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Differential pseudoconnections and field theories

Marco MODUGNO, Rodolfo RAGIONIERI, Gianna STEFANI

Istituto di Matematica Applicata,
Via S. Marta 3, Firenze, Italia

Ann. Inst. Henri Poincaré,

Vol. XXXIV, n° 4, 1981,

Section A :

Physique theorique.

ABSTRACT. 2014 We define a « differential pseudoconnection of order k »
on a bundle p : E -~ M as a translation morphism r : V T* (8) VE

. 

k

on the affine bundle J~ -1 E. Such concept is a generalization of
usual connections. Then we study in the framework of jet spaces several
important differential operators used in physics. In this context an interest
arises naturally for the second order affine differential equations, called
« special », given by E2 == ker (G o H) 4 J2E, where H : V T* (8) VE

2

is a differential pseudoconnection and G : V T* (8) VE -~ VE is the linear
2

submersion induced by a metric g : V T* -~ ~. Particular cases of special
2

equations are both the geodesics equation (an ordinary equation) and any
kind of Laplace equation (a partial equation) even modified by the addition
of physical terms. So special equations are candidate to fit a lot of funda-
mental physical fields. At the present state of the theory we can emphasize
several common features of physical fields. Further right developments
will be the object of next papers.

INTRODUCTION

Several general field theories have been successful in describing funda-
mental physical fields by a unique schema. Among the main approaches
we mention the Lagrangian-Hamiltonian theories, which are based on

l’Institut Henri Poincaré-Section A-Vol. XXXIV, 0020-2339/1981/465/$ 5,00/
(C) Gauthier-Villars



466 M. MODUGNO, R. RAGIONIERI AND G. STEFANI

symplectic structures, and the gauge theories, which are based on connec-
tions on principal bundles.
Our purpose is to present the first step of a different attempt based on

differential pseudoconnections on jet bundles. In this paper we are dealing
with the essential elements of such an approach and with the testing of
a certain number of important examples. Further right developments will
be treated in subsequent works. Now we can account and emphasize some
common, but not evident, analogies among several fields and we can put
new problems.
Why jet bundles and why connections ?
Jet bundles are the natural geometrical framework for differential

equations. They account the clear distinction between the point-wise
point of view of structural properties of the equation itself and the functional
point of view of the sheaf of solutions. Important theories have been deve-
loped in such direction. We mention the fundamental theoretical work of
Spencer-Kumpera [72] and the research of Pommaret [70] extending the
theory so that applications, which seem very promising for theoretical
physics, become possible. In such works geometrical properties of given
differential equations are studied.
Our aim is first to exhibit a differential equation which could be proposed

to rule physical fields. Moreover we try to make a heuristic use of jet spaces
in order to get suggestions for the formal structure of field theories from
their geometrical structure. If we claim a physical field to be represented
by a section s : M -~ E of a bundle E ~ M, which is the solution of a
differential equation ~k of order k, then a natural way of expressing ~k is
to consider the k-jet jks : M ~ JkE and to impose some condition on it.
Most of physical equations have tensorial form. Then we need some geome-
trical constitutive law which enables us to make jks into a tensor. To this
purpose, let us consider a fundamental property of jet spaces : is an

affine bundle over Jk-1E and its vector bundle is V T*0VE, where V T*
k k

is the symmetrized tensor product of the cotangent bundle of the basis M
and VE is the vertical tangent bundle of E. Hence the idea of choosing an
origin on each affine fibre of JkE. Such a choice is called a « differential
pseudoconnection of order k » and is obtained by a section 1 : 1 B ~ JkE
or equivalently by a translation ~ : JkE  V T* @ VE (i. e. an affine

k

morphism over E, such that the fibre derivative is Dr == 1 ).
Usual connections are a particular kind of differential pseudoconnections
of first order. Moreover we remark that our approach does not involve
principal bundles. _

Now the simplest way to obtain a global and quite regular differential
equation of order k, such that the number of scalar equations equals the
freedom degree of the field, is to take the kernel of an affine submersion

l’Institut Henri Poincaré-Section A



467DIFFERENTIAL PSEUDOCONNECTIONS AND FIELD THEORIES

VE. If we combine such requirement with the idea of differential
pseudoconnection, we are led to consider the second order affine diffe-
rential equation 82 = ker (G c H) 4 J2E, called « special », where

is a differential pseudoconnection and G : V T* @ VE -~ VE is induced
by a metric g : V T* ~ R. 2

2

Deep reasons concerned with the Pommaret’s theory on differential
equations could perhaps attach importance to special equations. Moreover
such type of equation includes any kind of geodesics equations (Newton,
Einstein,...) and any kind of Laplace equations (Laplace, De Rham, Lichne-
rowicz,...).
The problem of writing a special equation on a given bundle E is global.

The main point is to look for the differential pseudoconnection H. In some
cases the bundle itself exhibits a canonical H, in some we have to choose
a « gauge » H. Then we can write H = H + F, where F : JE ~ V T* (x) VE
is a tensorial term expressing the specific physical problem.
The requirement that a physical theory can be ruled by a special equation

is an effective global condition. The factorization of a morphism VE

through V T* @ VE by the composition J2E ~ V T* (x) VE  VE
2 2

creates some nontrivial problems. Some fundamental physical equations
can be written easily as special equations (classical n-body dynamics,
Klein-Gordon field). Some others are factorizable by an H which is affine
but not a pseudoconnection, as 1 (Maxwell and Einstein fields).
For good chance, such equations can be transformed into new special
equations by imposing « gauge conditions » on initial data, which are
propagated by the new equation (Lichnerowicz [19 ]). It is remarkable
that the conditions, which are introduced classically to remove ambiguities
in the solutions, are just what we need to obtain a special theory.

There are some analogies between the special schemas and the Lagrangian
ones. One has to look in the first case for a pseudoconnection

and in the second one for a function L : JE -+ [R. Then in both cases one
has a standard rule to write the field equation 82, which is the kernel of
a morphism J2E -+ VE, in the first case, or J2E -+ VE*, in the second
one. Moreover many important Lagrange equations can be translated into
special equations and conversely many important special equations can be
written in the Lagrangian form. However it is not always true. For instance
any classical force leads to a differential pseudoconnection, but not to
a Lagrangian.

Vol. XXXIV, n° 4-1981.



468 M. MODUGNO, R. RAGIONIERI AND G. STEFANI

In conclusion, many other features of special equations must be studied
in order to confirm the interest for such approach. For instance we are
expecting to find conservation laws and some kind of cohomology. It will
be the subject of further works.

CHAPTER ONE

PSEUDOCONNECTIONS ON JET SPACES

1 The tangent space to a bundle

We start with basic definitions and notations, in order to make the paper
selfcontained.

All the manifolds and maps considered are assumed to be Coo and para-
compact, even if it is not said explicitly.

Let M be a m-dimensional manifold. We denote the tangent bundle
by 7rM : TM ~ M ; when the context is clear we replace TM by T. If ~ x’‘ ~
is a local chart of M, then the induced chart of T is {x03BB, x03BB} and the induced
basis is M ~ T, 1 ; /. ~ m. One has x03BB o 03C0M = x03BB (by abuse of
notation we write x~ at the place of x~ o Let N be a further manifold
and let! : M -~ N be a map. Then Tf : TM ~ TN is the tangent map.

is a chart of N, fl Tf = { .~~ax~, ~ where

Let p : E -+ M be a bundle of dimension m + 1. be a chart
of E. Then one has p = ~ If s : M -~ E is a section, then

The chart induced on TE is ~ x~, yi, xÂ, y’}. The vertical tangent space of E
is the vector subspace i : VE 4 TE of vectors tangent to the fibres of E
and characterized by {x~ yi, x~, yi ~ ~ i = ~ x~, y‘, 0, ~ } -

If f : N ~ M is a map, then /*p : /*E -~ N is the pull-back bundle.
When the context is clear, we do not always express explicitly all the pull-
backs and we sometimes write E at the place of 
The bundle Tp : TE ~ T is given by ~ x~, xÂ } 0 Tp = { x~, j~ }. The

horizontal tangent space of E is p*T; its induced chart yi, ~}.
One has a natural submersion UE : TE ~ p*T, which is a linear morphism
over E; its expression is given by { ~ yz, .~~ ~ ~ UE = { ~ ~ ~ }. More-
over UE : TE ~ p*T is an effine bundle, whose vector bundle is p*T x EVE.

If p : E ~ M is endowed with an algebraic structure on its fibres, then
the tangent functor induces an algebraic structure on the bundle Tp : TE -~ T.
For instance, if E is a vector bundle, then TE is a vector bundle on T.

Henri Poincard-Section A



469DIFFERENTIAL PSEUDOCONNECTIONS AND FIELD THEORIES

Moreover, if E is an affine bundle whose bundle is E, then VE = E x E.
If E and F are vector bundles on M and { x~, yI ~ and { ~ are charts

on E and F, yi @ denotes the chart induced on the bundle
M.

We denote by T*M  M the cotangent bundle of M; when the
context is clear we replace T*M by T*. The induced chart on T* is {~ ~ }.
We put = Q9 T 0 T* and we denote .~{11:::{:} the induced

r s ,

chart on Moreover V and 11 denote the symmetrized and the anti-
symmetrized tensor products.

2. Jet bundles

Let p : E ~ M be a given bundle.
We denote by JkE, with k 2:: 0, the space of k-jets of E. Namely is the

disjoint union JkE = U [~]~ of the equivalence classes of sections
X~M

s : M -~ E given by 

In particular J°E == E. The natural chart induced on JkE is

(if we replace yi by yi, then we replace yi ... ).
One has the natural bundle JkE  M and jc~ 0 p~ = ~-~.
The k-jet of a section s : M -~ E is the section given by

Its expression is

We can relate the tangent map and the I-jet there is a unique morphism
over E ( , ) : p*T x JE -+ TE which makes the following diagram com-
mutative, for each section s : M -+ E and u : M -+ T,

Its expression is {~ yi, x~, ’ 0  , &#x3E; = { x~, yt, x~, y~~ } .
For 0  h  k one has a natural bundle phk : JkE  JhE and pjh o pak~

ph o pk, Its expression is

Vol. XXXIV, n° 4-1981. 18
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One can show (taking into account the transformation law of y~,l...~.k)
that JkE is an affine bundle over whose vector bundle is

By abuse of notations, we write J’‘E = V T* Q9 VE. This property will play
k -

an important role in the following. The natural chart induced on JkE is

{ x , ..., 1... Àk - l’ 
. Q9 ~7i . .

There is a unique map i : Jk+hE  JkJhE which makes the following
diagram commutative for each section s : M ~ E

i is a monomorphism over and its expression is

Let q : F ~ M be a further bundle and let f : E -~ F be a morphism
over M. Then there is a unique morphism over M Jkf: JkE  JkF which
makes the following diagram commutative for each section s : M -~ E

Then J’‘ is a covariant functor and its expression is

There is a unique isomorphism i : Jk(E x F) ~ JkE x JkF over M which
makes the following diagram commutative for each section (s, t) : M ~ E x F

Its expression is

Let the bundle p : E -~ M be endowed with an algebraic structure on
its fibres, determined by morphisms over M such as f : E -~ E, or

f ’ : E x E ~ E, or f " : F x E ~ E, ... and by privileged sections as
e : M ~ E. Then we can endow pk : JkE ~ M with the algebraic structure
on its fibres determined by the morphisms over M Jkf: JkE  
JV : JkE x JkE ---+ JkE, JV : JkF x JkE  JkE, ... and by the section

M ~ JkE. _

Annales de l’Institut Henri Poincaré-Section A



471DIFFERENTIAL PSEUDOCONNECTIONS AND FIELD THEORIES

So if p : E -~ M is respectively a vector, or an affine (with associated
vector bundle p : £ ~ M), or an algebra (with unity), or a group bundle,
then pk : JkE  M is a vector, or an affine (with associated vector bundle
pk : M), or an algebra (with unity), or a group bundle.

For instance, let p : E ~ M be an algebra bundle, with addition
a : E x E -~ E, scalar multiplication m : [R x E -~ E and multiplication
c : E x E -~ E. a natural chart of E, such that

where c~ is factorizable through M. Then

Letp:E  Mandq:F  Mbevectorbundlesandlett:ExF  E(x)F
be the tensor multiplication. Then Jkt : JkE x JkF  Jk(E (x) F) is a bilinear
morphism over M and one gets a canonical linear morphism over M
Jkt : JkE (g) JkF  Jk(E (x) F), taking into account the universal property
of the tensor product. If {x~ yi, is a linear chart of E x F, then

We can express the exterior derivative of forms by means of jets. In fact
we can prove, by induction with respect to 1 : p : m, that there is a cano-

p

nical subset ~P 4&#x3E; J A T*, which is a vector subbundle over M and an
P

affine subbundle over A T*, whose associated vector bundle is

p p

Moreover J A T* is decomposable in the direct sum over A T* of the
p+1

affine subspace ~p and the vector subspace 11 T* (it determines a trivial
p p p+ 1

bundle over A T*) J A T* = ~p C A T*. Then the exterior derivative
P

is the affine morphism over A T* -+ M given by the projection

w . W / ~ 1 ~ ~ , 1 .

p p+1
If s : M -+ A T* is a section then we write ds = d ~ js : M -+ 
There is a link between this definition and the Spencer operator.

Vol. XXXIV, n° 4-1981.
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3. Differential connections

DEFINITION. Let q : F ~ N be an affine vector bundle, whose vector
bundle is q: F ~ N. A pseudoconnection is a translation morphism
f : F --~ F over N.
Namely r : F -~ F is an affine morphism over N, whose fibre derivative

is Mf ~ ~ F* @ F (with rough notation we write Dr == 1).
The following maps determine a natural bijection between differential
pseudoconnections r : F -~ F and sections 1 : N -~ F :

a) F I, where 1 is the unique section such that 0393 p 1 =0;
b) 

We will often identify these two objects r and 1. Let ~ y~, be an

affine chart of F and be the naturally associated linear chart
of F. Then one has

where I j : F ~ IR is factorizable through N (we write also, by abuse of
notation, I j : N ~ [R).

DEFINITION. Let p : E --+ M be a bundle. A differential pseudoconnec-
tion of order k ~ 1 on E is a pseudoconnection on the affine bundle

-. Jk - 1 E_
Namely a differential pseudoconnection of order k is a translation

or, equivalently, a section 1 JkE. We write also, by abuse of

notation, I : V T* Q VE. One has the following expression
k

where

DEFINITION. Let p : E -+ M be a bundle endowed with an algebraic
structure on its fibres. A differentiat connection of order k ~ 1 on E is a
differential pseudoconnection t Jk - 1 E -+ JkE, which is a morphism
over M with respect to the algebraic structures induced on and JkE

over M.
For instance, let p : E -+ M be an affine (linear) bundle. Then -, is

de l’Institut Henri Poincaré-Section A



473DIFFERENTIAL PSEUDOCONNECTIONS AND FIELD THEORIES

an affine (linear) differential connection iff -1 is aftine (linear) over M.
Moreover 1 is affine (linear) iff

where
Let ak: M be the bundle constituted by the disjoint union

NE =E algebraic morphisms fx : -+ JxE such that
XEM

f’x == Then the bundle AkE is endowed with an algebraic
structure on its fibers. For instance, if E is an affine (linear) bundle, then AkE
is an affine bundle. In such a case we denote the naturally induced chart
of AkE ~,..~, . i ul...~k-~ ~ . .
One has a canonical morphism over AkE x 1 E --+ JkE.

Moreover ~ induces a natural bijection between the sections ~ : M --+ 

and the sections 1 : --+ JkE which are differential connections. We
will often identify these two objects writing also 1 : M --+ AkE.

Let r : JkE -~ V T* @ VE be a differential pseudoconnection and let
k

s : M --+ E be a section. Then the covariant derivative of order k of s is
the section M --+ V T* @ VE. If E is an affine bundle, whose

k

vector bundle is E, then we often replace I- : V T* (x) VE with the
k 

_

simpler map V : JkE --+ V T* @ E and write Vs = M --+ V T* @ E.
k k

Its expression is

The notion of differential pseudoconnection of order k is a generalization
of the usual notion of connection. In fact a usual connection on a bundle
p : E ~ M is a pseudoconnection 4 : p*T ~ TE on the affine bundle
TE -~ p*T, which is linear over E; it determines a splitting TE = VE Q p*T
of the vector bundle TE -~ E. Such a usual connection is algebraic (for
instance, affine, linear) if E is endowed with an algebraic structure on its
fibres and 1 : p*T -~ TE is a morphism over T -~ M with respect to the
algebraic structures induced naturally on p*T -~ T and on TE -~ M.
In particular we can view any principal bundle as an affine (in the sense
of groups) bundle p : E ~ M, whose associated group bundle is a trivial
bundle E = M x G, where G is a Lie group. Then a usual connection on
the principal bundle is an algebraic connection in the previous sense. Let us
remark that our approach does not need principal bundles. More generally,
we can express the link between the usual connections and the first order
differential pseudoconnections as follows. Let p : E -~ M be a bundle.

Vol. XXXIV, n° 4-1981.
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Let 1 : p*T -~ TE be a usual linear connection on E. Then there is a unique
differential pseudoconnection of order 1 "I : E -~ JE, which makes the
following diagram commutative

Moreover 1 is algebraic iff 1 is algebraic.

4. Linear differential connections of order one

We are looking for the jet expression of usual notions on linear diffe-
rential connections of order one, in order to state necessary notations
and to show, by the way, how the jet language works suitably. In this
section p : E ~ M is a vector bundle.

Let 1 : E -~ JE be a linear differential connection. Then there is a

unique linear differential connection 1*: E* -~ JE* which makes the
following diagram commutative

Its expression is = - -1 ~, J. Then one gets an affine isomorphism
AE -~ AE* and we will often write AE x E* -~ JE*.

Let p’ : E’ ~ M be a further vector bundle and let ") : E -+ JE and

-1’ : E’ -+ JE’ be linear differential connections. Then there is a unique
linear differential connection I (x) -1’ : E (x) E’ ~ J(E (x) E’) which makes
the following diagram commutative

Its expression is (r @ = +  Then one gets a morphism
AE x AE’ -+ A(E (x) E’) and we will often write

(and 0 analogously by replacing £ @ with V or 11 ).

Annales de l’Institut Henri Poincaré-Section A
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Let  : E --+ JE be a linear differential connection. Let us consider the
p

bundle A T* (x) E of p-forms valued on E. We define the affine subbundle
p p

Q = x n(E)) + T* V A T* @ E ý. J( A T* @ E), whose associa-
p

ted vector bundle is S2 = T* V A T* @ E. Then one can prove that
P P

J( A T* (x) E) is decomposable into the direct sum over 11 T* (x) E of the
p+l

affine subspace Q and the vector subspace A T* (x) E

Then the exterior derivative with respect to 1 is the affine morphism over
p p p+ 1

A T* O E -4&#x3E; M given by the projection d : J( A T* (x) E) -4&#x3E; A T* (x) E.
p p+l

Hence one gets a morphism over M d : AE x J( A T* Q E) -4&#x3E; A T* @ E.
Its expression is O Y‘ ° d = (g) + 0 y’. If

p

s : M -4&#x3E; section, then we write d s --_ d ° (~, js).
The morphism over M

is factorizable through a morphism over M linear on the second factor
2

cø : JAE x E --+ A T* (x) E. Taking into account the linearity of L we
2

write also ~ : JAE -&#x3E; A T* (x) E @ E*. The curvature of ~ : E --+ JE is
2

the section L o j : M --+ A T* (x) E (x) E*. Its expression

The previous definition of L is a version on jet spaces of the Cartan’s
formulas of structure.

5. Riemannian connections

The torsion morphism can be defined as the morphism given by the
2

composition AT x T* -~ JT* ~ A T*. Taking into account its
2

linearity on T*, we denote also it AT -+ A T* @ T. Its expression
is = 

The subbundle B 4. AT constituted by the torsion free connections is
an affine subbundle, whose associated vector bundle is B = V 2 T* (g) T.

2

Vol. XXXIV, n° 4-1981.
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Henceforth we will denote by I : L -~ M an open sub bundle of V T -~ M
2

constituted by nondegenerate tensors. For instance, L may be the bundle of
(contravariant) metrics with a given signature. L is locally a vector bundle
and one can extend many results stated for vector bundles to this case.
We denote the naturally induced chart of L and by lij :
the functions obtained taking the inverse matrix One has the natural
linear isomorphism over L

and

We assume the usual notations for lowering and raising indices.
Jet spaces provide a suitable definition of Riemannian connection. We

can prove that the morphism over L j~ : L x B --+ JL is an affine iso-
morphism and its inverse is the unique affine morphism over L

which makes the following diagram commutative

The expressions of A and B are lij03BB o A = l(ikajk03BB and

If g : M -+ L is a section, then B o jp : M -+ B is the Riemannian connec-
tion of g.

Let R be the affine morphism over JL -+ L given by the composition

Then we can prove that ~ : J2L --+ Q 4 L x A T* (g) T (x) T*, where Q
is the vector subbundle characterized by xijhk + xjikh = 0 and

The expression of the fibre derivative of R is

Annales de l’Institut Henri Poincaré-Section A
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If g : M -~ L is a section, then R =E M -~ Q is the Riemannian
connection of g.

Let ~ be the affine morphism over JL -~ M given by the composition
J2L ~ Q ~ V T, where c is the linear morphism which contracts

2

the first and third indices and then raises the two remaining covariant
indices, by means of the metric exhibited by L. If g : M -~ L is a section,
then R --_ ~ ~~j2g : M ~ V T is the Ricci tensor of g.

2

In the following it will be useful to factorize the Ricci tensor through
J2L. For this purpose, we denote by s : Q -~ L x V T* (x) V T the linear

2 2

morphism over L given by x~~ ~ s == and we denote by [/ the
affine morphism over JL -~ L given by the composition

Then one gets the following commutative diagram

where ~ , ~ is the contraction exhibited by L. We remark that !7 is not
a differential pseudoconnection as D!7 -# 1.

6. Riemannian differential operators

Let g : M -~ L be a given metric and let 0 I : J (8) T -~ T* x0 T be
r r r

the Riemannian connection. Then the affine morphism over 0 T -~ M
r

div = ( , ) o (8) I : J (8) T -~ 0 T is the divergence operator. If
r r r-1 1

s : M ~ 0 T is a section, then we write div o js : M ~ 0 T. By
. 

r r- 1

considering the metric as a variable, one obtains naturally a morphism
JL x J 0 T ~ ~ T. Analogous formulas hold for covariant tensors.

r r-1 1

Let p : E ~ M be a vector bundle. A first order linear differential
connection 1*: JT* -~ T* @ T* and a first order linear differential
connection H : JE ~ T* @ E induce a second order linear differential
connection H2 : V T* (x) E as follows. There is a unique morphism

2

over M, linear on J2E, ~2 : AT x JAE x J2E ~ V T* (x) E which makes
2

Vol. XXXIV, n° 4-1981.
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the following diagram commutative, for each section s : M ~ E,

Its expression is

In particular, if E == (8) T (x) T*, then one obtains a morphism
r s

We will denote by "12 the second order linear differential connection indu-
ced by a first order linear connection  : M ~ B.

REMARK. In the present work we are not concerned with the general
problem of existence of differential pseudoconnections, as we are mostly
interested in specific and physically relevant ones. However the previous
proposition gives a hint for solving this problem for linear differential
connections of order k on a vector bundle E over a paracompact manifold M.

Let g : M -~ L be a given metric and let R : M -~ Q be the Riemann
p P P

tensor and (A I *)2 : J2 11 T* ~ V T* 0 11 T* be the second order
2

Riemannian differential connection. Then the Laplace second order diffe-
rential pseudoconnection is

p p

where e : A T* --+ V T* (8) 11 T* is the linear morphism given by
2

Hence the Laplace operator is given by the composition

Annales de l’Insritut Henri Poincaré-Section A



479DIFFERENTIAL PSEUDOCONNECTIONS AND FIELD THEORIES

r

M ~ /B T* is a section, then we write

By considering the metric as a variable, one obtains naturally a morphism

7. Clifford connection

We are dealing now with a selfconsistent formulation of the spinorial
connection in terms of jet spaces, which does not involve principal bundles.

Let g : M ~ L be a given metric. Here T denotes the complexified
tangent space of M.

First we introduce the Clifford bundle and the Riemannian differential
connection on it by means of a universal property. The Clifford bundle
is a couple (y, C), where C ~ M is a bundle whose fibre is a complex algebra
with unity and where y : T ~ C is a linear morphism over M, such that
the following universal property holds : « If A -~ M is a bundle whose
fibre is a complex algebra with unity and if T -~ A is a linear morphism
over M such that = for each x E T, then there is a unique
algebraic morphism over M C -~ A which makes the following
diagram commutative

One can see by tensorial way that such bundle exists and one can deduce
the following consequences of the universal property :

a) C is defined up to a unique isomorphism;
b) C is a covariant functor;
c) y is injective and C is generated by y(T);
d) + = y);
2) ~ 1~ Yi, ..., yil".ip, . . ., Yl...m ~1il...ipm is a basis of C, where

Yi = and = Yil 1 ... y~;
J ) = (- + (- 
g) 

PROPOSITION. - There is a unique algebraic differential connection
C -~ JC which makes the following diagram commutative
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~’roof. 2014 We can show that the linear morphism ~p = Jy o I : T -~ JC
satisfies the requirement of the universal property, taking into account
the commutative diagram

Hence there is a unique algebraic morphism C~p = 1 c ~ C ~ JC which
makes the diagram ( + ) commutative and which is a section_. The expression
of -1c is given by == 

It is well known that if m = 2n, then C is locally simple. Moreover, if
the second Stiefel-Witney class is zero, then there is a vector bundle
s : S ~ M with dimension 2n, called the spinors bundle, and an algebraic
isomorphism over M C ~ End S. S and the previous isomorphism are
not canonically determined. Henceforth we assume a spinorial represen-
tation of C to exist, we choose one and make the identification C = End S.
Then we have a bilinear morphism over M C x S ~ S.

Let M be time oriented. Then we denote by a the unique (up to a complex
factor) bilinear antisymmetric nondegenerate form of S such that, Vu : M --~ T,
A : M -~ Spin, ~) x(~, ;’(u)~P) == - ~’(M)~,~), b) = p(A)(x(~,~);
~3 the unique (up to a positive factor) sesquilinear symmetric nondegenerate
form of S such that,’du : M ~ T, A : M ~ Spin, a) ~3(~, y{u)cp) _ - ~3(y(u)~, cp),
b) [3(AV1, = p(A)~3(~, c) ~ t-~ y{u)~) is positive definite for u
time oriented, where p(A) _ :t 1 is the time signature of A and A is the
Lorentz isomorphism associated with A. The assumed representation
C -~ End S induces a natural chart on S, which accounts y, a and j8 by
constant coefficients.

PROPOSITION. - There is a unique linear differential connection

S -~ JS such that 3) -Ic = ~s = 0.

Proof 2014 In a natural chart of S the two conditions read (by matricial
notation) a) = b) ris == - This system has the

unique solution - 1 4 In fact it is a solution and the kernel is

constituted by antisymmetric elements which commute with each yi, hence
it is zer(xThen one obtains = 0.

The Dirac operator is the morphism Dir = Fs : JS -~ S, where
G’ is a linear morphism over M given by the composition

The spinorial Laplace - operator (Lichnerowicz) is defined o on sections
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of S as minus the square of the Dirac operator. We can express it in terms

of jet spaces as follows Lls = g 0 ( 2 - ~ R J2S ~ S, where

Fs V T* (8) S is the second order spinorial connection,

R : M -~ V T* is the Ricci tensor and R (8) s°2 : J2S ~ V T* Q9 S.
2 2

8. Systems of differential equations on jet spaces

The following definition of system of differential equations (more briefly
« differential equation » ), both of ordinary or partial derivatives system,
is suitable for our purposes.

DEFINITION. Let p : E -~ M be a bundle. A differential equation, of
order k &#x3E;- 1, on E is a subbundle 8~ c.~ JkE over E. A (local) solution of 6~
is any (local) section s : M -~ E such that jks : M -~ If dim M = 1, then
one has an ordinary differential equation; if dim M &#x3E; 1, then one has a
partial differential equation. We can find a chart of JkE of the form

such that the local expression of the equation ~k is f 1 = ... = fr = 0.
Let h &#x3E; k; then the h-prolongation of the differential equation ~k is

Eh --_ n If ~h itself is a differential equation, then ~k and ~h have
the same (local) solutions.
The following definition of datum is suitable for our purposes. Let ~k

be a differential equation. Let i : M be a hypersurface. A datum of ~k
on E is a section (T : E -~ i*JkE which makes the following diagram com-
mutative

We say that a (local) solution s : M ~ E of Ek agrees with the datum 6
on 03A3 if = 6.

Moreover we say that ~k is a Cauchy differential equation if, for each
x E M, there exist data hypersurfaces L, passing through x, there exist
data on E and for each datum 6 there is locally a unique solution s agreeing
with cr. We could give a more general definition, but the previous one is
sufficient for our purposes.
An affine differential equation ~k is an affine subbundle of JkE over E.

Its expression is == c’ r, 
where the /’5 and the c’s are

IR.
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CHAPTER TWO

FIELD THEORIES

1. Field theories

First we consider a scheme which fits a very large class of field theories.

DEFINITION. 2014 A field theory Fk is constituted by a) a bundle p : E -4 M,
called the field bundle; b) a Cauchy differential equation (1,8) Ek, called
the field equation. A (local) fietd of Fk is a (local) solution (I, 8) of Ek. We
denote by I the family of data hypersurfaces of Ek.

DEFINITION. 2014 A gauged field theory is a field theory with moreover,

c) a differential equation with 1  ~  k, called the gauge equation,
such that 1) ~k is a differential equation (1,8); 2) VE E I, there exist data 6
of ~k which are also data of 3) the local solution of ~k related to 6 is
also a local solution of A gauge is a datum a as above. A (local) gauged
field is a (local) field related to a gauge_

DEFINITION. Let be a gauged field theory. A dynamical equa-
tion is a differential equation EØB such that Ek n ~k = ~k n ~k = ~k 
Of course, any gauged field is a solution of ~.
Let ~ k be a gauged field theory and ~’k be a field theory, such that

1 ) (E, p, M) = (E’, p’, M’); 2) ~ c Ek; 3) I = I’. Then we say that ~ k and
are equivalent if each gauged field of ~’‘ is also a field of 

In particular, let ~h) be a gauged field theory. Then it is equivalent
to the field theory ~ characterized by the field equation ~ == E’‘ n ~k.

Moreover, if Fk has a dynamical equation then ~’k = Dk n Jk,
We can state a general meaning for some usual physical concepts.

DEFINITION. 2014 We say that a field theory is a subtheory of a field

theory ~ if 1 ) there is a monomorphism c : E’ 4 E over M = M’, called

the constraint ; 2) Jkc : ~’k  Ek; 3) I = I’ We can prove that a) if 03C3’ : 03A3 -4 E’

is a datum of E’k, then E is a datum of £k; b) if s : M -~ E
is the (local) field of ~k related to 6, then s is also the (local) field related

to 7’.

DEFINITION. Let ~ k be a field theory. We say that ~ is an interaction

theory if E is the product E = E1 x ... x Er over M induced by the

epimorphisms 7r, : E ~ Ei:. Then each field s : M -4 E is uniquely decom-

posed as s = (Sb ..., sr), where si = ~ci o s : M -~ Ei. However the theory
itself can either be decomposed into a system of r independent theories
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or not. We say that the interaction vanishes if E 1 x ... x Er and Ek
are Cauchy equations with I1 - ... = Ir = I. In the other case we say that
the interaction is ef, f ’ective. In the case when the bundles Ei exhibit canonical
differential equations ~k, we obtain naturally a free theory, with vanishing
interaction, related to ~ k and characterized by the field equation

If it does not occur, then we need inclusions Ei  E, such that ~I o pi 
(besides the given projections E -~ EJ in order to obtain a free theory,
with vanishing interaction, related to In fact, we can set

and the differential equation

works out.
Thus we see that interaction problems in field theory are related to

arrows and directions of arrows.
The previous statements concerning interactions can be easily extended

to gauged field theories.

2. Special field theories

We now are going to consider a special type of field theories, which
seems to arise naturally in the context of jet spaces.

DEFINITION. 2014 A special field theory is a field theory F2, whose field
equation is the affine equation (I, 8) B2 == ker where c~) H : J2E -~ J2E
is a second order differential pseudoconnection (I, 3); b) G : J2E -+ VE is
a surjective submersion over JE -+ E. which is decomposable as

G = G (g) idVE, where nondegenerate linear
2

morphism over JE -+ E. Hence a field of the special theory ~ 2 is a section
s : M -~ E, which makes the following diagram commutative

The local expression of such an equation is given by the system of t quasi-
linear partial differential equations of second order

where JE -+ IR, det 0, H~u : IE -+ IR.
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In the particular case when p : E ~ M is a vector bundle, we use the
simpler notation G : J2E --~ E (I, 3).

Let us remark that, given E2, H is determined up to a map H H + K,
where K : JE -&#x3E; V T* (8) VE is such that G c K = 0.

2

We can review the statements of the previous section in the particular
framework of special field theories.

Let ~ 2 and ~’2 be two special field theories such that

a) there is a monomorphism c : E~ c~ E over M = M’ ;
b) H c J2c : J2E’ ~ J2E’ 4 J2E and H’ = H 0 J2c;
c) G c DJ2c : J2E’ -~ VE and G’ = G c DJ2c;
d) I=I’. 

’

Then ~’2 is a subtheory In fact the following diagram is commu-
tative

If ~ 2 is an interaction special field theory such that

a) H and G are factorizable as follows

b) Sf = ker (GI o Hi) are Cauchy equations,
then the interaction vanishes.

Let ff2 be an interaction special field theory. Moreover, let pi : E

be monomorphisms over M such that 03C0i o 03C1i = Then we obtain an
interaction vanishing special field theory by the setting

We can also define the interaction term x ... x Hr) : JE  n.
We get similar results in the case when the bundles EI exhibit canonical

differential pseudoconnections Hi : J2Ei  J2Ei.
Now we want to show that several fundamental physical fields can be

suitably described in the framework of special field theories.

3. Classical n-body dynamics

A first example of special field theory is supplied by the classical n-body
dynamics. We can put any kind of force in the special scheme naturally,

Annales de l’Institut Henrl Poincaré-Section A



485DIFFERENTIAL PSEUDOCONNECTIONS AND FIELD THEORIES

even if it does not lead to a Lagrangian. In this context we can expound
the concepts of interaction, vanishing interaction, free theory, interaction
term and constraint.
The basic physical assumptions are the following :
a) M is a one dimensional affine oriented space, with an Euclidean

metric G(absolute time with a unity of measure); b) E is an affine four dimen-
sional space (event space); c) p : E --+- M is an affine surjective map (time

function) d) g is an Euclidean metric on E (space-like metric); e)

(ml, ..., mn) E  +n (n-mass) ;

F : JE ~ E* is a morphism (for E see later on) (covariant force).
Moreover we set :

1) E = E x ... x E is the n-fibred product over M (n-event space);
2) p : E ~ M is the induced surjective map (n-time function);
3) r x ... x --+- J2E are the affine

differential connections induced by the affine structures of the spaces E
and E (inertial connection);

4) g = (mlg, ...,~~) is the product Euclidean metric on E;
5) F=goF:JE --+- E (contravariant force).

Then we obtain a special field theory in the following way. The field
bundle is p : E --+- M. The force modifies the inertial connection r giving
the differential pseudoconnection H = I- - «] Q9 F) o p12. Then the field
equation E2 is the kernel of the affine morphism given by the composition

where G is the contraction induced by G. The solutions of E2 are the sec-
tions (motions) s : M -~ E such that G 0 = i. e. locally (in
a chart such that G = 1)

Let us remark that 2 i0k o s Dsk and 0 s represent the Coriolis and
the dragging forces with respect to the frame of reference associated with
the chosen chart.

In this example the inertial connection provides a canonical free theory
and the force appears as the. interaction term with respect to it. Moreover,
in the particular case when F = (F 1 x ... x F n) with Fi factorizable

through JEi  Eb the theory ~ 2 itself is vanishing interaction.
Finally we add the following physical assumptions in order to get the

constrained dynamics : 6) c : E’ c~ E is a sub bundle (constraint) ;
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7) (id V T* (x) p|)o H o J2c = 0 (reaction assumption), where p.l : c*E ~
is the orthogonal projection induced by g.
Then we obtain a constrained special field theory. The field bundle

is p’ : E’ ~ M. The differential pseudoconnection is

is the parallel projection induced by g. The field equation is the kernel of
the affine morphism given by the composition J2E’ ~ V T* (8) E’ ~ E’.

2

4. General relativistic one-body dynamics

An example of special gauged field theory is supplied by the general
relativistic one-body dynamics. In such case, the gauge, which is introduced
in order to remove a physical indeterminacy, does not modify the original
special character of the theory.
The basic physical assumptions are the following :

a) M is a one dimensional affine oriented space, with an Euclidean
metric G (proper time with a unity of measure); b) U is a four dimensional
time-orientable manifold, with a Lorentz metric g : U -+ V TU (space-

. 2

time); (rest mass); F : JE -+ T*U is a morphism such that

( F(u), M ) = 0, Vu E JE (for E see later on) (covariant force).
Moreover we set :

2

connection naturally induced by the Riemannian connection (inertial

connection); 3 == 1 ~ ~ 4) F = g o F : JE --~ TU (contravariant force).
m

Then we obtain a gauged special field theory in the following way. The
field bundle is p : E ~ M. The force modifies the inertial connection r

giving the differential pseudoconnection H= Then

the field equation E2 is the kernel of the affine morphism given by the

composition J2E H V T* (x) TU, where G is the contraction

induced by G. The solutions of E2 are the sections (motions) s : M ~ E
such that = i. e. locally (in a chart such that G = 1)
D2si + = 0. The gauge equation is the first order
differential equation rgl c JE, which is the kernel over E of the morphism
g + m : JE ~ !R. The solutions of J1 are the sections such that
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i. e. locally gi~ o s m. The requirement on the gauge is satisfied
because of the properties of the Riemannian connection and of the force.
Let us remark that the equation E2 ~ J2 is almost a special equation induced
by a pseudoconnection, but not properly by a differential pseudoconnection.

5. General relativistic Klein-Gordon field

The Klein-Gordon equation provides a very simple example of special
field theory, without any problems.
The basic physical assumptions are the following :

a) M is a four dimensional manifold, with a Lorentz metric g : M ~ V T .

(space-time); b)m E ~ + (mass). 2

Moreover we set :

Laplace second order differential connection (1,6).
Then we obtain a special field theory in the following way. The field

bundle is p : E -+ M. The mass modifies the Laplace connection I.

giving the differential pseudoconnection H = I z - Then the

field equation (Klein-Gordon) ~2 is the kernel of the affine morphism given
by the composition J2E H V T* G M x fR, where G is the contrac-

2

tion induced by g. The solutions of 82 are the sections s : M -+ E such
that ðs - m2s = 0, i. e. locally

6. The general relativistic Maxwell field

The Maxwell field provides an example of gauged special field theory
with a dynamical equation. The gauge condition, which is introduced in
order to remove a physical indeterminacy, is the best candidate to make
the original affine but not special equation into a special one.
The basic physical assumption is the following :

a) M is a four dimensional manifold, with a Lorentz metric g : M -&#x3E; V T
(space-time). 2

Moreover we set :

1) E = T* and p : T* ~ M; 2) r* : JE --&#x3E; T* (x) E is the Riemannian
2

connection; 3) d : JE -&#x3E; 11 E is the exterior derivative (I, 2).
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Then we obtain a special gauged field theory, with a dynamical equation,
in the following way. The field bundle is p : E -~ M. The dynamical
equation is the second order affine differential equation (Maxwell) ~2 c J2E,
which is the kernel over JE -+ M of the affine morphism given by the

composition (1, 4) J2E Jd J2E &#x26;:..; -4 E. The solutions of D2
are the sections A : M -+ E such that MA = 0, i. e. locally

2

Let us remark that A I" * 0 Jd is not a pseudoconnection, as its derivative
is not 1. The field equation is the second order affine differential equation
(Laplace) ~2 c J2E, which is the kernel over JE -4 M of the affine mor-

phism given by the composition J2E ~ V T* Q E -~ E, where
2

H == ~ ~ is the Laplace differential connection (I, 6) and G is the contrac-
tion induced by g. The solutions of ~2 are the sections such that

The gauge equation is the first order affine differential equation (Lorentz)
éð1 1 c JE, which is the kernel over E --+ M of the affine morphism given by
the composition JE ~ T* (x) E 2014~ M x !R. The solutions of G1 are
the sections such that bA = 0, i. e. locally = O. The

requirement on the gauge can be deduced from classical results (Lichne-
rowicz).

7. The general relativistic Dirac field

The Dirac field provides an example of gauge special field theory. To
tell the truth, the Dirac equation itself could be considered as a first order
almost special equation (it comes from a first order differential connection
and a not decomposable contraction). However we can obtain a proper
second order equation (for instance, it is suitable for a symmetric treat-
ment of the Maxwell-Dirac interaction) : in such case the Dirac equation
plays the role of a gauge equation.
The basic physical assumptions are the following :

a) M is a four dimensional time oriented manifold, with a Lorentz metric :

g : M --+ V T, admitting a global spinor structure (space-time); b) mE [R+
2

(electron mass).
Moreover we set :

1 ) C ~ M is the Clifford bundle and y : T --+ C is the canonical mono-

morphism (T is the complexified tangent space) (I, 7); 2) E = Sand p : S -+ M
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is the spinor bundle (1,7); 3) a linear representation C ~ End S is given;
4) Fs JE  T* Q9 E is the spinor differential connection (I, 7);
5) r~ J2E ~ V T* Q9 E is the second order differential connection

2

induced by the Riemannian connection and by s (I, 6).
Then we obtain a gauged special field theory in the following way. The

field bundle is p : E -~ M. The mass and the Ricci tensor modify the
connection f s giving the differential connection

Then the field equation (Lichnerowicz) ~2 is the kernel of the affine mor-
phism over JE --~ M given by the composition J2E ~ V T* Q E ~ E,

2

where G is the contraction induced by g. The solutions of ~2 are the sec-
tions 03C8 : M ~ E such that + m203C8 = 0, i. e. locally

where r is the scalar curvature. The gauge equation is the first order affine
differential equation (Dirac) cgl c JE, which is the kernel over E -+ M of
the affine morphism given by the composition JE ~ T* (x) E ~ E,

where H’ is the differential connection H’ - Fs + and G’ is the

contraction defined in (I, 7). The solutions of J1 are the sections such that
(I, 7) Dir j03C8 + = 0, i. e. locally

Let us remark that the above decomposition of cgl is allowed just by the
anticommutation rules of y (I, 7).

8. The general relativistic Maxwell-Dirac field

The Maxwell-Dirac field provides an example of interaction gauged
special theory, without problems. In fact it sufficies just to take E = T* x S
as the product bundle. Moreover we can write the usual interaction terms
in such a way to obtain a modification term of the free product differential
connection H = J2£ ~ V T* @ E. Analogous results hold

2

for the gauge connection. The contractions remain unchanged. We leave
the computations to the reader.
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9i. The Einstein field

The Einstein field provides an example similar to the Maxwell case.
The main new aspect is that now we have not a canonical differential
pseudoconnection and we need an arbitrary choice.
The basic physical assumptions are the following :
a) M is a four dimensional manifold (space-time); b) F : JL --+ V T is

2
a given section (energy stress tensor); c) ~ : M --+ B is a given connection,
arbitrarily chosen (gauge connection) (I, 4).
Moreover we set :

1 ) E = T is the bundle of the Lorentz metrics and p : L --+ M ;
2

2) JiL --+ V T* is the covariant expression of the projection L;
- 

2

3) f’2 : the second order connection indu-
ced by r. 2 2

Then we obtain a special gauged field theory, with a dynamical equation,
in the following way. The field bundle is p : E --+ M. The dynamical equa-
tion is the second order affine differential equation (Einstein) ~2 c J2E,
which is the Kernel over JE --+ M of the affine morphism given by the
composition (I, 5) J2E JS L x V T* (8) V T ~ V T, where H" is the

2 2 2

affine morphism H" - ~ - 1 2 p 0 2 O x ~ ,pi2 _ 1 p 0 2 tr ~ 0 and G is

the contraction exhibited by L. Let us remark that H" is not a pseudo-
connection, as its derivative is not 1. The solutions of are the sections

g : M --+ E such that (I, 5) o j2g = L o jg- 1 2g tr L jg, i. e. locally

where we have omitted the terms on and ghk. The field equation is the
second order affine differential equation 82 c J2E, which is the kernel
over JE ~ M of the affine morphism given by the composition

where H is the differential pseudoconnection
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The solutions of E2 are the sections such that (I, 6)

i. e. locally

The gauge equation is the first order affine differential equation rgl c JE,
which is the kernel over E -+ M of the affine morphism given by the

composition JE H’ L x 1/ T* Q T G’ T, where H’ is the affine mor-
2 ,.

phism (I, 5) JE ~ L x B ~ L x V T* (8) T. The solutions of rgl
2

are the sections such that  g, R o jg - &#x3E; = 0, i. e. locally

The present approach is an intrinsical version of classical formulations

(Lichnerowicz) and the requirement on the gauge can be deduced in an
analogous way.

10 The Maxwell-Einstein field

The Maxwell-Einstein field provides an example of interaction gauged
special theory. In this case we have a main problem : to remove the second
order derivatives of the unknown metric in the electromagnetic Laplacian.
We can achieve the purpose taking, as the electromagnetic field equation,
the special equation given by

where ~ is the Maxwell stress tensor. We leave the not immediate calcula-
tions to the reader.
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