
ANNALES DE L’I. H. P., SECTION A

MARIO CASTAGNINO
The quantum equivalence principle, and
spin 1/2 massive particles
Annales de l’I. H. P., section A, tome 35, no 1 (1981), p. 55-95
<http://www.numdam.org/item?id=AIHPA_1981__35_1_55_0>

© Gauthier-Villars, 1981, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1981__35_1_55_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


p. 55

The Quantum Equivalence Principle,
and Spin 1/2 massive particles

Mario CASTAGNINO

Departamento de Matematicas. Facultad de Ciencias Exactas y Naturales.
Universidad Nacional de Buenos-Aires. Pabellon I Ciudad Universitaria.

Buenos-Aires. Argentina

Ann. Henri Poincaré,

Vol. XXXV, n° 1, 1981

Section A :

Physique theorique.

ABSTRACT. Using Quantum Equivalence Principle, a self consistent
Quantum Field Theory for spin 1/2 massive particles in Curve Space-
Time is developed. The particle density and energy density created by a
time dependent gravitational field in an Expanding Universe turns out to
be finite and well defined.

INTRODUCTION

In the two proceeding papers, [4] and[J], we have shown that Quan-
tum Equivalence Principle (i. e. to define particle model in curve space-time
through G1{x, x’) equal to O1(x, x’) written in normal coordinates) yields
to an implement able Bogolyubov transformation and therefore to the
creation of a finite number of particles and to a reasonable Quantum Field
Theory for spin 0 particles.

In this paper we shall show that exactly the same thing happens with
spin 1/2 massive particles. In fact. We can repeat mutatis mutandi all the
theory of the former papers and we arrive to practically the same results.

In paragraph I we introduce, for the sake of completeness, the spinors
field in curve space-time, in the simplest and most general way i. e. defining
at each point a set of four Dirac’s matrices that satisfy an adequate anti-
commutation relation. This method was introduced in paper [7] ] and,
in our opinion, is the most adequate to face the problem.

In paragraph 2 we study Dirac’s equation in a generic curve space-time
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56 M. CASTAGNINO

and its main properties. The expansion of the propagator, the anticommu-
tation relations and the way to define the positive and negative frequency
solutions are presented in paragraph 3.
We restrict ourselves to the case of an expanding universe in paragraph 4.
We introduce the Quantum Equivalence Principle in paragraph 5 and

find the corresponding initial condition for the particle model, neglecting
terms in the square of Hubble coefficient and higher ones as in work [5 ].

In paragraph 6 we shall see how one can find an approximative solu-
tion of Dirac’s equation.
We shall compute the Bogolyubov transformation and we shall demos-

trate that it turns out to be implement able in paragraph 7.
In paragraph 8 we shall prove that also the created energy is convergent.
In this way all the main features at the spin 0 case are reproduced and

we have also a reasonable Quantum Field Theory in Curve Space-Time
for spin 1/2 Fields.

1 NOTATION, DIRAC’S MATRICES

a) Let V4 be an orientable Riemannian manyfold of Coo class. Let g~~ be
the metric tensor of V4 ; g~~ has the diagonal (1, - 1, - 1, - 1) in the
diagonal form.
The Dirac’s Matrices are four 4 x 4 matrices 

(i, j, k, ... =0, 1, 2, 3, will be the ordinary vector indices and
a, h, c, ... = 1, 2, 3, 4, the spinor indices). These y are Coo point functions
of x E V4 that satisfy the following anticommutation relations at every
point :

where I is the unit matrix, i. e.:

The first spinor indices label the rows of the matrices y, the second one
the columns and the product is made « column by row ».

Dirac’s Matrices satisfy, among others, the following properties :
i) A 4 x 4 matrix on C that commutes with all the 03B3i is necessarily

a matrix al where a e C and I is the unit matrix.

ii) If { is another set of Dirac’s Matrices, a matrix S exists, such that :

the matrix S is unique but it has an undcterminated constant factor.

~1) We shall call / to / = 

Annales de Poincaré-Section A



57THE QUANTUM EQUIVALENCE PRINCIPLE, AND SPIN 1/2 MASSIVE PARTICLES

b) The matrices S = S -1 = (S -1 aa-) can be considered as change
of base matrices in the spinor space, therefore eq. (1.3) can be considered
as an equation of change of coordinates where one goes from on spinorial
base to another.

c) We define the following symbols :
- 

* is the ordinary conjugation in C
- T is the 4 x 4 matrix transposition
- + is a conjugation and a transposition i. e. the 

Let us define the following types of spinors according to the way they
change coordinates under a change of the spin or base. We shall call contra-
variant spinors the column spinor and covariant spinors the row ones :

Contravariants.

d ) If 03C8 is a contravariant spinor of Type I we have

so is a contra variant spin or of type II and and 03C8+ are covariant
spinors of type III and IV respectively.

Analogously if ~p is a covariant spinor of Type I we have :

Vol. XXXV, n° 1-1981.



58 M. 

so c~* is a contra variant spinor of type I I and cpr and c~+ are covariant
spinors of type III I and IV respectively, etc.

e) If we change the coordinates of Dirac’s Matrices yi to another coor-
dinates system {xi’} of V4 and to another spinor base we have the following
equation of change of coordinates :

where = and where S(x) is the Coo matrix that changes the
spinor base. We usually normalize S with the condition :

so we can consider the yi as a contravariant vector-contravariant spinor
type I-covariant spinor type I.

But

so the 03B3i (resp. 03B3i, resp. are a contravariant vector2014contravariants
spin or of type II (resp. III, resp. IV)-covariant spinor of type II (resp. III,
resp. IV).

f ) The matrices :

satisfy also the anticommutation rules (1.1) or (1.2), therefore from pro-
perty (ii) we deduce that the matrices ~, (X, ~3, r exist such that :

all these matrices are unique except for an arbitrary constant factor.
ç can be defined in a covariant way as :

where 1] is the element of volume pseudo-tensor i. e.:

where E is the Levi-Civita symbol and g = det (gi~). Using at every point
Annales de l’Institut Henri Poincaré-Section A



59THE QUANTUM EQUIVALENCE PRINCIPLE, AND SPIN 1 /2 MASSIVE PARTICLES

of V4 an orthonormal base, where gi~ = diagonal matrix and the rela-
tions ( 1.1 ) both cq. (1.13i) and ç2 = 1 can be verified.
From eqs. (1.13~3,4) we can deduce that:

therefore from property i we have :

If we want to find out how matrices a, /3, r change under a change of
spinor base, from eq. ( 1.13) we can have :

therefore :

Therefore

but in all these equations we can put an arbitrary constant factor of
modulus 1 on account of eq. ( 1.19). * - 1

But from (1. 221) we have 
Therefore from ( 1.171 ) we have a’ - a i. e. a is a scalar. Then it is sufficient
to compute a in a particular representation of the yi (we shall use these
Dirac matrices every time we shall need an explicit representation) :

Then a = Y2 and a*a = I therefore a = 1 in general.
In similar way we can have h = 1, c = - 1 so eq. (1.17) becomes :

Vol. XXXV, n° 1-1981.



60 M. CASTAGNINO

Let us finally observe that

Therefore

g) If we would like to build, from contravariant spinor type I, 1/1, a cova-
riant spinor type I, ~, we can write

03C8 is called the Dirac’s adjoint of 03C8
In fact : (cfr 1. 22 5 )

Analogously from covariant spinor type I ~p we can build a contravariant
spinor of type I as

.. 

Also from the contravariant spinor of type we can build a contra-
variant spinor of type I

and a contravariant spinor of type I :

And from a covariant spinor of type I, ~p we can construct a contravariant
spin or of type I

and a covariant spinor of type I

Therefore we can introduce three mappings over the space of contra-
variant spinors of type I :

- The Dzrac Adjunction: « A »

Charge Conngugation: « C »

and the Metric N~apping: « M »

Annales de # l’Institut Henri Poincaré-Section A



61THE QUANTUM EQUIVALENCE PRINCIPLE, AND SPIN 1/2 MASSIVE PARTICLES

A and M give covariant spinors and C contravariant spinors, all of type I (2).
Using eq. (1.29), (1.32), (1.33) similar definitions can be given for cova-

riant spinors.
Let us observe that :

but

and from eq. (1.26) we have

therefore

so eq. ( 1. 32) can be written as

i. e.

Finally let us observe that all these mappings can be generalized in a
natural way to higher order spinors e. g. we can define

using (1.27) and (1.29), (1.31) and (1.33), but from (1.132,3) we have

two useful equations, as we shall see.
h) We want now to define covariant derivatives for different types of

spinors; we shall do so using four matrices 6i, that we shall choose later on,
in such a way that some natural properties should be fulfilled.
We define :

Contravariant spinors deriuatives.

(2) Mapping C is very important. If is the field of a particle and it is a type I spinor,
~*(x) cannot be the field of its antiparticle because it is a type II spinor. But 
is a type I spinor so it is the best candidate to represent the antiparticle, as it is well known
in the flat space-time case.

Vol. XXXV, n° 1-1981.



62 M. CASTAGNINO

Covariant spinors derivatives.

This definitions can be generalized in a natural way to higher spinors
or tensor-spinors. e. g. the derivatives of 03B3i, y*, and 03B3+i are

where the symbol // is the covariant derivative of etc. « as if it were

only a vector ».
With this definition the rule of product derivation is also valid for the

covariant derivation, as it can be easily proved.
We shall fix matrices ~i , that we shall call the spinor connection in such

a way that the covariant derivative would fulfil some useful properties.
The first one is : 

.

This equation partially determinates In fact, from a paper of Loos [9] ]
we know that 6i must then be :

where s~ is the following linear operator on 4 x 4 matrices ~ :

and vi is an arbitrary vector. Besides matrix 6i has null trace. From (1.46)
and ( 1. 47) we deduce that

Annales de l’Institut Henri Poincaré-Section A



63THE QUANTUM EQUIVALENCE PRINCIPLE, AND SPIN 1 /2 MASSIVE PARTICLES

Then from equations (1.13) and (1.22) we have

i. e.

therefore from the property i we have

The unit spinor I = lab = ~ab has null covariant derivatives because

Therefore from eq. (1.24~ ~) it can be deduced that:

and using (1.53~) we have

so vector h; is real and vector a; imaginary. On the other hand, from (1.26)
we have

now using the eq. (1.53) we have:

and by conjugation

therefore

Now we can use the arbitrary vector from eq. ( 1. 48), to get a set of
formulas even simpler. Let us call oi the covariant derivative with

Vol. XXXV, n° 1-1981. 3



64 M. CASTAGNINO

connexion In all the formulas, from eq. (1.43) we can put ~~ instead
of O~ (i. e. we shall consider the particular case vi = 0). Eq. ( 1. 532) will
then be :

If we observe eq. (1.223) we can deduce the covariant derivative of r
and we have :

Then if we take Fj as :

from ( 1. 60) and ( 1. 62) we have the very useful property

We choose 6i such that both eq. (1.47) and (1.64) would be fulfilled.
The covariant derivative will be therefore defined by the two properties :

and it will satisfy also the equations :

i) We shall also need the equations of change of 6i under a change of
coordines of V4 xi ~ xi’ and a change of the spinorial base with matrix S
1. e. "/ ~ 03B3i - S03B3iS- 1:

as can be directly shown (cf. [1 ]).
j) Covariant derivatives on spinors are not conmutative, in fact it can

be proved that (cf. [7 ])

where Rklij is the curvature tensor ofV4. From (1.1) and from the symmetry
properties of we also have :

Annales de l’Institut Henri Poineare-Section A



65THE QUANTUM EQUIVALENCE PRINCIPLE, AND SPIN 1/2 MASSIVE PARTICLES

2. THE DIRAC’S EQUATION IN V4

a) Let V4 be a globally hyperbolic Riemannian manyfold (3). A spinor
field ~(x) satisfies Dirac’s equation if :

where  ~ 0 is the mass of the field and P == If we take the adjoint,
the equation will be :

if we post-multiplied by 03B2 and use (1.665) we have:

where P == 2014 

This is the equation that satisfies the Dirac’s adjoint field.
b) Let us suppose that u(x) and are two spinor fields that satisfy

Dirac’s equation (2.1) and let us compute :

Therefore we have :

so we can define an hermitian inner product (~ ; )~) in the vector space
of the solution of Dirac’s equation

where L is a Cauchy surface of V4 . On account of equation (2. 6) the inner
product (2.7) is independent of the Cauchy surface used to perform the
integration.
An important and well known property of the inner product )~

is that it is positive defined. In fact we can use a system of coordinates such
that the normal vector to 03A3 would have coordinates ni == (1, 0, 0, 0).

e) As in paragraph 1 V4 is of class C~ and all the functions that we shall consider are
also of class Coo.

Vol. XXXV, n° 1-1981.
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i. e. n is the coordinate time-axis, then we get an orthonormal tetrade
using three space-like axis, then the metric tensor would be diagonal.

We could use Dirac’s matrices (1.23) therefore we shall have- ’ ’ (cf [7],
p. 36)

and

As the scalar u03B3iuni is invariant under coordinates and spinor base
transformations we have proved that ((,)) is positive defined.
c) Let us compute :

therefore from eq. (1. 69) we have :

Analogously :

Therefore, we shall define it as the D’Alembert operator i. e. :

If 03C8 satisfies Dirac’s equation we have

i. e.

Therefore

So every solution of Dirac’s equation is also a solution of Klein-Gordon
equation with a D’Alembert operator defined by eq. (2.13).

d ) If x’) is a bi-spinor field with the property :

Annales de l’Institut Henri Poincaré-Section A



67
THE QUANTUM EQUIVALENCE PRINCIPLE, AND SPIN 1/2 MASSIVE PARTICLES

we define the Dirac’s bi-spinor as

where ~(x, x’) is the Dirac’s bi-scalar distribution in V4 (we can use the

transport bi-scalar as S(x, x’) but is not necessary (cf. [6 ])).
From Lichnerowicz paper [7] we know that there exists two unique

kernels x’), i. e. two bi-spinor distributions, that satisfy Klein-

Gordon inhomogeneous equation

and such that for a fix x’ they would have their support (x) in E+(x’~ and
E - (x’), the future and the past of x’, respectively.
We can define the adjoint of an arbitrary bi-spinor as:

and we can also define the Dirac’s adjoint of this arbitrary bi-spinor as :

Therefore using eq. (2.17) and (2.18) we have

Therefore if we take the Dirac’s adjoint of eq. (2.19) we have:

and as their kernels G ± (x, x’) are unique we have :

Then, let us define the propagator:

If we take into account eq. (2.19) we can prove that it satisfies

and using (2 . 24) we can also prove that it has the property :

e) Let us introduce two new Kernels :

Using eq. (2.15) we can see that these kernels satisfy the equation

If we fix x’, x’) have its support (x) in E + (x’) and E - (x’) respectively.

Vol. XXXV, n° 1-1981.
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Analogously : (cf. [7 ], p. 60)

Let us now define the propagator :

that satisfies the equation :

In order to deduce the symmetry properties of Kernel S(x, x’) let us
observe that :

In a similar way we can prove that :

i. e.

From equations (2 . 32), (2 . 28), (2 . 30) and (2 . 25) we have :

Therefore

so we have

and

~f ~ We can now solve the Cauchy problem for the Dirac’s equation
using the inner product (~, ~. If in the equation (2 . 5) we put

Annales de l’Institut Henri Poincaré-Section A
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we have :

If we integrate in a volume V bounded by a Cauchy surface E to the future
and a surface E’ to the past (4) such that x’ E V we have

on account of the support of S - and S +, and the orientation of E and E’.
Therefore

If x, x’eE equation (2 . 46) states :

where 03A3 is the Dirac’s bi-spinors distribution on Cauchy surface E. i. e.

In the particular case ni = (1, 0, 0, 0 we have

and if we use a system of Dirac’s matrices as in eq. (2.8) we shall have

(4) With their normals pointing to the future.

Vol. XXXV, n° 1-1981.
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3 . EXPANSION OF KERNEL S(x, ~
ANTICOMMUTATION RELATIONS, POSITIVE
AND NEGATIVE FREQUENCY SOLUTIONS

a) We shall try to find a base for the vector space of class Coo solution ~(~c)
of the Dirac’s equation.
To solve the problem let us take the case of V4 endowed with compact

Cauchy surfaces. We study this peculiar case for mathematical convenience
but it will be very easy to go to the non compact case when we have solved
the problem.

Let be an arbitrary solution of the Dirac’s equation. From
eq. (2.44) we know that ~r(x) is defined by its Cauchy datum on the

compact Cauchy surface 03A3 i. e. the restriction of to E. is an

spinor with components 
Let be a complex base of the vector space of all functions of

class Coo on E, such that it were orthonormal in the inner product.

such a base exists (cf. [2 ]).
As is a function on E we have

Let us define the four spinors on E.

Then we can write

But if now we take 03C8(a)A as a Cauchy datum on 03A3 and we find the C~
functions ~ on V4 that satisfy the Dirac’s equation and the Cauchy
datum ~ we can find the expansion of ~(x) as :

Annales de ’ l’Instilut Henri Poincaré-Section A
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The is orthonormal in the positive defined 0 inner pro-
in fact :

and if we take the same tetrade and the same Dirac’s matrices as in eq. (2 . 8)
we can easily compute :

Once we have find an orthonormal we can go to a generic
one via a unitary transformation. So we have found the general solution
of our problem.
Now if ~ ~A ~ ~ is an arbitrary orthonormal base we can compute the

coefficients cl as usual and we have

h) Now we want to find the expansion of x’) in an arbitrary ortho-
normal base.

First we shall prove that x’) is completely defined through equa-
tion (2 . 4) i. e. if there is a Kernel x’) such that it would satisfy

for every t/J(x) solution of the Dirac’s equation, this S( x’) is unique
and therefore it is the propagator. In fact; suppose that there are two
kernels x’) and x’) and the last one satisfies eq. (3 . 8) too :

substracting (3.9) from (3.10) we have

using the same arguments as in eq. (2.7’) we shall obtain

But is an arbitrary function that we can choose in the set of

Vol. XXXV, n° 1-1981.
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test Coo functions of compact support, and x’ is an arbitrary point of V4
therefore :

Now from (3.5) and (3 . 8) we have

Then from (3 . 9) and the last lemma we have :

which can be written with spinorial indices as :

The order of the factors of equation (3.15) is important because it is
a matrix equation and we allways write the matrices as Ma b, therefore
the column vector must be the first one an the row vector ~~’)
the second one.
Now if we take the Dirac’s adjoint we have

that coincide with eq. (2.40).
We can also compute :

and we can say that S is « real ».

As the indices A, a are contracted in equation (3.15) it is obvious that

we have an invariant expansion under unitary base transformation.

S(x, x’) is the unique propagator and we have found its unique expansion.
c) Let’s now pass from the classic level to the quantum level. Now

field is an operator on an Hilbert space H and the symbol (*) means
to take the adjoint operator in space H. As x’) behaves like

Annales de l’Institut Henri Poincaré-Section A
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and besides it has all the properties to be considered the anticommutator
of the field :

e. g. its support (x) lays in the interior of E + (x’) ~ E’(x’) (cf. eq. (2 . 32)
and the properties of x’) below eq. (2.29)), S(x, ~~’) satisfies Dirac’s

equation (2.31), and it has the correct symmetry behaviour.

Therefore we adopt the following anticommutation relation (cf. [8 ],
p. 269).

where E is the unit operator of space H that we shall omit from now on.
If we want to compute the anticommutator of the charge conjugated

field we have (cf. ( 1. 43), (3 .17), (3 .17’))

i. e. field has the same anticommutation rule. We see that our anti-

commutation relation has all the properties that it normally has in Spe-
cial Relativity, in fact S(x, x’) becomes the ordinary S(x, x’) of Quantum
Field Theory if we consider the particular case of flat space-time.

d ) To continue we are forced to choose our particle model or models.
In fact, in flat space-time we have also a base ~A ~ but the four functions have
a precise physical meaning, two of them are u(k, (where h = :t 1)
and they are the particle model with positive and negative helicity, the
other two v(k, are the models of antiparticle with positive
and negative helicity. Instead we have a set of completely equivalent
orthonormal and we have not a criterium to choose the

correct one and to decide, in that base, which vectors correspond to par-
ticles and which vectors correspond to antiparticles. The Quantum Equi-
valence Principle will provide us such a criterium.
For the moment let us suppose that, some how, we choose a

as our particle-antiparticle model. We change the four-

values index (a) for a pair of two-values indeces (s, h) s = - will correspond
to particles, s = + to antiparticle, h == + will correspond to a (not yet
clearly defined) positive helicity h == - to a negative helicity.

Besides we will ask a completely new but natural property for our base

Vol. XXXV, n° 1-1981.
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in order that particles would become antiparticles under a charge conju-
gation (5).
The shall be also orthonormal i. e.

Now we must see what kind of transformation is adequate to go from
to another with the same properties (3.21),

(3 . 22) :

As the new base must be orthonormal we must have

so the transformation is unitary. We must also have :

Therefore the transformation must satisfy (3.22) and (3.26).

e) In fact this is the case in flat space-time because the u and v functions satisfy the
equations

if we charge conjugate the first one and we remind equation (1.452) we have

also

therefore

!

because ~ 0152 = - - 2 y - is a pure imaginary matrix if we again take into account

eq. (1.452), Therefore

and

l’Institut Henri Poincaré-Section A
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In this kind of bases we can expand S(x, x’) as

We can now define a new kernel:

which has the following symmetry property

We can also compute x’). Let us first observe that

Therefore, using equations (3.21) and (3.40), we have

and we can say that, as in the case of S(x, x’), x’) is also « real ».
From its own definition we see that S 1 (x, x’) is not invariant under a

unitary transformation, more over, it cannot be defined in a generic ortho-
normal base if we do not decide which vectors are particles and which
vectors are antiparticles. Therefore the kernel S 1 (x, x’) contains, in a

covariant way, the particle-antiparticle model.
In fact : we can define a mapping 1/1 ---+ = ~ 1, in the vector space

of the solution of Dirac’s equation :

This map has the following property :
We shall call the function :

a positive frequency solution, and it is a generic anti-particle because

Vol. XXXV, n° 1-1981.
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is an arbitrary linear combination of the or more preciselly an anti-
particle creation operator. And

is a negative frequency solution, a generic particle or more preciselly a
particle anihilation operator. Of course for every solution we have the
descomposition

in a unique and canonical way.
Now

/ / r-,

Analogously :

Therefore the mapping p has the following property

and therefore it defines the positive and negative frequency solutions.
Using this definition we can see that if ~~ + ~ is a positive frequency solu-

tion C~~+~ is a negative one. In fact

Therefore from equation (3.41) we have :

Inversely C~~ - ~ is a positive ~ frequency solution.

Annales de l’Institut Henri Poincare-Section A
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As usual we can see that

therefore p2 = E and p is an involution and we can define the proyectors

such that
and we have

3, e are the proyectors into the sub-spaces of positive and negative
frequency solutions.
So particle-antiparticle model and splitting in positive and negative

frequency are both aspects of the same definition that we can make in a
covariant way choosing a particular S 1 (x, x’).

e) From (3.43), (3.44), (3.45) we have

therefore if we define the anticommutation relations

and all the other anticommutators vanish, we have :

i. e. eq. (3.19).
With anticommutation relations (3.55) we can find all the usual ope-

rators e. g. the particle-number operators :

that only can have eigenvalues 0, 1 and give the number of particles or
antiparticles in the model h, A, etc.

Vol. XXXV, n° 1-1981.
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f ) As in spin-0 case if the space-time is static we can find an unique
x’) invariant under time displacement. If space-time is not static

there is not a good criterium to fix a unique x’) so we shall follow
the idea of papers [2] ] [3] ] [4] ] [5] i. e. to suppose that there is a different

x’) for each Cauchy surface 03A3 and that the variation of the x’)
cause either particle creation or anihilation.

In fact, at a Cauchy surface 03A3 we shall have a x’), and therefore a

base the operators a03A3(h)A, b03A3(h)A, N(h)A, N(h)A, the vacuum 0 &#x3E;03A3, etc.
We shall also have the same objects for E’. The field can be expanded
in base { as :

As we shall see in the cases we are going to study we can choose bases
1: 1:’

{U(s,h)A} and {U(r,k)B} such that:

where is a 4 x 4 unitary matrix that satisfies

and

Besides from (3.58) we have that

so

Annales de Henri Poincaré-Section A
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or
_. ~ y

As we shall work in the mode A we shall write these equations simply as

where the 2 x 2 matrices an and 03B2kh are related by the following equations.

e. g. we have

therefore all the matrix coefficients have  1 modulus.

Let us now take, at surface 03A3 an eigenstate |03A3&#x3E; of the particle and

antiparticle number operators N(h), N(h) with eigenvalues and 

respectively, let us compute the expectation value of the particles number
at ~’ in this eigenstate :

where we have use the orthonormality of the eigenstate base ~ ~ ~ and
the anticommutation rules of the b.

If the eigenstate at 03A3 is the vacuum 0 )s the particles number expecta-
tion will be
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Therefore the theory will be implementable if

for h = + i. e. we shall have a finite particle creation.

4. THE PARTICULAR CASE
OF AN EXPANDING UNIVERSE

a) Let us now suppose that V4 has the metric

We shall call V4 an « Expanding Universe » even in the case where a(t)
is not monotonically increasing with time t = x°.

If i is an arbitrary representation of the constant Dirac’s matrices of
flat space-time, e. g. those of eq. (1. 23), we can define the yi of space-time V4
as follows: -

Then as the y’ satisfies the anticommutation relation + 

where is the usual Minkowski metric we have :

where gi’ is the inverse of the metric tensor of eq. (4.1).
If f is the r matrix of the y‘ and r the one for the yi, we obviously have

The coefficients of the Riemannian connexion in metric (4.1) are

(in and raQ we do not use Einstein convention) all the other r~k are
zero and H is the Hubble coefficient.
The spinorial connexion is :

in fact, it can be shown by direct computation that :
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b) Dirac’s equation in metric (4 .1 ) is :

But from the anticommutation relation we know that == - 4 and in

our metric 1, thus == - 3, so we have :

This equation can be solved by variable separation :

Then fk(t) satisfies the equation

or using definitions (4.2)

This equation will be studied in paragraph 6 using Olver’s method [70].
c) Now we shall write the main formulas of paragraph 3 for this parti-

cular case. Of course in this case X is not compact but take
the role of the YA, with the only substitution of the ~AB by a 5(A: 2014 h).
The orthonormal with the model of particle and anti-

particle, will be

where u and v are solutions of equation (4.11) with some properties that
we must find out and Ak is a normalization constant. This base must

satisfy the conditions :

The first one is :
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computing all others we find the following equations :

The second one of (4.14) is :

All these conditions must be fulfilled.
The Kernel S1(x, x’) taking into account equation (3.28) can be written

as :

we shall use this formula later on.

5. THE QUANTUM EQUIVALENCE PRINCIPLE

a) Quantum Equivalence Principle was stated for spin-0 fields in
works [5] and [4 ]. It says that we must take as the Kernel G 1 (x, x’) the
Kernel 41 (x, x’) of flat space-time, but this identification must be done
only in normal coordinates at x (or x’). Normal coordinates have intersting
properties that have been discussed in paper [4] but if we restrict ourselves
only up to the second order in the change of variable, its characteristic
property is that in such, coordinates the h~~ are zero i. e. gravitational
forces vanish (6). In this work we shall expand the transformation formulas
up to this second order, or, what it is the same thing, we shall consider
only the first power of H. Under these conditions we can say that Quantum
Equivalence Principle consists in the identification of G1 with 03941 in coor-
dinates where gravitational forces vanish.

b) Therefore for spin 1/2 we shall identify S 1 with the flat SiL in coordi-
nates { x’ ~ where gravitational forces vanish, and in spinorial bases where
all gravitational effects vanish too i. e.

(6) So really we use geodesic coordinates. We conjecture ’ that one ’ must use normal
coordinates if one take ’ into account higher powers of x".
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Normal coordinates xi at point 0 are :

as we have said we do not take into account the x3, and following terms.
In these coordinates we have that = 0. In the case of the manifold V4
of paragraph 4 we have : ’3

and also

Now we must satisfy (5.12), then we must find a matrix S such that (cf. 1. 70) :

We can directly see that

where we have systematically neglected the term in H2.
Therefore in normal coordinates and with y~~ == we have :

where pa is the physical momentum and the physical space coordi-

(’) Strictly speaking the y and the unit spinor matrix of eq. (5.7) must be bispinors
on x, 0 but from eqs. (1.47), (1.54) and (5.1) and from the fact that we neglect H2 and
higher powers we can take these bispinors as constants.
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nates. Of course S 1 (x, 0) can be considered the Fourier transform of
1 [ ... ] of the last member of eq. (5 . 7) only in distribution sense.
Now we can compute the bispinor S 1 (o, jc) in the primitive coordinates,

we have :

where we have changed the integration variable from ~ -~ == ap, and
we use the ordinary spatial coordinates Using eq. (5 . 3), (5 . 4) and (5.6)
and neglecting all terms in H2 or the higher powers and making t = 0,
we have

Now we want to find the therefore we must Fourier
analyse (5 . 9) and compare the result with (4.18) i. e. to find the Fourier
transform of

where x" and must be considered as the distribution, whose
oc= 1

Fourier-transforms are

but the transform of a product of one function 03C6 and of one distribution u
is :

where the symbol * means the convolution therefore :
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Substituting these equations in eq. (5.9) we have

Comparing to (4.18) and observing that we have changed x’ -+ 0 we can
see that we must have

Contracting with h’) and using eq. (4.16) we have

In flat space-time H = 0, we shall call u, the u of flat space-time and it
must satisfy:
.

i. e.

therefore u is the ordinary a well known spinor.

We can write the last two equations as

Vol. XXXV, n° 1-1981.



86 M. CASTAGNINO

Therefore y == Mu and u = M -1 u, i. e.

Analogously

The usual u and v satisfy the following equations :

and also

Therefore to satisfy (4.16) we need

the first one is true if we take into account the equation ( 1. 451 ). We can
use the equation (1.452) to prove that also equations (4.17) hold true.

Therefore we have

These are the initial conditions issued from the Quantum Equivalence
Principle. The base function x) and U~’~ x) can be obtained
solving Dirac’s Equation with these Cauchy data.

6. DIRAC’S EQUATION APPROXIMATIVE SOLUTION

a) Now we can continue the solution of Dirac’s Equation using Olver

paper [1 D ]. We can write eq. (4.12) as
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and introduce a new time parameter

Thus eq. (6.1) becomes :

d
Let us introduce the operator y° + ik03B103B303B1 + so

dy

i. e.

This equation belongs to the class of equations that can be sloved by
Olver’s Theorem 2. All the solutions of eq. (6.3) are solutions of eq. (6. 5)
but the inverse is not true. So we must, somehow, single out among the
set of solutions of (6. 5) the solutions of (6.3).

Let us consider a function g that satisfies the equation :

If for 1" = 0 is g(o) = 0, the solution of the equation (6 . 6) with this boundary
condition is g = 0. Now if we call

we see that if fk satisfies eq. (6 . 5) then g satisfies eq. (6 . 6), therefore if

g(o) == 0, he satisfies eq. (6. 3). Therefore we must only find the solutions
of eq. (6.5) that would satisfy (6.3) at r = 0, these are the solutions of
eq. (6.3).

b) Now we want to pass from Olver’s Theorem 2 to Theorem 4, noticing
that in our case as the function f of Theorem 2 is complex so it will be
the function p. Olver’s formulas (4.2) to (4.5) show that equation (4.18)
to (4 . 21 ) are also valid in this case.

So let us write (6 . 5) as :
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where

fk is a spinor with components that we shall call fkl, these

components satisfy the equations

where

Therefore from Theorem 4 we have the solutions

As L) can be written as :

using Olver’s results it can be proved (as in paper [5 ]) that

when ~ -~ + oo .

Annales de I’Institut Henri Poincare-Section A



89THE QUANTUM EQUIVALENCE PRINCIPLE, AND SPIN 1/2 MASSIVE PARTICLES

~ of eq. (6.12) is the general solution of eq. (6.5). To verify that g(0) == 0

we Just need the at T = 0 i. e.
dT

but

when k -+ + oo .

We shall follow the computation neglecting all the 0(~’~), as we are
forced by eq. (6.14).

Therefore at T == 0 we shall have :

But as we shall neglect the terms 0(k-3) and o(H2) we compute

From (6.12) at T = 0 we have:
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and from (6.17)

i. e.

where we have introduced the two column spinors

Now we must compute this arbitrary constant spinor A and B in such
a way that at t = T = 0 equation (6.7) with g = 0 should be fulfilled and
also the initial conditions (5 . 26) for the U~B in this way we shall find a
solution of Dirac’s equation that satisfies equivalence principle at t==T==0.
From equations (4.10) and (5.261) we have that the initial condition

for the is :

Therefore we can satisfy this equation if we make:

Equation (6. 7) with g = 0 and with the substitution k03B1 ~ 2014 k03B1, because
we are computing the constant for is :

If we put equation (6 . 20), (6 . 21) and (6 . 23) in (6.24) we can find :

but u satisfies equation (5.19) therefore we have :
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if we neglect the term 0(k - 3~ as usual we find that

We can -repeat the computation for and we shall find :

Therefore the base functions that satisfy Quantum Equivalence Principle
== u are :

7. COMPUTATION OF a AND 03B2, IMPLEMENTABILITY

If we take E to be the Cauchy surface at time ~ and E’ the one at time r’
and we use the equation (6 . 29) the equation (3 . 59) becomes :

In order to compute ~3k ~, let us take t = r’ == 0, so we have :
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as u and v are orthonormal, cf. (5.23), therefore if we pre multiply by

a 0 ’ l Yo we have
)

In a similar way we can have the a.
Therefore we have :

As we are really only interested in ! ~_k i I2 we can neglect the modulus 1

scalar factor exp f and we can also neglect the 0(k- 3) term 8 as
Jo

usual, therefore we have

Now we can compute :

As iyo component are + 1 [cf. (L23)] ] ( - for the two first components
a == 1, 2, + for the other two a == 1, 2) we have that the matrix

(g) Where cok(0) _ (,u2 + 
.
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is a diagonal matrix with diagonal elements

with - for the two first elements and + for the others two.

As we are interested in the case k  oo we may expand the last formula
in powers of k -1 and we obtain :

Now we can compute :

we can also expand :

Substituting in (7.6) we have

The same thing happens for the other /3ki. Turning back to equation (3.70)
we have that

and therefore the transformation for one Cauchy surface to the other is
implementable, and the density of particles created is finite.
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8. THE ENERGY

We can obtain the symmetric momentum energy tensor of the field
from [8] (equations ( 14 . 6) and ( 13 . 3)), and we have

but Vo~ == ~o~ + 60~ _ ~o~ because 6o = 0 so

Of course this ~f is not a constant with time and we must compute it at
each Cauchy surface.
We can do so because we have

Then we can compute ~f at e. g. t = 0 where

as we can see from eq. (6.21).
Therefore neglecting the term in 0(k -1 ) and using the orthonormality

properties of the u and v (5.23) and (5.24) we have
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Substituting (8.3) and (8.5) in (8.2) we have

i. e. the usual expansion of the energy.
If we take the vacuum as the initial state, as we do in equation (3.69)

all the N behave like 0(k-6) (cf. (7.9)) so the integrand behaves like 0(k-3)
and the energy is convergent.
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