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Main field and convex covariant density
for quasi-linear hyperbolic systems

Relativistic Fluid Dynamics

Tommaso RUGGERI Alberto STRUMIA (*)
Istituto di Matematica Applicata, Università di Bologna.

Via Vallescura 2. I - 40136 Bologna, Italy

Ann. Inst. Henri Poincaré,

Vol. XXXIV, n° 1, 198I,

Section A :

Physique theorique.

SUMMARY. - A quasi-linear hyperbolic system of the first order, in
conservative form, is considered and a supplementary conservation law
is supposed to exist, as a consequence of the field equations. Starting
from a paper of K. O. Friedrichs [1 ], the definition of convex covariant
density is introduced and it is proven through an explicitely covariant
formalism that : a) a « main field » U’ exists depending only on the field
equations and the supplementary conservation law, but invariant through
field variable mapping; b) the system assumes a symmetric conservative
form if U’ is chosen as field variable and the symmetric system is
« generated » by the knowledge of only one four-vector; c) it is possible
to define a covariant scalar function on a shock manifold which provides
« entropy growth » (in the sense of P. D. Lax); d) the previous function
« generates » the shock and the shock manifold are not space-like if the
characteristic ones are not space-like. Finally the system of relativistic
fluid dynamics is shown to possess a convex covariant density and conse-
quences of the results a)-d) are discussed in detail.

1 GENERAL REMARKS

Let V4 be a 4-dimensional manifold and x a point (a = 0, i ;
i = 1, 2, 3) being local coordinates of x. The manifold is supposed to be

(*) Lavoro eseguito durante il godimento di una borsa di studio C. N. R. nell’ambito
del G. N. F. M.
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66 T. RUGGERI AND A. STRUMIA

endowed with a pseudo-Riemannian metric. In the local coordinates 
represent the components of the metric tensor of signature (+-2014-).
On V4 we consider a quasi-linear system of N first order partial diffe-

rential equations for the unknown N-vector E ~N :

the components of U are contravariant tensors and Ua = axU is a vector
the components of which are the covariant derivatives of the components
of U, A" are N x N matrices.

DEFINITION I. The system ( 1.1 ) is said to be hyperbolic if a time-
like covector { Çci } exists such that the following two statements hold :

ii) for any covector { ~x ~ of space type, the following eigenvalue problem:

has only real proper values  and N linearly independent eigenvectors d,
i. e. forming a basis of 
The covectors {03BE03B1 - 03BE03B1} built with any proper value ,u are called

« characteristic », while fulfilling i), ii) are said « subcharacte-
ristic ».

DEFINITION II. 2014 An hyperbolic system is said to be strictly hyperbolic
if the roots  are all distinct.

DEFINITION III. 2014 An hyperbolic system is said to be conservative if

i. e. it exhibits the form :

DEFINITION IV. A system of the type ( 1.1 ) is said to be symmetric
hyperbolic if :

b) a covector { 03BE03B1} exists such that the matrix is positive definite
BiU E!:Ø, !:Ø being a convex open subset of [RN.
Any symmetric system, the initial data of which, belonging to a manifold

having 03BE03B1 as normal, are of class with s ~ 4, has unique solu-
tion E in the neighbourhood of the initial manifold, even if the

system is not stricly hyperbolic [7] ] [2 ].

l’Institut Henri Poincaré-Section A



67MAIN FIELD AND CONVEX COVARIANT DENSITY

2. SUPPLEMENTARY CONSERVATION LAW

Let us take an hyperbolic system in the conservative form ( 1. 5) and
let us suppose, as it usually happens for physical systems that, when differen-
tiability conditions hold, a supplementary conservation law exists, as a
consequence of the field equations :

being a contravariant vector and g a covariant scalar.
Hyperbolic systems possessing even more than one supplementary

conservation law have been studied by K. O. Friedrichs in [1 ], where
the existence of a symmetric hyperbolic form for the system ( 1. 5) is proven
if some compatibility condition holds and a suitable quadratic form is

positive.
Here we examine the case of only one supplementary law and starting

from Friedrichs conditions suitably written, and the results of refs. [3]- [6 ],
we introduce the definition of convex covariant density and show in a
covariant formulation the following results :

1 ) A « main field » U’ exists so that such systems exhibit symmetric
conservative form; 2) it is possible to find a scalar covariant function ~,
defined on a shock manifold, providing the « entropy growth » condition ;
3) the knowledge of the function 1] is enough to determine the shock;
4) the shock manifolds are never space-like, consequently the shock speed
never exceeds the velocity of light in vacuo; 5) the relativistic fluid dynamics
system has a convex covariant density. Properties 1)-4) are analyzed for
the fluid.

3. FRIEDRICHS CONDITIONS

In [1] ] K. O. Friedrichs analyzes a conservative system of the type :

being a r-component column vector depending on the field 
(N  r) which is a function of the coordinates x°‘.
To the system (3.1) belong N independent equations and r - N supple-

mentary conservation laws. Therefore compatibility conditions are required.
In particular if r = N + 1, compatibility is ensured by the existence of
an r-vector y(U) such that :

Vol. XXXIV, n° 1-1981.



68 T. RUGGERI AND A. STRUMIA

On introducing the operator V = we have :

Equations (3 . 2) and (3 . 3) are the condition I given in [1].
In [7] a further condition is requested: a time-like covector { Çcx } inde-

pendent on the field U exists such that the quadratic form:

is positive c5U being an arbitrary non vanishing variation of the
field U and

Furthermore Friedrichs shows that condition (3.4) is invariant under U
field mapping.

4. CONVEX COVARIANT DENSITY SYSTEMS

When we have only one supplementary conservation law (r = N + 1 ),
N equations in (3.1) identify with (1. 5), while the remaining one is eq. (2.1).
We have :

Since from (3 . 2), (3 . 3) y is defined except for an arbitrary scalar factor,
we may write :

Then Friedrichs conditions I and II look like :

We observe that eq. (4 . 3) can be written equivalently :

which shows the invariance of U’ through U field mapping, U’ depending
only on F" and h°‘.
On applying the operator 5 to (4.6)

Annales de Henri Poincaré-Section A



69MAIN FIELD AND CONVEX COVARIANT DENSITY

and then (4.5) is equivalent to say :

The choice of U is free, then we may choose :

We put also :

From (4.8) we have soon

where I is the unit matrix. Taking account of (4 . 3) or (4 . 6) we gain :

and condition (4.7) for our field becomes :

which is equivalent to the convexity of h(U).
In order to have a compact formulation for the case of one supplementary

conservation law, with the field choice (4.8), we state the following

DEFINITION OF CONVEX COVARIANT DENSITY SYSTEM. - We say that a

conservative hyperbolic system (1.5), endowed with a supplementary
conservation law (2.1), is a convex covariant density system if’ the fol-
lowing conditions hold:

C. A a cotumn N-vector U’ exists such that:

(C . B) a time-tike covector {03BE03B1} independent of U exists and if the

fietd U = is chosen, the covariant density h = is a convex function
of U in a convex domain D ~ [RN : 03B42h &#x3E; 0.

5. MAIN FIELD AND SYMMETRIC FORM
OF A CONVEX COVARIANT DENSITY SYSTEM

Let us begin the section recalling an important theorem that will be
employed several times in the following.

Gtobat invertibitity Theorem (see [7]).
« Let ,f’ a continuousty differentiable mapping of a convex domain D

in into ~N. If the symmetric part of the Jacobian matrix of f is definite
(positive or negative), then f is gtobalty univatent in D, i. e.:

As a consequence of this theorem we have

Vol. XXXIV, n° 1-1981.



70 T. RUGGERI AND A. STRUMIA

LEMMA. « For a convex covariant density system the mapping U’(U)
is globally invertible ».

In fact on choosing U according to (4.8) it follows from (4.11) that the
Jacobian matrix VU’ identifies with the Hessian matrix of h(U) which is
symmetric and results positive definite thanks to the supposed convexity
of h.
Then it is possible to take U’ as a field vector and show the:

STATEMENT I. « A convex covariant density system is a conservative

symmetric system in the field U’ ».

Proof Let

on taking the gradient respect to U’, we have through (C. A) :

Introducing (5 . 2) into ( 1. 5) we reach :

where :

are symmetric matrices.
Moreover from (5.1) and (4 . 9) we have :

h’(U’) is the Legendre conjugate function of h(U) and then a convex func-
tion of U’. It follows from (5 . 4) that the matrix :

is positive definite. Then, conditions a) and b) of def. IV being fulfiled, it
follows that the system (5.3) is a symmetric hyperbolic conservative
system in the field U’.
The previous proof repeats through an explicitely covariant formalism

the one performed in [5] ] and differs from that proposed by Friedrichs
in [1 ]. (In [1] the existence of a symmetric form is proven, while here it is
shown that the matrices are Hessian matrices of the known quantities 
the field U’ for which the system is symmetric is found and the conser-
vative form is preserved through the mapping U ~ U’).
We have seen that any convex covariant density system is endowed

with a vector U’ that may be expressed as a function of the field variables U,
but is not affected by transformation of U, being determined completely
only by the conservative system (1. 5) and the supplementary law. Moreover
we pointed out that when U’ is chosen as field the system assumes a

symmetric form, with the consequence that the local Cauchy problem is

Annales de l’Institut Henri Poincaré-Section A



71MAIN FIELD AND CONVEX COVARIANT DENSITY

well posed. Such remarkable properties suggest us to call U’ the « macin
of the system.

The possibility of finding special field variables in order to symmetriza-
tion of the field equations had been observed for the first time by G. Godu-
nov [8 ] for special physical systems. Later G. Boillat [9 ], employing a
non covariant formalism, introduced U’ as with U = F° pointing
out the symmetrization of the field equations [5 ] ; but this way prevents
to observe the important privilege of the independence of U’ on the choice
of particular U.
Moreover it is remarkable that the field U = that we have introduced

in the definition of convex covariant density systems and shall employ
later to symplify calculations, is the conjugate field of U’ in the Legendre
transformation (5.5):

The symmetrized field system :

is characterized by a differential operator that is known when the four-
vector is assigned. Therefore we shall call h’a(U’) the « four-vector
generating f ’unction » of the symmetric system.

In conclusion the« mainfield » U’ the components of which are privilegiate
variables and the « 4-vector generating function » that generates the
differntial field equations, are enough to characterize the physical systems
possessing a covariant convex density.
We observe that not only on the mathematical stand-point U’ and ~

possess a special privilege respect to other quantities, but also physically
they play an important role as we shall see later dealing with relativistic
fluid, since they are related to the observables of the physical systems.
The classical quantities corresponding to LT and have already been

evaluated in [7~] ] for non linear adiabatic continuum mechanics ; U’ is
determined also in [8 and [77] for non relativistic perfect fluid (for 
in this case, see Appendix).
We finally observe that our approach (in particular the C . A) is quite

similar to the way followed by I-Shih Liu [72] ] for the thermodynamics
based on the entropy principle proposed by I. Muller [13 ]. The components
of U’ play, in this case, the same role of the Lagrange multipliers introduced
in [72].

6. ENTROPY GROWTH ACROSS A SHOCK WAVE

Let Q a connected open set of V4 and r an hypersurface cutting Q into
two open subsets Q1, 522. Let == 0. ~eC"’ (/?? &#x3E; 2), the equation
Vol. XXXIV, n° 1-1981.



72 T. RUGGERI AND A. STRUMIA

of r referred to any coordinate frame : we shall identify r with a shock
hypersurface for the field U.
Then it is known that the Rankine-Hugoniot conditions must hold :

brackets denoting the jump across r of the included function and ~« = 
Formally the Rankine-Hugoniot equations are obtained from the field

equations (1.5) through the correspondence rule

But the previous rule does not hold when applied on supplementary
equation (2 .1 ), in fact

is generally non vanishing. Furthermore it is possible to show that 11 is
non negative.

This result was proven through a non covariant formalism by P. D. Lax [4]
with the introduction of an artificial viscosity into the field equations
(Lax examined only one space variable system; see also on this subject
the works by Kruskov [7~] and Hopf [15 ]). A different proof was given
in [5 ].

It is known that the positive signature of ~ for the non relativistic perfect
fluid brings to the growth of thermodynamic entropy across the shock.
That is why condition 11 &#x3E; 0 is often referred in literature as « entropy
growth condition » and is assumed as a criterion to pick up physical shocks
among the solutions of the Rankine-Hugoniot equations. Recently G. Boil-
lat and T. Ruggeri [70] pointed out entropy growth across a shock in the
mechanics of hyperelastic continuous media submitted to finite strain.
We remark that the circumstance 11 non vanishing on r, roughly speak-

ing, means that while the law (2.1) follows from the field equations when
differentiability conditions hold, it does not follow for the weak solutions

(as shock waves are).
In this section we shall exhibt an explicitely covariant proof of the fact

that 11 is non negative on r.
a subcharacteristic covector such that ~«~°‘ = 1 and 6 a

covariant scalar defined as :

then a space-like covector { ~a ~ exists for which it results :

Let ~(x°‘) = 0 the equation of a characteristic hypersurface 
’ that has

l’Institut Henri Poineare-Section A



73MAIN FIELD AND CONVEX COVARIANT DENSITY

locally the same « direction of propagation » ~« as the shock hypersurface,
i. e. :

where ,u~k~ (k = 1, 2, ..., N) are the eigenvalues of (6 . 6), that result real Vk
for the hyperbolicity condition ( 1. 3).
Now we consider a solution of the Rankine-Hugoniot equation (6.1)

(shock) :

U, U* being the perturbed and respectively the unperturbed fields evaluated
as limit values on r. (In the following * will denote the values of any func-
tion of the field computed for U = U*.)
Here we take only k-shocks according to the following
DEFINITION OF K-SHOCK. ~ We shall say that a shock is a k-shock if an

integral number k = 1, 2, ..., N exists such that :

In words a k-shocks is a kind of shock that vanishes when the shock

speed approaches to a characteristic velocity (of course these shocks
become weak shocks when 6 is near to ,u*k~~.
Now we suppose to know the explicit solution (6. 8) for a k-shock and

to introduce it into (6 . 3) : we have then ~ as a function of U* and Ø0152 :

We prove the

STATEMENT II. 2014 « For a , convex covariant density system and a # k-shock
one , has:

~’roof. 2014 On differentiating (6.10) respect to ~a with constant U* we
reach :

Now we differentiate (6.1) respect to ~:

and take the dot product of (6.12) with U’, with (C . A) :

result that we introduce into (6 .11 ) arriving at :

then :

Vol. 1-1981.



74 T. RUGGERI AND A. STRUMIA

Since h is a convex function of U, in the convex domain ~, we have :

w(U, U*) = - h(U) + h(U*) + Vh.(U - U*) &#x3E; 0, U* E ~

then the r. h. s. in (6.13) is equal - w evaluated on r. Consequently :

Furthermore in the frame ~ ’ in which ~° - 1, çi = 0 locally, condi-
tion (6.14) writes : . _ _ _,

Now a~/~~ being a scalar the inequality (6.15) is independent of the
frame: 1] is a strictly increasing function of 6 in any frame.

Since our shock is supposed to be a k-shock :

then it is proven that: ri ~ 0 for 6 ~ ~u*k~.

7. ri AS GENERATING FUNCTION OF THE SHOCK

STATEMENT III. « If ~ is known as a funetion of U* and 03C603B1, then the
following relationship holds on 

where

Eq. (7.1) means that knowing the only scalar function 11 as a function of U*
and ~a (with ~a non-characteristic) we may find the jump of U’ and therefore
of U; 11 behaves as a sort of « potential » for the shock. _

Of course, in practice, the evaluation of 1](U*, follows the knowledge
of the shock as a solution to the Rankine-Hugoniot equations, but it is

interesting the fact that were it possible to determine 11 through experi-
mental tests we should be able to have all the information of the shock.

The proof of (7.1), in covariant formalism, does not differ from that
performed in [5 ] . Taking the gradient of (6.10) respect to U* with

constant we find :

Operating with V* on the Rankine-Hugoniot equations (6.1) we obtain :

and taking the dot product with U’ we reach through (C. A) :

introducing this in (7.2) we arrive soon to (7. 1).

Annales de l’Institut Henri Poincaré-Section A



75MAIN FIELD AND CONVEX COVARIANT DENSITY

8 . RELATIVISTIC BOUND OF THE SHO CK SPEED

The Rankine-Hugoniot equations :

provide N equations for the perturbed field U if U*, ~a are known.
On the mathematical stand-point for any ~a may exist non vanishing

shocks (U 7~ U*), solution to (8.1), but physically it is necessary that
~ 0 so that the speed of the shocks does not exceed that of the

light, according to relativistic principle.
Eq. (8 .1) belong to the class of equations of the type :

which always possess the trivial solution U = U* for any ~a and may
have also non vanishing solutions U ~ U* (byfurcated solutions of the
trivial solution).
We put now the following question : does it exist a set a values of ~a

such that the function f is globally invertible respect to U for a fixed 
If the answer is affirmative, then only the trivial solution U = U* is allowed.
The problem has been examined by G. Boillat and T. Ruggeri, who

proved [6 ] that non vanishing solutions (shocks) take place only if their
speed is greather than the smallest characteristic speed and smaller than
the greatest one.
Here we provide an explicitely covariant formulation of the proof

given in [6 ].
In order to employ the global invertibility theorem enounced in sect. 5,

we evaluate the Jacobian matrix off in (8 . 2) respect to U’ :

Since from (5 . 6) one gets :

it follows :

then the Jacobian matrix is symmetric.
Moreover being :

and from (5.7)

we reach:

Vol. XXXIV, n° 1-1981.



76 T. RUGGERI AND A. STRUMIA

i. e. : the are the eigenvalues of respect to H’. From a well known
theorem of linear algebra the matrix ~A~ - 6H’ is positive definite or
respectively negative definite if :

or

H’ being positive definite.
If 6 fulfils one of the previous inequalities, for the global invertibility

theorem, the mapping f in (8.2) is globally invertible and the unique
solution of the Rankine-Hugoniot equations is U’ = U~ and then U = U*
since also the mapping U is globally univalent.

Therefore non vanishing shocks happen only if :

If we suppose that the characteristic manifolds are time or light-
like, so that are space or light-like (no sum over k) :

it follows from (8.7):

i. e. ~a is space or light-like and ~(x°‘) = 0 is a time or light-like manifold.
Summarizing : it holds the following :

STATEMENT IV. For the hyperbolic convex covariant density system
the non vanishing shocks fulfil condition (8.7) and the shock manifolds are
time or light-like if the characteristic ones are such.

9. RELATIVISTIC HYDRODYNAMICS.
EXISTENCE OF A CONVEX COVARIANT DENSITY

The equations of relativistic hydrodynamics are (see : e. g. [7~]):

a« denoting the covariant derivative operator and the energy-momentum
tensor being :

where " r is the matter density, f the index of the ’ 0 
’ the 4-velocity

= 1) and o p the pressure. The speed o of light is taken equal unity.

Annates de l’Institut Henri Poincare-Section A



77MAIN FIELD AND CONVEX COVARIANT DENSITY

From (9 .1 ), (9 . 2) and taking into account the thermodynamic relations :

one is able to show the existence of the supplementary conservation
law 17:

S being the specific entropy (entropy of the mass unit), 0 the thermodynamic
absolute temperature and p the proper energy density of the fluid. Free
entalpy : _

and its differential

will be useful in the following.
The system (9 .1 ), (9 . 2) may be put in the compact form ( 1. 5) on choosing :

The supplementary law (9 . 6) identifies with (2.1) when :

Now we show that the system of relativistic fluid dynamics possesses a
convex covariant density.
To evaluate the main field U’ from (4 . 6), we put :

where wa and the scalar 03C8 must be determined. Eq. (9.12) introduced
into (4 . 6) yields :

in which

and dva must be intended as a covariant differential.
Since dS and dva are linearly independent it follows :

from which finally :

Vol. XXXIV, n° 1-1981.
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It is remarkable that the components of the main field (all independent)
are substantially the velocity, the absolute temperature (because = 1)
and the free-enthalpy G, i. e.: observables of the system.
So condition (C. A) is verified and it remains to be shown that :

is a convex function of the field :

for at least one subcharacteristic covector { ~}.
We start pointing out that the free enthalpy G defined by (9.7), taken

as a function of p and 9 has negative definite Hessian matrix at the thermo-
dynamic equilibrium.

In fact (see e. g. [14 ]) :

Convexity of - G respect to the variables p and 8 is equivalent to say
that the quadratic form :

and from (9.8) it follows

Now we introduce :

from (4.12), (9.15) and (9.17) we find :

Taking account that :

one arrives after some calculations at

Introducing (9 . 24) into (9 . 23) and taking account of (9.20) we have :

Annales de l’Institut Henri Poincaré-Section A



79MAIN FIELD AND CONVEX COVARIANT DENSITY

Since we are looking for the signature of Q, which is independent of the
frame, because Q is a covariant scalar, we may write (9 . 25) in the Min-
kowskian rest frame of the fluid J.

In !/ we have u03B1 ~ (1, 0) and then :

Then (9.25) times u looks like :

which may be written equivalently :

Since

and (9 . 27) becomes :

Since u &#x3E; 1 (being z, = and unit time-like 4-vectors oriented

towards the future) it is enough, for Q to be positive, to show that f K2 - (~p~2
is non negative.
From (9.19) we have :

Now we look for the conditions for which the matrix of the coefficients

of the quadratic form in the r. h. s. of (9.29) is negative semi-definite.
Since Gae  0 for (9.18) it is enough to require

which is equivalent to

But the first term is positive for (9.18) and then :

Taking account of (9 . 24) the last inequality writes :

i. e. the sound speed lower than that of light, condition that of course is
supposed to hold.

Vol. XXXIV, n° 1-1981.



80 T. RUGGERI AND A. STRUMIA

Therefore it is proven that Q &#x3E; 0 in any frame and then the convexity
of h(U) for any unit time-like covector { ~a ~ oriented towards the future.

Therefore the proposition stated in the general theory holds, and in
particular :

1 ) The system
of relativistic hydrodynamic equations is a symmetric system

in the field U’ given by (9.15).

The system assumes the form (5 . 3), (5.4) with the four-vector generating
function (see (5 .1 )) that has in this case the very simple expression :

In fact for the fluid :

and taking account of the Rankine-Hugoniot equation related to the
mass conservation (9 . 2) :

it follows :

By employing the decomposition (6 . 5) we gain :

Recalling that with = 0 is a characteristic covector (matter or
contact wave) we have that the corresponding eigenvalue (see (6.7)) is :

Introducing (9 . 35) into (9 . 34) we find :

Then

From (9.37) one realizes that our shock is a k-shock ~ vanishing for
6 = ,u* and then statement II holds. But &#x3E; 1, M~ ~ being unit time-
like vectors oriented towards the future, then from (9 . 37) we have :

according to (9. 36).

Annales de k’Instilut Henri Poincaré-Section A



81MAIN FIELD AND CONVEX COVARIANT DENSITY

3) The knowledge of [S] as a function of U*
determines the shock.

This is a consequence of statement III and of the expression of the
function 11 of the fluid given by (9 . 37). Therefore were it possible to measure
only the jump of S across a shock wave, we would be able to calculate the
jump of each field variable.

4) The velocity of propagation
of the relativistic hydrodynamic shocks never exceed the speed

of light.

A paper on the consequence of the general theory of the convex covariant
densitv systems for the Magneto fluid dynamics is in preparation.

Finally, we point out that result 4) had already been proven for the
fluid and M. H. D. through a different way by A. Lichnerowicz [16].

Vol. XXXIV, n° 1-1981.



82 T. RUGGERI AND A. STRUMIA

APPENDIX

I. ANOTHER CONVEX COVARIANT DENSITY FOR THE FLUID

We have seen before that the main field U’ of a convex covariant density system is inva-
riant under mapping of the field U, and it may be expressed as the gradient of the convex
covariant density h = when the field choice : U = is employed, h" being the
current density of quantity conserved thanks to the supplementary law. Then h represents
the proper density of the conserved quantity relative to the congruence defined by the
time-like covector { ~ } .

It is remarkable that in the fluid case it is possible to define another convex density h,
relative to the field dependent congruence {u03B1} with the same properties of h :

the gradient of which respect to the field :

is still equal to the same main field U’ (9 .15) :

as it is immediate to verify taking account of (9. 24).
Moreover the convexity of is easier to be proven than that of /z(D). We exploit

the proof showing that : 
,

We have easily :

where

for the convexity of - G( p, 8).
Now one verifies that :

ua, ua being unit time-like 4-vectors oriented towards the future.
Then :

and the convexity of - rS is proven. We observe that the auxiliary condition -1~0
here is not required.
As a consequence of the convexity of h(L7) and (I.3) we have also that the mapping

U is globally univalent.

de l’Institut Henri Poincaré-Section A



83MAIN FIELD AND CONVEX COVARIANT DENSITY

II CLASSICAL APPROXIMATION OF THE RELATIVISTIC FLUID

Here we give the non relativistic limits for the main field and the 4-vector generating
function h’" of the fluid.

It is easy to verify that the main field U’ is :

where: 2014 1/0 is the multiplier related to the energy conservation equation, M/0 is that

of the momentum equation and ( G - 1 2 u2)/03B8 the multiplier ofthe matter conservation law.
The components of U’ coincide with the ones gives by Godunov [~] and deduced in [77 ].
While = (~, ~), ~ is given by:
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