THEOREM 6. - Suppose that ~ is defined by

where a &#x3E; 0, Ho commutes with the representation U of ~, 
transform according to an irreducible representation V of ~ other than
the trivial one-dimensional representation. Suppose also that the ground
state of Ho is unique (up to phase) with energy E. Then the minimum of 
is not unique if there exists a unit vector § with

~( ~)  E . (2 . 2)

Proof - ’Suppose that the minimum of S is unique (apart from phases)
Vol. XXXV, n° 2-1981.
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and is taken at the unit vector ~o. Then by the %-invariance of fff we have

for all g Hence

But the irreducible representation V on en is assumed to be different
from the trivial one-dimensional representation so

for all r. Thus

which contradicts (2.2).
In the following applications of the above theorems, nl denotes the irre-

ducible representation of spin I and dimension (21 + 1) of the group SU(2).

THEOREM 7. - Let the functional ~ be invariant with respect to the
irreducible representation ~cI of SU(2) on Then

for all p e Ji , where ~ ~ 0 and ~r is the projection of ;; onto the subspace
associated with 1tr in the decomposition

(2. 3)

Moreover one has the explicit forms

THEOREM 8. - Let ~ be defined by

where Ji are associated with the irreducible representation ~t of SU(2)
on Then ~ is SU(2) invariant and satisfies

-l2~’~(~~~0
Annales de l’lnstitut Henri Poincaré-Section A
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for all II ~ ~ ~ = 1. Moreover ~~~) = - l2 if and only if cp is a Bloch cohe-
rent’ state, so that

is a compact 3-dimensional manifold.

Proof 2014 Given ~ E ~f with [ [ § [ = 1 the vector v E ~3 with components

may be rotated by application of some g E SU(2) until it lies along the z-axis.
Then

and

so that

Hence 1f/’(  - l2 with equality if and only if = e - where 03C6l is
the eigenvector of J3 with eigenvalue 1.
Thus

and 03C6 is a Bloch coherent state, apart from a phase factor. For an explicit
parametrisation of the Bloch coherent states see [12 ].
For the sake of completeness we describe once again an example of

Pfeifer [19 ], which is relevant to the phenomenon of stereoisomerism.
For unit vectors § E ~2 we put

The functional S is invariant with respect to the « parity » operator (J 1
which generates a unitary group of two elements. Elementary computa-
tions lead to the following result.

PROPOSITION 9. - If 6 ~ 2A then the functional ~( ~} takes its mini-
mum value 2014 s at the state ~ _ (2’~, 2014 2’~), which is unique, up
to phases. If 8  2A then takes its minimum value ( - A - E2/4.A)
at cp = (cos 0, - sin 0) where 0 is one of the two solutions of sin 20 = e/2A.
Note that if ~  2 the two solutions are permuted by the action of 6I.

Moreover if E « 2A then the two solutions are approximately (1, 0) and (0,1).
This situation, where the level splitting 2E is negligible compared with the
the effective strength A of the interaction with the external environment,
is precisely the one in which one expects stereoscopic isomers to be stable.

Vol. XXXV, nO 2-1981.
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We commented at the end of Section 1 that the symmetry breaking dis-
covered is a consequence of the use of the Hartree method. Let us now

suppose in addition to ( 1. 3) that fr satisfy

for all r, and that (~o E 9V is a unit vector which minimises ~). Then the
functional

achieves its minimum for § = 03C60 and 03C8 = t/1o E ff1 1 where

We immediately see that the minimum is actually achieved at each of
the points

The essence of the « generator coordinate method » as described

in [77 ] [26] ] [28 ] is that one can obtain a better approximation to the true
ground. state of H by using « parametric wave functions » /: ~ -~ C to
construct states E Yf according to the formula

(2.4)

In order that ~!) = 1 the parametric wave function f must satisfy
the normalisation condition

. In many cases f may be regarded as a function not on rg but on a tran-
sitive ~-space, such as the unit sphere S2 in ~3 when ~ = SU(2). ]

is large, or equivalently if the expected particle number of ~o is large,
then one may regard the states çg as more or less independent classical
configurations of the molecule, since the kernel  ~, ~ ) is extremely
small except h.

§ 3 . ESTIMATES OF THE GROUND STATE ENERGY

Although it is plausible that one can obtain quite good estimates of
the ground state energy by use of the generator coordinate method, it

is difficult to prove general theorems about this. However, it is relevant

Annales de l’lnstitut Henri Poincaré-Section A



161SYMMETRY BREAKING FOR MOLECULAR OPEN SYSTEMS

to note that Falicov and Harris [8] ] found that a symmetrisation of the
unrestricted Hartree-Fock method considerably reduced the error in
the computation of the electronic ground state energy for a simple exactly
soluble model of the hydrogen molecule.

In this section we support our claim by treating two simple examples,
the first of which is an abstraction of Pfeifer’s model of stereoisomerism [19 ],
also treated in Proposition 9 above.
The Hamiltonian of this model on ~2 is

where

and

We wish to estimate the ground state energy E of H when the energy
splitting 28 of the system ([2 is very small compared with A.
By Lemma 2 and Proposition 9 we find that

We shall show that the coefficient ofs in both of these bounds is incorrect,
under an extra condition which ensures that H does actually possess a
ground state.

THEOREM 10. - If there exists a constant J1 &#x3E; 0 such that J11
then the vector ~ _ - l~ 1 l2F 1 1 f satisfies

Moreover for small enough E &#x3E; 0 the Hamiltonian H possesses a non-
degenerate ground state with energy

Proof - We consider H as a perturbation of the operator

where

The operators K are unitarily equivalent to F, and have ground states ~
and ( - respectively. The vector

Vol. XXXV, n° 2-1981.
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form an orthonormal basis for the eigenspace of K corresponding to the
ground state eigenvalue - A, which is an isolated eigenvalue.
Now

It follows by perturbation theory that the eigenvalue - A splits into
two eigenvalues of multiplicity one for small 8 &#x3E; 0, and that these eigen-
values are analytic functions of 8 given by

(3 .1)
We observe that the generator coordinate method also yields the for-

mula (3" 1) as an upper bound for the ground state energy. For the states
11 1 and r~~ are clearly Hartree states, while the state which leads to {3 .1)
is the anti-symmetric combination

It may be checked that one obtains the same results if one uses not

’11 1 and ’12 but the Hartree states which yield the exact minimisation of

Our second example is a development of the first, which for large n
provides a simplified model of the interactions between the rotational
excitations of a planar molecule and the external environment. The fact
that the rotational excitations of a typical molecule have much smaller
energies than the vibrational or electronic excitations [10, p. 314 ] justifies
treating them separately, and also makes it plausible that they will be
strongly affected by even weak interactions with the environment.
We suppose that { ep }~= 1 is an orthonormal basis for J’f and that the

corresponding wave-functions are distributed around a circle so that
we can identify er with en + for all integers r. We define the system Hamil-
tonian by

LEMMA 11. - The Hamiltonian Ho is non-negative with ground state
enerev 0 and

Moreover the eigenvectors of Ho are

where

Proqf -.- This elementary computation may be regarded as taking

Annales de l’Institut Henri Poincaré-Section A
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Fourier transforms with respect to the symmetry group % = 7Ln of the
Hamiltonian. If

(3.2)

then un = 1, U commutes with Ho and us are the eigenvectors of U.
Moreover

Now let the operator E on ~ be defined by

so that

Also let F be the usual quadratic Hamiltonian on F and let V be a
unitary operator on F such that Vn = 1, V commutes with F, and

for all h, where Vi is the restriction of V to the one-particle space, which
we suppose to be invariant. Finally let g g be single-particle wave-functions
such that

(3 . 3)
(3.4)
(3 . 5)

LEMMA 12. - If 8, À &#x3E; 0 and

where

then H commutes with U (x) V if and only if

(3.6)

Proof -- This is an elementary computation.

LEMMA 13. -- The ground state energy E of H satisfies

Proof -- It follows from Lemma 2 that

On the other hand Lemma 3 implies that
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We now suppose that E &#x3E; 0 is very small, and see from the above that
the states er come close to minimising the functional By the proof
of Lemma 3 the corresponding Hartree states are

where

(3.7)

The map from the orthonormal set er 0 Q to the orthonormal set ~
is an example of a dressing transformation.

THEOREM 14. -- The ground state of F + ÀH1 1 is n-fold degenerate
with and energy (- 203BB2). Moreover F + 03BBH1 commutes
with U @ V and

(3 . 8)

Proof -- The Hamiltonian leaves each subspace er (8) ff invariant and
within that subspace equals

whose ground state is ~. The identity (3 . 8) is proved using (3 . 2) and (3 . 6).
In order to apply perturbation theory we need to assume that the ground

state energy ( - 2/~) of F + ÀH1 1 is an isolated eigenvalue. We therefore
assume that there exists a constant v &#x3E; 0 such that

(3.9)

THEOREM 15. - If (3.9) holds and E &#x3E; 0 is sufficiently small then the
ground state of

is non-degenerate and has energy

(3.10)
where

(3 .11)

Moreover the ground state of H is the symmetrised Hartree state

(3 .12)

Proof -- This depends upon calculating

Annales de l’lnstitut Henri Poincaré-Section A
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This vanishes if r - s ] &#x3E; 1 and equals 2 if r = s.
If r - s ] = 1 then

by (3 . 3) (3.4) (3.5) and (3 . 7). The formulae (3.10) and (3.12) are now
routine applications of perturbation theory.
By comparing (2.4) and (3.12) we see that to the lowest order in per-

turbation theory the ground state of H is indeed given by the generator
coordinate method, the symmetry group being ~ = Zn. Further calcula-
tions along the above lines show that the gap between the bottom n energy
levels of H is reduced by the factor y compared with the gap between
the n energy levels of 8Ho, a result which may be interpreted as a mass
renormalisation associated with the dressing transformation. From (3.11)
we see that

0y1
and that y is very small if the number , which is proportional to the number
of field particles in the ground state, is very large. The indications are that
if ,u = oo then the Hamiltonian H is bounded below and its ground state
is n-fold degenerate, each ground state vector being associated with an
inequivalent representation of the CCR’s.

§ 4 . CRITICAL POINTS OF ~(4))

As well as the absolute minimum of ~( ~), one is interested in the existence
of local minima, which may correspond to structural isomers of high
stability. In this section we present a method of determining such local
minima, and indeed all critical points. For simplicity we suppose that

where a &#x3E; 0, the Hilbert space ~f is finite-dimensional and c~ lies in the
set S of unit vectors in ~f.

THEOREM 16. -- The element § of S is a critical point of E if and only
if § is an eigenvector of

Vol. XXXV, n° 2-1981.
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where the parameters 03BBr satisfy the consistency conditions

Proof -- This is a modification of Theorem 2 . 4 of [2 ]. The vector S
is a critical point if and only if 

’

for all 03C8 E S such that  03C6, 03C8~ = 0. Thus

(4 .1 )

where

The equality (4.1) can only hold for all 03C8 of the stated type if g is a mul-
tiple of r~.
As a first illustration of the above theorem we reconsider the functional if/"

defined in Theorem 8. The critical manifolds obtained in the following
theorem are manifolds of SU(2) coherent states as introduced by Pere-
lomov [17]. It is surely possible to extend the theorem to more general
compact Lie groups; see [6] ] [18] ] [25] ] and other references cited there
for closely related results.

THEOREM 17. -- The critical manifolds of ~ are in one-one corres-

pondence with the values 0 and

The values 0 and - l2 correspond to the global maximum and mini-
mum respectively, while the other values correspond to degenerate saddle
points.

Annales de l’Institut Henri Poincaré-Section A
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Proof - The problem is to find solutions § E S of the pair of equations

(4 . 2)

The possibility Àl = À2 = )"3 = 0 actually occurs and maximises 11/.

Assuming 03BBr do not all vanish then by rotating coordinates we may assume
that )"1 = À2 = 0 and ~3 &#x3E; 0, so that (4.2) becomes

- ~J3~ = EØ.

Thus 4&#x3E; must equal one of eigenvectors of Jg, and by the condi-
tion 03BB3 &#x3E; 0 we have

J303C6 = (l - r)03C6

where r = 0, 1, 2, ... and r &#x3E; [. It is a trivial matter to check that these
eigenvectors, which are unique up to phases, do satisfy the consistency
conditions À 1 = À2 = 0. The critical manifolds arise from these orientated
solutions by applying the group SU(2).

It remains to prove that if

I

then a point § on the critical manifold is a degenerate saddle point. The
degeneracy is an obvious consequence of the fact that ’~ is constant on
each critical manifold. If

and

then

for ~ ~ 0, so CPm is not a local minimum. On the other hand if

then

so CPm is not a local maximum either.
The above theorem describes to a first approximation the effect of

the non-linear term ~’ on a discrete energy level of a Hamiltonian when
the relevant eigenspace carries an irreducible representation of SU(2).
We now give a deeper analysis of this problem.
Vol. XXXV, n° 2-1981.
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We suppose that H is a self-adjoint operator on the finite-dimensional
Hilbert space Jf and that E is an isolated eigenvalue of Ho whose cor-
responding eigenspace 3i has dimension (21 + 1). We suppose that Ho
commutes with a representation U of SU(2) and that the restriction of U
to Jf is the irreducible representation ~~. We also suppose that A2, A3
are three bounded self-adjoint operators on Yf which transform according
to the representation xi. That is if then

(4 . 3)
If P is the projection of ~f onto 3i then the restrictions PA;P of Ai to Jf
also transform according to n1 so

by (2.3). We consider only the generic case j8 # 0 and define the func-
tional E by 

where a &#x3E; 0 and ~ E S.

THEOREM 18. - For small enough a &#x3E; 0 the functional possesses
critical manifolds which are small perturbations of the critical manifolds
within Jf as determined in Theorem 17.

Proof --.- We start by decomposing J~ as the direct sum of Yfm where

If m = 1 - r where r = 0, 1, 2, ... and r  I then n Jf is one-
dimensional. for such a value of m then

by (4 . 3). Since 9 E R is arbitrary we deduce that

Our problem is to find § n S satisfying the pair of equations

Now withim Yfm, E is an isolated eigenvalue of H with multiplicity
one and eigenvector CPm say. Analytic perturbation theory implies that
for small enough real A there exist a normalised eigenvector ~(~.) and
eigenvalue y(~,) of (Ho - which are analytic functions of l and satisfy

Annales de l’lnstitut Henri Poincaré-Section A
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Then ( A3~(~), ~(~) ~ is an analytic function of ~? such that

so ( A3~), is non-zero for small It follows that

can be solved to express A as an analytic function of a for small enough a &#x3E; 0,
with

We have now found a critical point of E which is close to 03C6m for
small enough a &#x3E; 0. The critical manifold is obtained by applying the
group SU(2) to this critical point.

§ 5. COUPLING TO THE ELECTROMAGNETIC FIELD

If one attempts to apply the scheme of this paper to the coupling of a
molecule with the electromagnetic field, one has to cope with possible
ultra-violet divergences, infra-red divergences and effects of the A 2 term.
In his thesis [19 Pfeifer proposes a procedure for handling these problems
which leads ultimately to the functional 6 on C2 which we discussed in
Proposition 9. In a subsequent paper [20 ] he derived by the same proce-
dure the functional ~ on L 2(~3N) defined by

(5.1)

which is relevant to a molecule of N distinguishable spinless charged
particles. Ho is their kinetic energy operator and V is their potential energy
operator due to Coulomb interactions. The vector operator g(k) is defined by

Pfeifer also claims on physical grounds that ~( ~) must be bounded
below, a property which is indeed vital for the physical interpretation.
Unfortunately this is incorrect.
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THEOREM 19. -- If we apply a scale transformation U~ in 
such that

then

which converges to - oo as a converges to zero.
It is clear that this difficulty is caused by the fact that the elimination

of the A2 term leads to unphysical ultraviolet divergences as a - 0.

According to Pfeifer [21 ] it is possible to redevelop the entire theory
of [20 ] while including the A2 term, so as to derive another more compli-
cated non-linear functional which is probably bounded below.
Moreover the functionals lff( cp) and ~’( ~) are approximately equal for cp
of sufficiently small total energy, so a global minimum of ~~’( ~) may be
approximately equal to a local minimum of ~(~). If this is indeed the
case then Theorem 19 is not as distressing as it seems at first sight. As
an entirely separate point it would be valuable to investigate the use of
the dipole approximation for this problem, already discussed in [20],
from the point of view of its guage invariance [29].
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