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A singular Lagrangian model
for two interacting relativistic particles

by

J. GOMIS, J. A. LOBO and J. M. PONS

Departament de Fisica Teorica (*), Universitat de Barcelona

ABSTRACT. — A singular Lagrangian with multiplicative potential for
two relativistic particles is proposed and the Lagrangian equations of
motion are analysed. The connexion with other models also based upon
singular Lagrangians for two particles is studied; as a result of this analysis,
it is shown how the one-to-one relation between the Hamiltonian and
Lagrangian formalism is recovered in this kind of models. Finally.a discus-
sion of the world-line invariance of the trajectories is given.

REsuME. — Nous proposons un Lagrangien singulier avec un potentiel
multiplicatif pour deux particules relativistes et nous analysons ses équa-
tions du mouvement. Nous étudions la connexion avec d’autres modéles
basés aussi sur des lagrangiens singuliers pour deux particules. Comme
résultat de cette analyse nous montrons comment est retrouvée la relation
biunivoque entre les formalismes lagrangien et hamiltonien. Nous présen-
tons a la fin, une discussion de l'invariance des « lignes d’univers » des
trajectoires.

1. INTRODUCTION

The problem of the dynamics of a relativistic system of interacting
particles has received attention from several authors [/]-[/] during the
last years. Part of the works written by these authors are based on the
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18 J. GOMIS, J. A. LOBO AND J. M. PONS

theory of constrained systems originally developed by Dirac [I2]. In a
theory of this kind there are first-class and second-class constraints, their
presence providing a simple method to avoid the consequences of the
zero-interaction theorem, because the position variables are not canonical
with respect to Dirac brackets.

The construction of explicit models depends on the choice of the set
of constraints, and this can be made in several ways. For example,
Komar [/6] and Todorov [I7] have proposed one in which there is a
first-class constraint associated with each particle and no second-class
constraints. The presence of the former guarantees that we can perform N
independent non-trivial reparametrizations on the solution of the equations
of motion. Mukunda [/8], however, has shown that these models are
dynamically incomplete, for they can only describe world-sheets instead
of world-lines; one is then forced to add new constraints—which cannot
be interpreted as gauge constraints (they define different dynamical models
for different choices). The existence of these new constraints breaks the
independent reparametrization invariance of each world-line except for a
global one.

There are also models [4]-[7] in which the equations of motion are
derived from singular Lagrangians. They carry the interaction on an action-
at-a-distance scalar multiplicative potential. The Hamiltonian set of
constraints [/2] for the two-body case includes one first-class and two
second-class constraints; one of the latter is ( P, r) = 0, P* being the
total four-momentum of the system and r* the relative four-separation
of the particles. This is always welcome since it is required to eliminate
the relative time. It also allows for the exclusion of some unphysical states
which appear upon quantization of the model.

On the other hand, if one uses ( P, r> = 0 to complete the Komar-
Todorov models for two particles, one obtains the same equations of motion
found in the Lagrangian DGL [6] model, which equations also coincide
with those given by the multi-temporal model of Droz-Vincent [/9], as
shown in ref. [20] (there, however, the meaning of the constraint { P, r > =0
is qualitatively different), thence following that [/9] is the exact predictive
extension of [6].

The difference between the models of refs [4] and [5] and those of [6]
and [7] is provided by the primary or secondary character of the above
mentioned constraint [/2]. In this paper we deepen into this difference
and demonstrate that there is just one more Lagrangian function which
describes the same physical system (for equal masses). In Section II we
perform this demonstration and also derive the explicit form of the desired
Lagrangian. Section III is devoted to the analysis of the (Lagrangian)
constraints and the equations of motion. In Section IV we make a synthesis
of the characteristics of all three two-body Lagrangians and see that they
reduce to the same function when restricted to the surface of phase-space
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A SINGULAR LAGRANGIAN MODEL FOR TWO INTERACTING RELATIVISTIC PARTICLES 19

determined by the constraints, thus recovering the one-to-one classical
correspondence between the Lagrangian and Hamiltonian formulations
of the dynamical problem. Section V is devoted to discuss the world-line
invariance and, in particular, to put the equations of motion given by the
new Lagrangian for a constant potential, into three-dimensional instant-
aneous form. This corresponds to free motion of each particle. Unlike
in refs [5] and [6], we are not allowed to reparametrize independently
both world lines, because we must keep the constraint { P, r > = 0 in this
case. Nevertheless, we are still able to construct the trajectories and it,
we hope, helps to understand the meaning of the constraints. In Section VI
we draw our conclusions and an outlook and devote an appendix to the
analysis of the Kalb-van Alstine Lagrangian [4] [5].

Notation

~ weak equality sign, i. e, A & B means A = B when the constraints
are verified ..
{, ) scalar product: (A,B)=A"B,=A°B° - A.B
CA 1)

?'2

A* vector orthogonal to r: At = A" — r#

{,} Poisson bracket:
0A 0B 0A 0B O0A 0B 0A OB

ABl=—-— —+ — — - — —+ ——
(A B ox* 0P, = 0P, 0x*  dr* dq, oq, or*

x, P and r, g are canonical variables i. e.

(X, PV} = (g} = — g
the rest vanishing.

1
Pr=p“+p*;  ¢=2(4."—a."); xu=§(x1”+XZ"); rr=xt—x

N =

2. THE LAGRANGIAN

Some of the existing models [4]-[7] which describe two interacting
relativistic particles through a singular Lagrangian with a multiplicative
scalar potential, have—when the masses of the particles are equal—the
following set of stable hamiltonian constraints

bo=P2 +4¢> + V) = 0 (2.1a)
¢ =<(P,r)~0 (2.1b)
$,=<P.qg>=0 (2.1¢)
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20 J. GOMIS, J. A. LOBO AND J. M. PONS

Among the constraints (2.1) there exist the Poisson-bracket relations

d
{4’0,(151}:—8(]52%0; {050, ¢2}=2V'¢1z0; <V'E E:é) (2.20)
{ b1, ¢, }=P? (2.2b)

whence it is seen that ¢, is a first class constraint [3] whereas ¢,, ¢, are
second class unless P2 = 0, which case will not be considered here. Accord-
ing to Dirac theory (see [/2]) the Hamiltonian is then

H = Z0o (2.3)

provided the canonical hamiltonian is zero. We assume it is zero because
our theory must be invariant under reparametrization.

It is not difficult to verify that the only primary hamiltonians which
generate all the constraints (2.1) are

a) H = Aopo + 2104 (2.40)
b) H = Aq¢o + 420, (2.4b)
c) H = lo¢o + 410 + 420 (2.40)

Aos A1, A, being undeterminate functions. The models of refs. [4] [5]
and [6] [7] only differ from each other in which of the constraints (2.1)
are primary or, in other words, in which of (2.4) is the primary hamiltonian.
In [4] [5]itis (2.4a) and in [6], it is (2.4b).

In this section we are going to investigate which is the Lagrangian model
that yields (2.4c) as the primary Hamiltonian. We find this interesting
because the answer to this question will exhaust the Lagrangian treatment
of the two-particle model characterized by (2.1). This, we hope, will throw
light onto the comprehension of the constrained systems in which, as
we see, there is not a one-to-one correspondence between the Lagrangian
and Hamiltonian formulations, as is the case in Classical Newtonian
Mechanics.

Let us then look for a Lagrangian having (2.4¢) as identical relations

once the momenta

0¥ 0L

BT T T T

(2.5)

are defined. In order to achieve this, we first express the momenta P, g
as functions of coordinates and velocities, what can be done after the
latter are defined by means of the Hamiltonian equations of motion:

tx{x" H} & —24,P* — A" — Arq" (2.6a)
o H )~ — 8lggh — A,PH (2.6b)
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A SINGULAR LAGRANGIAN MODEL FOR TWO INTERACTING RELATIVISTIC PARTICLES 21

According to reparametrization invariance and Euler’s theorem it is
verified that

,L,0ZL 0¥ . .
,sz”w+r“5ﬁ=—<P,x>—<q,r> (2.7
Now, making use of (2.6) and (2.1)

L = — 20,V 2.8)

To find & it is necessary and sufficient to find J,. But this can be done
because 4, is inserted in a system of 11 independent algebraic equations,
namely (2.1) and (2.6), for 11 unknowns, namely, P¥, g*, Ao, A;, 4, all of
them to be expressed in terms of coordinates and velocities. From (2.6)
it follows

1
Pt= — ——  T4(x* + A, 1% — vit .
2inld — ) [4(x* + Ayr*) — vi*] (2.9q)
v _ [ — (X" + A * 2.
= =iy )] (2.99)
where it has been defined
A
T 2

Imposing (2.1b) and (2. 1¢) on (2.9) we obtain a system of two equations
for 4; and v

Ay

RIS D
- 2

452 r
CHEXV =@ + i +4C4i>=0

whose solutions are

a—b ) 1 ab /%, x, >
=2 , = — = — 4+ ==, 2.10
! a+b “1 r2a+b<a+h : ( 9)
and
a+b 1 ab /%, i, >
=2 A= - .
Y a—b>b’ ! rza—h< 7 ) ,/ (2.106)
where o
a=+./x1, b=+ /i3 (2.11)

Let us observe, however, that (2.10b) are not physically consistent
solutions. Indeed Z; and v must both be zero during the motion because
the primary hamiltonian (2.4c) becomes the first class hamiltonian (2.3)
after consistency conditions are imposed on it. We are therefore led to
reject (2.10b) because v can never be zero in that case. On the other hand,
4y = v =0 must be Lagrangian constraints.
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22 J. GOMIS, J. A. LOBO AND J. M. PONS

After substitution of (2. 10a) into (2.9) and (2. 1¢) we find 2, and thence ¥

by (2.8):
. 27172
fzzi% /—V(rz)[(a+b)2+<r’r2r>] (2.12)

There is a double-sign ambiguity in this solution which does not matter
either for the equations of motion or the lagrangian constraints. We take
then conventionally the minus sign in order that the extremal of the action
be a minimum.

3. EQUATIONS OF MOTION

In this section we start from the Lagrangian

. 2711/2
5€=—%4/~V(r2)[(a+b)2+<r’r:>]/ 3.1

The canonical momenta are
b P, T
[(1 + )xl,, - < 2 >ru:| (3.2a)

A"
R4
o 1V a\, {iyr)
Pap = — 42 =Z§|:<1+'l;))flu+ 2 ru:l (3.2b)

n
0x,

oL 1
%t 4

p1u= -

whence it follows

1V X
P, = Zg(a+b)( ;“> (3.3a)
1V X\, LV ()
L _ A 3.3b
T = 8$(a+b)<b >+4$ 2 @3.35)

It is immediately verified that egs. (2.1) are identically satisfied. In
order to find the Lagrangian constraints we must evaluate the hessian
matrix (with respect to x;, Xx,) of (3.1). According to the general theory [/4]
it will be a singular matrix with three null vectors corresponding to the
three Hamiltonian primary constraints. After some algebra one finds.

b
62 1 V Qluv + ERIuv an

— 3.4
wij = axua\ 4% G4

a
" R2uv

(MT)MV QZuv + b

Annales de I Institut Henri Poincaré-Section A



A SINGULAR LAGRANGIAN MODEL FOR TWO INTERACTING RELATIVISTIC PARTICLES 23

where Q;, R;, M are the following tensors

M iv i‘(’".‘.fiv -
Qiuv — guv _ pl I; , Riuv — G/l\' .~ . ~2 , (l — 1, 2) {33)

Di Xi

PP xifxt
Mw = —SLE L ELER L (M = M (3.6
p? ab r
with
v v rirY

G" =g — e 3.7

Q; is a projector orthogonal to p;; R; is also a projector orthogonal
to x;and r, so that it is contained in Q; owing to (3.2), i. e. Q.R;=R;Q;=R;;
M is not a projector, nor J# is; it can be, however, written so:

H = ———(P - B) (3.%)

where

g)z(Ql+R, M > P (

M Q. + R,

1
It is verified that 22 = 22 so that 3 2 is a projector. 4 is not itself

a projector but is a direct sum of two « except-for-a-factor-projectors ».
The null vectors of # are

vl=<pl>, 02:<0), v3=(r> (3.10)
0 12 r

0
and those of & are v,, v,, (r) and ( ); therefore the null vectors of #
are simply (3. 10). 0 r

The equations of motion may be written in the form

2
. 1V .
Z]f,m-jx» = — Z?ai‘” i=12 3.11)
j=1
where 2
1V _ o0& 0’y . . .
—Zgai”zw_ i=12 (3.12)

X;
s [Rad A
- Ox0x;

J
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The calculation of a; is rather tedious. The final result is

al” — |:<r’ r>l"12 _S(l _ <'ic,1’2'§2 >>j|-§1u

a

1 1
_ k(a + —>3;52" —a(a + H)IE* (3.13a)

b
K .
a2ﬂ=[<’;,r>1—22+_ 1_<3~C1a3£2> P
b b2 ~
1 1
+ k(‘ + E){H" + b(a + b)T?r* (3.13b)
a
being |
k=5 &y rya+ (hy,r)b) (3.14)
and

= %(1 - §>(1 " <);Clc’zbic2 >) 4,\2;2 [b(a LR r>r2< = r>]
<1 b>V’ 3.15
- +5 V (3.15a)

1“22=—15<1 _E><l +7<’icl’ §2>)_Y_[a(a+b)+<xl>r>r2< ra V>]

ab 492
a\V’
- (1 + B>_ (3.15b)

v

Now there must be some Lagrangian constraints expressing the fact

0\ . .

that the 8-vector a = < ') is orthogonal to the null vectors of # as is
o2

seen from (3.11). This yields the following relations

ab
Co,v,=—<a,0,>=0 (3.16b)

<a,vl>=%;(a+b)k<l+w>=0 (3.16a)

<a,v3>=—(a2—b2)<1+<v%2‘>>=0 (3.16¢)

of which only two are independent and are equivalent to

k(l n M) -0 (3.17a)
ab

(a— b)(l + M) —0 (3.17b)
ab
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\Y
since y(a + b) can never be zero. (3.17a) and (3.17b) can be made equal

to zero in two different manners:

1) 1+ i X2) (3.18)
ab
This is equivalent to demand P? = 0 according to (3.3a). We do not
consider this case since we have assumed P? # 0 from the outset.

2) a=b and k=0 (3.19)
These two equations are written in a more explicit form as
x3=x3, {Xxy + X7 =0 (3.20)

We recognize in these Lagrangian constraints the necessary conditions
for the functions 4,, v of (2.10q) to be null.

This is, therefore, a consistent result.

Let us then impose stability to (3.20); this implies that

CXp+ %10 =0, Cxp X ) =X, %) (3.21)

We see it is necessary to know X;, X, to draw consequences from (3.21)
This is fortunately an easy matter provided (3.19) is fulfilled. Indeed in

. . . 1V
this case the hessian (3.8) simply reduces to # = — 17 2 and therefore

the accelerations can be isolated in (3.11) due to the projector character
of #. The result is :

. 1
Xt = 5“1“ + 1 (Dpy* + pa(t)r*

. 1
XM = o + p(t)pr* + ps(t)rt

2

Now imposing the constraints (3.19) on «;, these equations take the form
. vV Vv VOV (i)
X e o — — H

1 <2V 23“‘) (2a 4$ 2 — U + u3>r (3.22a)
. vV Vv V'V (i
Nt = [ 2 _ "
\', <2V 23 ﬂz) <2b V + — 43 r luz ﬂ3>r (3.22[))
and substitution of them into (3.21) yields the consistency conditions

(hyr >

H1 = Uz, (12 — py) (3.23)

_lV
'u3_8$

Vol. XXXV, n° 1-1981.



26 J. GOMIS, J. A. LOBO AND J. M. PONS

which reduce to one the number of arbitrary functions present in the
theory; this is a desired result. Redefining

=Y v 3.24
U =55 ml — o (3.24)

we obtain the following final equations of motion

¥
A =2 = V)t + p(t)x," (3.25a)
£
¥t = — 257 V/(r2)r* + p(t)ic,” (3.25b)

These equations can also be written as

= p(t)x* (3.26a)
32
= 4WV'(r2)r“ + p(t)i* (3.26b)

Equations (3.25) or (3.26) together with equations (3.20), which can
be as well written as

(xr>=0, (xi>=0, (3.27)

are the equations of motion of the system. It must be remembered, however,
that egs. (3.27) must only be imposed on the initial conditions and this
ensures that they are verified for any other value of t because of their
stability conditions contained in (3.27) and the equations (3.26) them-
selves.
It is very easy to check that
&

d

whence it follows the transformation law for the gauge function u(t) after
a change of parameter:

JS@u(r) = flx)
@

(3.29) also shows explicitly that the egs. of motion (3.25) or (3.26) are

invariant under a change of parameter. The easiest choice of gauge is, of

T U= f1) = pr) - W) = (3.29)

. . &z .
course y(t) = 0 in which case v is constant; let us call

wt) = (y = const.) (3.30)

<IK

14
2
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A SINGULAR LAGRANGIAN MODEL FOR TWO INTERACTING RELATIVISTIC PARTICLES 27

Egs. (3.26) then read
X*=0, o+ P2Vt =0 (3.31)

and the first of them says that, in this gauge, t is proportional to the center
of mass proper time.

4. CONNECTION WITH OTHER MODELS

The Lagrangian deduced in section 2 exhauts, together with those of
ref. [4] (henceforth referred to as KvA) and [6] (DGL), the set of possible
Lagrangian functions that give rise to the Hamiltonian constraints (2.1).
Each one of them is bound to one of the primary Hamiltonians of (2.4).
Once all the stability conditions are imposed on the constraints the process
ends up into the same first class Hamiltonian.

There is, at this stage, a one-to-one relation between Lagrangians and
primary Hamiltonians. Both carry all the information about the dynamics
of the problem as well as about the constraints to which the dynamical
variables are subjected. Note, however, that, as pointed out above, all
yield the same first class Hamiltonian, thus disappearing the one-to-one
relation between the Lagrangian and the Hamiltonian formulation of the
problem.

Now, we pose the question: is it possible to restore biunivocity between
Lagrangians and first class Hamiltonians, at least on the surface of phase-
space determined by the constraints? We indeed expect an affirmative
answer; for the Lagrangian constraints are equivalent to making equal
to zero those arbitrary functions in the primary Hamiltonian which are
coefficients of the second-class constraints, as seen in section II. In this
section we are going to show that the lost biunivocity is actually restored
in this sense.

To this end let us first see that the surface determined by the Lagrangian
constraints is the same in the three cases:

a) The Lagrangian (3.1) produces the constraints

Cxry=0, <(x7)=0 4.1)
according to (3.27).
b) The DGL Lagrangian

PooL = — /m? — Vper(?) (/32 + J/x2) 4.2)

gives rise to (see ref. [6])

<~%+~%nr>=m <x1+ “,f>=0 4.3)
x3 X3 x3 X3

Vol. XXXV, n° 1-1981.




28 J. GOMIS, J. A. LOBO AND J. M. PONS

The second of (4.3) can also be written

o X N s s <x1,x2>>
< x%+\/)—'€z’r> (\/‘g \/Z)(l_*_\/;?\/x’%

. . 0% 0%peL \
but the second factor is proportional to P? = ( D6L L = PO} and
axl axZ
thence cannot vanish; so the second of egs. (4.3) is equivalent to . /x} = /x3;
now replacing this into (4. 3) again and making use of collective coordinates
we find that it can be expressed by

(xry=0, {x,ry=0 4.4

just like (4.1).
¢) The KvA Lagrangian

Lion = = [= Viualr?)(x* + p7%%)]"72 4.5)

has exactly the constraints (4.1) as seen in formula (A.11) of the appendix.

We see therefore that the surface determined by the Lagrangian cons-
traints coincides in all cases. We have to show now that all Lagrangians
adopt the same functional form when restricted to the surface defined by
the constraints. This is

1 1/2
F = — [— U(r?) <5c2 + Zﬁ)] 4.6)

where U(r?) is a multiplicative potential conveniently related to the poten-
tials in each Lagrangian function. Indeed:

a) The Lagrangian (3.1) becomes

L N2T)172 2222
$=—§¢—V[(\/E+\/3§%)2+<r’r>} i RN )

r2 <5C1+.5C2, I‘>——‘0

being U(r?) = V(r?) simply in this case

2 _ 2
b) Lo = — /m* — Vpor (VX1 + /X)) S F

Xy + Xr>=0

by identifying
U(r?) = 4(VpaL(r?) — m?) (4.8)

¢) To recover (4.6) from Fx,, it is necessary to assume f§ = 2 in which
case the result is obvious. This is not, however less general than f # 2.
In fact one can always redefine—within this model—the relative coordinate
by 287 'r* = x,* — x,* due to the fact that in this case there is no definition
of the individual coordinates, the only specification being that r* be a
Poincaré four-vector, i. €., independent of the origin of coordinates.

We have completed the proof of the desired result: on the surface of
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A SINGULAR LAGRANGIAN MODEL FOR TWO INTERACTING RELATIVISTIC PARTICLES 29

the constraints the one-to-one relation between Lagrangian and Hamil-
tonian formulations is recovered, for all Lagrangian functions reduce
to (4.6) when restricted to that surface. In a forthcoming paper we hope
to give a generalization of these results to a problem of N interacting
particles.

5. DISCUSSION OF WORLD-LINE INVARIANCE

The discussion of the world-line invariance of equations (3.26) for a
non-constant potential is just that of the DGL-model for equal masses,
already performed in the general case in refs. [/7] and [15]: if ¢ is the time
variable for a certain Lorentz observer, it is possible to write the solution
of the equations of motion in the form

A0 = Ut — to3 ¥to) Bte) s Gj k=1,2) (5.1)

where X;(to) and 7,(t,) are the positions and velocities of the two particles
at the instant t, for the considered observer. The number of arbitrary
constants in (5.1) is 13 whereas the solution of (3.25) has 16. There are,
however, two Lagrangian constraints (3.27) which lower this number to 14.
But there is still a gauge freedom which brings in a new (gauge) constraint,
once that freedom is fixed, setting finally equal to 13 the number of indepen-
dent arbitrary constants. The question of whether there is a one-to-one
relation between them and the quantities X;(t,), B(fo), t, has been analysed
in [11].

The preceeding discussion can also be made directly in the four-dimen-
sional form by constructing the predictive extension of the model. This
has been done in [20], where it is shown that such predictive extension is
provided by a Hamiltonian model developed by Droz-Vincent [/9].

In the free case (V = cte), however, the model we have just proposed
does not coincide with that of DGL, for in the latter there is a double repara-
metrization freedom—one per particle—, whereas in the former there
remains only one. This is due to the fact that the constraint { P, r>=0
does not disappear in this model even when V = cte. Nevertheless, it is
still possible to discuss the world-line invariance of the solutions of the
free equations of motion and to put them in an explicity predictive three-
dimensional form. This is what we are going to do in this section.

In the free case the equations of motion (3.25) are written

.3&1”:5&2”=0 (5.2)
in the gauge u = 0. Their general solution is
x4(1) = a,*t + by*, x*(t) = ay*t + by* (5.3)

Vol. XXXV, n° 1-1981.



30 J. GOMIS, J. A. LOBO AND J. M. PONS

The constraints (3.20) read here
ai=a3, {a;+ayb,—b)=0 (5.4)

and there is also the gauge constraint (3.30); it leads to the new condition

@t =t = = 17V
4
Letting 92 = — v the final set of conditions on g;, b; is
0
ai=a3=1, <(a;+aypby—b)=0 (5.9
(5.5) also guarantees the velocities of the particles
-1». ai
L= S (=1, (5.6)
X 1 + a,-z

are time-like four-vectors as indeed they must be.
Let us take the following set of independent initial conditions:

N=b=ty, ¥0)=b,, X0)=b,, X0)=d,, X,0)=d, (5.7)
The remaining three are then
_ (dy + a,) (b, — by)

J1+@&+ J1+a

= J1+a, ay=./1+a (598

x(0) = b9 = tq

]
b - og43) 2, )
1:(1) 1.....
2/(0
2-
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(5.7) and (5.8) are to be substituted in (5.3) to give the solution of the
problem, but this does not still have the desired form (5.1). In order to
achieve this the figure will illustrate the procedure: for a certain value
of = we have a point in each trajectory but it does not correspond to the
same instant of time for the considered observer. However there exists
a certain value t’ for which t = x%(1) = x(1); so

—b9 t- t— b2
_tohi_tmt , _toh (5.9)

- B
a} ay a3

Now (5.3) can as well be written
x(t) = a,"t + by", xM(T) = a*t" + by*
whence we find, after (5.9) (see also (5.6)-(5.8)),

Xy(t) = (t = 1)V, + X,(to), X(t) = (t = to) By + Xa(to) (5.10)
where - -
(dy + dy) (b, — b))
J1+ @+ /1 + @&
Equations (5.10) are in predictive form, and it is the expected one of free
motion. But still, is there a one to one correspondence between the quan-

ties X(to), ¥; and d b ? Yes, and the inversion formulas for (5.6) and
(5.11) are

Xito) = by, alte) = by + (5.11)

— — - — 7 — {} ?(tO)

a; = 7;v;, by = x(to), by = X,(to) + =— U, (5.12)
1-V-p,

with
. ~ Uy + 7,0 . . -
yi=01—-7%712, V= 110 T 72t , F(to) = Xalto) — X1(to)
Y1+ 72
CONCLUSIONS

We have seen in this work how can one make a Hamiltonian description
of a two-body relativistic system and how it may be achieved via three
different singular Lagrangians, and only three. They are related to the
three possible primary Hamiltonians which give rise to the same first-
class Hamiltonian.

The existence of such variety of Lagrangians breaks the one-to-one
correspondence between the canonical and the Lagrangian formulations
of the same problem, always present in the classical case. Nevertheless
biunivocity is recovered after restriction to the surface of phase space in
which the motion takes place, i. e., that determined by the constraints.
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This means that the Lagrangian description of the model can simply be
made giving the Lagrangian function (4.7)

1 1/2
F = — /- U@ (xz +Zi‘2>

Cxury=0, (xir)=0

This is a very interesting result since it immediately suggests a genera-
lization to more than two particles. In a forthcoming paper we shall give
a more detailed treatment of that problem.

The number of constraints is exactly the one needed to construct physical
trajectories from an arbitrary given set of initial three-positions and three-
velocities. In particular, we have explicitely shown in section IV how the
equations of the free trajectories can be cast in such manifestly predictive
form.

over the surface
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APPENDIX

LAGRANGIAN ANALYSIS
OF THE KALB-VAN ALSTINE MODEL

The Kalb-van Alstine Lagrangian is [6]

e = VN @
where f is a dimensionless constant. In this case
0%, Vko 0% Vkoa .
P= = S0 R g= - A g KA (A.2)
Ox* Lroa ™ or* PLron

Viea . . Viea . .

V. G"" + % )fﬂ'f" ﬁ gk ~ ru
Ky = — _KeA KvA Kea ~ (A.3)

th‘A 2 VKL‘A

.. VKLA ..
ruXe BT (g vt BT ")
* * gKLA

The hessian (A.3) has two null vectors

0 =-0) .
Uy = i s vy = 0 ( 4)

and the following property: if we define = by

o 5 (227G 2)
n = - H (A.5)
0 B Lo 0 B

then 7 is a projector: #> = x, = = =". The equations of motion are

Vl(vA .
. Z n\u j - ?Kv: Fx'u (l = la 2) (A‘6)

where the indices i, j refer to x for i = 1, and to r for i = 2. After some algebra

Vke V, v Vios <X, 7% 1 X, F X, ).
B KAF,,,=—< kea _ Veoa <57 G >)Yﬂ Gy Chry, o

Lxoa 2vKnA L7 r? - r? r?

Vioa VKuA Vioa <X Py{xry <5C, ry . Lloa
- Fpy=—$72 3 L T Xu T Vioal,

Loa 2VKvA Lioa r r Vioa (A.7b)

The accelerations in (A.6) can be made explicit thanks to the projector character of 7
in (A.S). Remembering (A.4) we find

X =F* + x4+ Ar® (A.8a)

= F*B% + A,/* (A.8b)

41, 42 being undetermined functions. Now the Lagrangian constraints appear in the usual

way, multiplying the null vectors (A.4) by (A.7); there is only one constramt as a conse-

quence of this:
¢ )~c, Fy>=0 (A.9)
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34 J. GOMIS, J. A. LOBO AND J. M. PONS
whose stability condition yields
(k,r>);cz=0 (A.10)

Here there are two possibilities: either x> = 0 or (%, r> = 0. In the former we have
P? = 0 according to (A.2); so we take (%, r> = 0. (A.9) and (A.11) are equivalent to

(x,ry=0, (xi>=0 (A.11)

Stability of { x, r > = 0 causes 4, to vanish, so that, finally, the equations of motion are

= (1) (A.12q)
N gKvA .
= — 2 Vi Vioa(r)r* + Az)r* (A.12b)
KvA
_ vKuA . .
where A7) = /(1) — . It is also verified that
KvA
d ko
x) =—(ln “) (A.13)
dr Vkoa

whence the equations of motion (A.11) and (A.12) coincide with (3.26) and (3.27) of
section 3 except for an irrelevant scale factor in the gauge function.
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