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The geometrical and gauge structure
of a generalized theory of gravitation

J. W. MOFFAT (*) (**)
Department of Mathematical Physics,

University of Dijon, 21000 Dijon (France)

Ann. Inst. Henri Poincaré,

Vol. XXXIV, n° 1, 1981,

Section A :

Physique théorique.

ABSTRACT. A generalized theory of gravitation is constructed in a

superspace base manifold of eight dimensions with an octad of gauge fields
and a superspace fiber bundle connection. The gauge structure is a non-

compact unitary group U(fj) =3 SU(3) @ SU(2) @ U(l) which can be used
as a unification scheme. Field equations with uniquely determined sources
are derived from an action principle.

I INTRODUCTION

A new theory of gravity has been formulated on the basis of a non-sym-
metric Hermitian [1 ]- [3 ]. As this theory has certain interesting conse-
quences such as geodesically complete spherically symmetric solutions [1 ]-
[ 4] and cosmological solutions [5 ], it is of interest to investigate whether
there exists an extended theory in a higher dimensional space that contains
a large enough fiber bundle connection to unify all the gauge fields of nature.
We recall that the n-dimensional real manifolds correspond to the

holonomy group Any oriented Riemann manifold, described by
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a chart of real coordinates ..., xn) belongs to this class. The scalar
product in its tangent bundle Tx(M) is real Euclidean and the elements of
the holonomy group are described by the rotations of the orthonormal
basis in Tx(M). In 2n-dimensional complex manifolds, the holonomy group
is U(n). These manifolds can be covered by the holomorphic charts of
complex-analytic coordinates (z 1, ..., zn); the scalar product in the tangent
bundle describes the elements of U(n). These structures correspond
to complex Riemannian manifolds. An example is the complex Kahler
manifold. In the following we shall concern ourselves with a 2n-dimensional
real manifold with the holonomy group U(n). The metric of the manifold
is Hermitian and the space has a non-vanishing torsion.

II GAUGE THEORY CONCEPT
AND GENERAL RELATIVITY

Let us begin by reviewing the concepts of gauge invariance and diffe-
rential geometry in general relativity [6 ].
The gauge fields are characterized by the existence of tetrad or bein

fields. They appear as coefficients in the definition of a Lie valued operator,
which may be referred to as the fully covariant derivative. In general rela-
tivity the real tetrad fields e~(x) are simultaneously a representation of
SO(3,1 ) and GL(4, R). Here the undotted suffixes denote the coordinates
of the tangent space, while the dotted suffixes denote the coordinates of the
real four-dimensional manifold. The tetrad transforms as SO(3,1) on the
undotted suffix and as GL(4, R) on the dotted suffix.
When we define the fully covariant derivative, we need a set of gauge

fields for both groups. The real manifold M is assumed to be The

principal bundle of linear coframes of M is defined by [7] ]

The equivalence classes of Lorentz related linear coframes form a fiber
bundle associated with the principal bundle (2.1), namely

where S0(3,1)/GL(4) is the space of cosets with respect to the left action
of SO(3, 1) on GL(4).
A differentiable cross section

defines a Lorentz G-structure on M. For each p E M a cross section deter-
mines an equivalence class of Lorentz related linear coframes

where
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The cross section (2.3) is then represented locally by differentiable func-
tions e03B1  and the metric g( p) is determined by

where is the Minkowski metric.
. 

The functions cy define the tetrad fields and they must satisfy

where and are the tetrad connection and the torsion-free connec-
tion on the principal bundle of linear coframes (2 .1 ), respectively. We can
express r in terms of e and 

If we perform the transformation

then the metric (2.6) will remain invariant if U is an element of SO(3, 1).
Requiring that r also be invariant under this transformation, leads to the
equation

which is the familiar transformation law of a vector gauge field.
Since the transform like the generators of S0(3,1), it follows that

and the gauge field r acts as the connection coefficient for the metric in
the sense of differential geometry. In terms of the relation = /~c) we
have that under the transformations

the connection satisfies the transformation law

Vol. XXXIV, n° 1-1981.
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In general relativity the connection r is symmetric. If on the other hand
a skew symmetric part

is defined, then it satisfies the transformation law of a tensor

Let us define the partially covariant operator by the equation

Then

and be expressed in terms of D and e :

A calculation shows that

where

Under the transformations ( 2 .12 ), it can be shown that (R~ is a

tensor.

We can now form the scalar curvature

and use this to form the Einstein Lagrangian

where e = det 
In the above, we have seen how a few simple ideas which are derived

from gauge theories and differential geometry lead directly to general
relativity.

III. SUPERSPACE THEORY OF GRAVITATION

Let us introduce the superspace [8 coordinates

Annales de l’Institut Henri Poincaré-Section a



89GAUGE STRUCTURE OF A GENERALIZED THEORY OF GRAVITATION

The coordinates XM define an eight-dimensional real differentiable manifold
which is assumed to be The principal bundle of complex linear coframes
of this manifold is defined to be

and the linear coframes define an equivalence class with the structure

where U(fJ)/GL(8, C) is the space of cosets and U(i,j) is a (local) noncompact
unitary gauge group of transformations. Specific values of i and j are
determined by the signature of the superspace. Two possibilities are U(7, 1 )
and U(6,2). Of course everything that is derived in the following holds
for M = 1, ..., 4 with the tangent space gauge group U(3, 1) corresponding
to complex Lorentz transformations.
The equivalence class of U(i,j) related linear coframes is now

where

and eKM is a complex octad of gauge fields. The superspace consists of a mani-
fold M with basis vectors satisfying

and a manifold N with basis vectors Çm that obey

Then we can define the one forms

A coordinate transformation can be defined in superspace in terms of the

relationship XM - FM(Z), where ZN denotes another set of superspace
coordinates. Then we have

and

Moreover, we define so that

which leads to the equation

Vol. XXXIV, n° 1-1981.
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The superspace metric is determined by

where is the flat superspace metric

We assume that = O. Thus the supermanifold consists of the base
manifold M (labelled by lower case Greek letters) and the manifold N
(labelled by lower case Latin letters) and the signature of is the Lorentz

signature - 2. There are two metrics g~v and gmn that can be defined in
a basis invariant way : 

’

and

Under a superspace coordinate transformation, the metric gKL satisfies

We require that the octads satisfy the equation

This equation can be solved for r in terms of e and 

where

A group of isometries is defined by the transformation

Here U will be an element of U(i,j) which contains 0(3,1) as a subgroup.
Moreover, r will remain invariant under this set of transformations pro-
vided

By differentiating the supermetric, we find the equation

To arrive at this result, we have required that a) satisfies the condition

Let us now consider the transformation properties of the r’s under

Anuales de l’Institut Henri Poincare-Section A



91GAUGE STRUCTURE OF A GENERALIZED THEORY OF GRAVITATION

general coordinate - transformations in superspace. Using (3.10) in (3.20)
we find o 

.....

The rKLM can be separated into symmetric and skew parts where 
transforms as a tensor

We shall now use the partially covariant derivative operator D to define
a curvature tensor

where

In terms of the transformation (3 . 22) with

and

we have the result

The quantity RKLMN is given by

and is invariant under local isometries in the tangent superspace. Under
the transformations

we can show that the superspace curvature tensor transforms as

which proves that it is a true tensor in superspace. It satisfies the condition

Vol. XXXIV, n° 1-1981.
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Moreover, we have that

If we demand that

then we can define the relationship

in a covariant fashion. We shall also introduce the inverse octad fields

by the equations . D D

IV . THE SUPERSPACE FIELD EQUATIONS

A contracted superspace curvature tensor can be formed

and it can be verified to be a second rank tensor under superspace trans-

formations.
We can also form the superspace scalar curvature

As the Lagrangian of our theory we choose

where e = det (e~~. The variational principle is

The field equations of superspace are obtained by varying ~ with respect
to co and e. They are

and

We have supressed the tangent superspace indices for convenience. We
shall now change equation (3.19) to the form

Annales de l’Institut Henri Poincare-Section A
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where WKLM is connected to 0393KLM by a projective transformation

Here V is an arbitrary vector field. We also require that r satisfies

Then gML obeys the compatibility equation

because of (4.5), (4.7) and (4.8). By using (3.28), (4.7) and (4.8), we get

where expressed in terms of (3.36). Eq. (4.6) is now
equivalent to

In the physical base manifold M the field equations are

where K is a constant and

Moreover, T~ is a uniquely determined tensor source :

In addition we also have the field equation that is a consequence of (4 . 9)
and (4 .10) :

In the M manifold sector we get

where is a conserved four vector current density determined by

Eqs. (4 .13) and (4.17) comprise an extended version of the field equations
of the non symmetric Hermitian theory of gravity [7]-[~] ] with the
sources fixed by the new gauge fields. There are also additional gauge
field equations in the yn and mn components of (4.12) that play the role
of constraints. Further work must be done to analyse the particle spectrum
and also determine the specific structure of the sources (4.15) and (4.17).
Vol. XXXIV, n° 1-1981.
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The present superspace formulation of the theory could form the basis
for a grand unified gauge theory, because the gauge group of the fiber
bundle could be chosen to be U(7,1 ) ~ SU(3), @ SU(2) @ U(l).
Thus the group is large enough to encompass the minimal particle struc-

ture for such a theory, including gravitation. Standard supergravity and
supersymmetry theories [9] have as their largest gauge group SO(8) which
does not contain SU(3), (x) SU(2) 0 U(l). The present work can be extended
to a super symmetric framework by defining the N manifold in terms of
four fermi coordinates [8 ]. We have formulated the theory in a 4 + n-
dimensional space-time, and it is necessary to compactify the spacelike
n-dimensional domain [10 ].
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