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Physique theorique.

ABSTRACT. A quantum logic (L, P) is considered, where P is a set of
pure states. The set 2(P) of all subsets of P closed under superpositions
is studied. It is shown that 2(P) is isomorphic to the set of all linear sub-
spaces of a vector space. In case that each state in P has a carrier, an ortho-

complementation can be defined in a subset ~ (P) of 2(P). An imbedding
theorem for the logic L into the logic L(H) of a Hilbert space H is then
proved.

1. DEFINITIONS AND NOTATION

Let L be a partially ordered set with the first and last elements 1 and 0,
respectively, and with the orthocomplementation a ~~ a: L ~ L. Let the
latlice sum ai exist in L for any sequence { ai } ~ L such that ~ ~ a ~,

1

i ~ ~ = l, 2, ... The elements a, bEL are said to be orthogonal (a 1 b)
if a  ~ and they are said to be compatible (a «-~ b) if there exist elements
al, bl, c in L, mutually orthogonal and such that a = al V c, b = bl V c.
A map m : L 2014~ [0, 1] is a state on L if i) m(1) = 1, ii) m(V ai) = 
for any sequence of mutually orthogonal elements in L. The state m is pure
if it cannot be written in the form ~=c~i+(l2014 c)m2, where 0  c  1

and ml, m2 are distinct states. Let P be a set of pure states on L. For a E L,
m E P, define Pa = ~ m E P : m(a) - 1 }, E L : = 1 }. We
shall suppose that i) Pb implies a ~ b (a, bEL) and ii) Lm2
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implies m2. From i) it follows that L is orthomodular, i. e. a _ b

(a, bEL) implies b = a V (b 11 and that to any a E 0, there is
m E P such that = 1 [4]. We shall suppose, in addition, that 
are mutually compatible, then a H b V c. The pair (L, P), which satisfies
all the suppositions mentioned above, is called a quantum logic.
A state m E P is a superposition of the states p, q E P if = 0 and

q(a) = 0 imply = 0 (or, alternatively, = 1 and = 1 imply
= 1) [12]. A set P is said to be closed under superpositions if it

contains every superposition of any pair of its elements. If S  P is not
closed under superpositions, let A(S) denote the smallest subset of P, closed
under superpositions and containing S. The set P is a sector if i) S = A(S),
ii) to any E q, there is s E p, q such that sEA {~, ~ },
iii) if q E P, q  S then  {s, q} = {s, q} for any s E S. We say that the
superposition principle holds in (L, P) if for any E there is

r E P, r ~ p, q such that r [9].
Let C be the set of all elements of L which are compatible with all the

other elements, i. e. C = ~ a E L : a ~ b for C is called the

centre of L. It was shown that C is a Boolean sub-03C3-algebra of L. If p is a
pure state and c E C, then /?(c) = 1 or = 0 [11, 12]. A logic L is called
irreducible if its centre C is trivial, i. e. C = { 0, 1 }. It was shown that if
the superposition principle holds on (L, P), then L is irreducible [9].
For P and a E L, let us write = i if for all m E S,

where i = 0.1. Let S - ~ m E P : S(a) - 1 imply = 1 }. Gudder M
introduced the following postulate (minimal superposition postulate, MSP) :
if S is any finite subset of P and m E S is such that m  Q for any subset
Q  S, Q #- S (i. e. m is a minimal superposition), then { m, S1 } - n S~ 5~ 0
for any S1, P such that S 1 n S2 = ø and S 1 U S.

Let us denote by J~(P) the set of all subsets S c P such that A(S) = S.

2. STRUCTURE OF THE SET 

In the sequel we shall suppose that (L, P) is a quantum logic and that
the MSP holds in P, P being a set of pure states on L.
We recall that the map S H A(S) has the following properties [9] :

ii) if P, a E A, then is closed under superpositions, and
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353SUPERPOSITIONS OF STATES AND A REPRESENTATION THEOREM

In addition, if the MSP holds, then by [7~]:
iv) A(S) = S for any finite subset S of P,
v) p E A({ r, q }) implies Y E A({ }) for any distinct states p, q, r E P.
Let !l’(P) = { S : S  P, A(S) = S }. J~(P) is a partially ordered set by

the set inclusion.
For Sa E 2(P), 03B1 E A, let us set

, and

On the other hand,

Proof. 2014 Let us set S = { /? E P : ~, r E E S2 }. Clearly,
S1 u S2 ~ Sand, E S1, q E S2 imply {r, q} ~ A(S1 u S2)’ We see that

A(S1 u Sz) = S1 V S2’ We shall complete the proof by showing that
S = A(S). Let p1, p2 ~ S. Then there are S1 and S2 such that

p2 E A ~ r2, ~2}. Let p2 ~. Then, clearly,
rl, qI, r2, ~2 } = { ri, ql, r2, q2 ~ . The following cases can occure :

i) p E A ~ r~, r2 ~, ii) q2 ~, (?, ~= 1, 2),
iv) no of i), ii), comes true.

It is straightforward that in the cases i), ii), iii) pES. Let us consider
the case iv). Ifp }, then by MSP, A ~ rl, r2 ~ n A {~,~1 } ~ 0.

r2} ~   {p, q1}. Then m ~ S1, p ~  {m, q1}, q1 ~ S2
imply that pES. Analogical reasoning can be done in all cases in which
there is a set Q ~ { ’1’ ’2, q1, q2} such that p E A(Q). Now let p ~  { ’1’ r2,
ql, q2 ~ be a minimal superposition. Then by MSP, there is

r2 ~ n A ~ p~ ~i. 

This implies qi, q2 ~. The following cases can occure
(a) mEA (or, analogically, mEA f p, q2 ~), which implies

q2 ~), i. e. pES. Then
ql but ’2} implies ql r2, q2 ~. Hence,
A { ’1’ ’2’ ql~ q2 I C A { ’1’ ~2. q2 I~ i. e. ’1’ Y2, ~2 ~~ which is the
preceding case. c) ql, q2 ~ is a minimal superposition. Then,
Vol. XXXII, no 4 - 1980.
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by MSP, there is n E A ~ ql, q2 ~ n A { ~ ~ }. ~ q2 ~ implies
n E S2 and n E A { m, p} implies p ~  { m, n }, m E S 1, n E S2, hence pES.
This completes the proof.

LEMMA 3. - For any P, A(Q) = u {A(T) : T is a finite subset of Q }.

Proof - Let us set B = u {A(T) : T is a finite subset of Q }. Clearly,
Q c B c A(Q). We show that B is closed under superpositions. Indeed,
let p 1, p2 E B, then there are T1, Q, finite subsets, such that p 1 E A(T 1)
and p2 E A(T2). But then pi, hence

From this it follows that A(B) = B, hence A(Q) = B.

LEMMA 4. 2014 If 03A6 ~ f(P) is an ordered subset (by inclusion) then the set

Proof. - We have to show that A(B) = B. Let pl, B, then there are
TI, T2 E I&#x3E; such that pl E TI, p2 E T2. There holds T2 or T1.
Let T1 ~ T2, then p2 E T2 implies that T2, hence

THEOREM 1. 2014 The lattice J~(P) has the following properties :
i) it is modular,
ii) it is atomistic and its atoms are the singleton subsets of P,
iii) it has the covering property,
iv) if cv is an atom in J~(P) and A is a set of atoms in such that

03C9 E A(A), then there exists a finite subset {03C91, 03C92, ... , 03C9n} c A such that
..., 

v) to any S E J~(P) there is T E J~(P) such that S A T = 0 and S V T = P.

Let p E (S1 V S2) A S3’ Then p E Sl V S2 implies p ~ { qi, q2 }, q1 ~ Sl,
q2 E 82 (Lemma 2). Then

Annales de Henri Poincaré - Section A
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ii) Evidently, the singleton sets f s },~ E P, are atoms in 2(P). If S E 2(P),

~6S

iii) We have to show that for any S, Q E 2(P) and s E P (s  S),
S  Q  S V ~ s } implies Q = S or Q = S V {8}. Let Q ~ S. Then
there is r E Q, S. From follows r E S V ~ s }, i. e. there
is pES such (Lemma 2). From this it follows that

Q, s ~ Q imply S V {s} ~ Q,i.e.S V {s} = Q.
By Lemma 3, A(A) = u {A(S) : S fioite subset of A }. Hence, for

any 03C9 E A(A), there is a finite subset S = {81, ... , sn } cr A such that

z~) Let 0 be the set of all W E 2(P) such that S A W = 0. 0 contains 0,
therefore it is non-empty. is any ordered set of elements of 0, let J
be the set-theoretic sum of all elements in 1&#x3E;. By Lemma 4, J E 2(P); and,
clearly S 11 J = 0. From this it follows that J E 0. By Zorn’s lemma
there is a maximal element T E 0. Now let us consider the element S V T.
Let s E P, s  T. Then T ~ A(T ~ {s}), and by the maximality of T,
S 11 A(T V ~ s }) ~ 0. Let pES A (T V {~}). By Lemma 2 then there
is t E T such that }. }, and from pES and t E T
it follows that 8 E S V T, hence S V T = P.

We shall say that the states 81’ ...,~eP are independent if

If ... , sn are independent states and q is a state such that

Indeed, there is a minimal subset

such that

From the MSP we obtain

hence

By permutation of the index set 1, 2, ... , n we obtain that si E A { q, 
implies ..., 

We say that a finite set of states {s1, ..., sn} is a basis for S E 2(P) if
~1~2..... ~ are independent and S = ..., ~ }. It can be shown by
the same method as in [d] that ..., ~ } and ..., pk } are bases
for S then n = k. If S E 2’(P) has a basis { sl, ..., ~ } then n is called the
dimension of S and is denoted by d(S) = n. If S has a basis, we say that S is
finite dimensional. Recall that a dimension function on a lattice K is a real
valued function on K with the properties :

Vol. XXXII, nO 4 - I980.
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The following proposition can be proved analogically as Theorem 3.10
in [6].

PROPOSITION 1. 2014 Let S E 2(P) be finite dimensional. Then d is a dimen-
sion function on [0, S] = { T E 2(P) : T ~ S }.

PROPOSITION 2. - Let S E J~(P) be finite dimensional. Then [0, S] is
a complemented modular lattice.

Proof. 2014 It follows from Theorem 1.

We can define in the set 2(P), as in a projective geometry, the notions
of lines and planes. An element S E 2(P) is a line if d(S) = 2, and it is
a plane if d(S) = 3. If sl, s2 E P are distinct states, then J(A { }) = 2
and hence 11 ~ si, s2 ~ is a line. IfS1 and S2 are distinct lines and S 1 A S2 ~ ~
then d(S1 11 S2) = 1. In this case the identity

shows that S 1 V S2 is a plane. This yields a new formulation of the SP :
the superposition principle holds if and only if every line in J~(P) has at
least three distinct points lying on it. In this case [0, S] is a geometry for
any finite S E 2(P) [12, Th. 2.15, p. 30).

THEOREM 2. (L, P) be a quantum logic such that the superposition
principle (SP) and the minimal superposition principle (MSP) hold and let
there exist at least four independent states in P. Then there exist a division
ring K and a vector space V over K, such that the set J~(P) is isomorphic
to the lattice 2(V) of all linear subspaces of V (in the sense that there exists
a bijection between J~(P) that preserves their order structure).
~f(V) is the set of all linear subspaces of V ordered under set-theoretical
inclusion and meet and join operations are defined by

Proof of this theorem follows from Theorem 1 and Theorem in

[1, Ch. 6, p. 375].
In [10], there is shown that the set P can be written as the union of sectors

if and only if A { /?, ~ ~ } 1= A { ~ ~ } u A { ~ r } for any distinct states
p, q, r E P such that p ~ q, q ~ r, r   {p,q}, where p ~ q means that
there is a state u E P, p, q such that u E A ~ p, q ~. Now we shall show
that this condition is always fulfilled.

THEOREM 3. 2014 Let (L, P) be a quantum logic such that the MSP holds.
be distinct states in P such that ~ ~ ~ ~ ~ rand r ft }.

Annales de l’Institut Henri Poincaré - Section A
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Then A ~ p, q, r } 5~ A { /?, ~ } u A { q, r }, so that P can be written as the
union of sectors.

Proof - From p ~ q and q . r it follows that there are s1 E },

The relation d(a 11 b) - + V b) then implies that

d(A A A {~, r }) &#x3E;_ 1. But if A ~ sl, s2 } = A {~, r }, then

implies s1 = p, a contradiction. Hence,
d(A } A A {~ r }) = 1. Let A A A {~ r } - ~ t }. We
shall show that ~A{~, q }, ~A{~, r }. Indeed, if tEA {~, ~ }, then
q eA { ~ p }, r } implies q E A {~, r }, a contradiction. Analogi-
cally we show that t ~ A ~ q, r } . Hence, we found ~A{/?, q },

r}.
We shall call the elements of J~(P) the subspaces of P.

3. CLOSED SUBSPACES OF P

Let us set P : S = S }. Clearly, A(0161) = S, so that

~ (P) ~ J~(P). The map S 1-+ S is a closure operation in the sense of Bir-
khoff [3], so that the set ~ (P) becomes a complete lattice whose join and
meet operations are given by

The proposition a e L is said to be a carrier of a state m, if
i ) = 1,
ii) b implies m(b) &#x3E; 0.
Notice that the carrier of a state mE P, whenever it exists, is uniquely

determined by m, since it is the smallest element of the set The carrier
of m, if it exists, will be denoted by carr rrt.

In the following we shall suppose that each state pEP has the carrier.

LEMMA 5. 2014 If carr p is the carrier of the state pEP, then q (carr pj  1
for every pure state E P.

Proof - Suppose q (carr 7?) = 1 for some ~ 5~ p. Then = 1 implies
= l, a E L, so that Lp  But then q = p, a contradiction.

PROPOSITION 3. - i) The logic L is atomistic and the correspondence
carr : p carr p, pEP, is a one-to-one mapping of the set P onto the set
of all atoms of the logic L.

ii) For every non-zero proposition a E L one has a = 

Vol. XXXII, nO 4 - 1980.
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We shall say that two states are mutually orthogonal and write
m1 1 m2 if for some proposition a E L one has = 1 and m2(a) = 0 [5].
For any P, define Sol to be the set of all pure states pEP such that
p 1 S (i. e. p 1 q for all q E S). Obviously S c S1..L. For the empty set 0
we put 01. = P.

PROPOSITION 4. 2014 For every non-empty subset T c P one has T.

See [7].
It can be easily seen that the map 1 : T1 is an orthocomplementation

in the set ~ (P) of all closed subspaces of P.

THEOREM 4. 2014 For every a E L, the set Pa = ~ s E P : = 1 } belongs
to and the mapping a H Pais an orthoinjection of the logic L into the
set ~ (P).

THEOREM 5. 2014 Let (L, P) be a quantum logic such that SP and MSP hold,
and let there be at least four independent states in P. In addition, let each
state pEP have the carrier carr p ~ L. Then there exist a division ring K,
an involutorial antiautomorphism * : ~ ~ ~* of K, a vector space V over K
and a Hermitian form/, such that ~ (P) are isomorphic (i. e. there
exist, between them, a bijection which preserves order and orthocomple-
mentation), where f(V) is the set of all subspaces of V, closed with respect
to the form f

1’roof. Theorem 2 there exist a division ring K and a vector space V
over K, such that the set of all subspaces of P is isomorphic to the
lattice 2(V) of all linear subspaces of V. If the set .:£(P) is finite dimensional,
then V is finite dimensional. In this case 2(P) = ~ (P). Since ~(P) is

orthocomplemented, 2(V) has an orthocomplementation induced by the
one of ~ (P) ; then Theorem of Birkhoff and von Neumann [12] ensures
the existence of a pair (*, f ), such that

Every subspace of V is closed with respect to the form hand .5f(V) and
coincide, so that the isomorphism between and !R(V) preserves

orthocomplementation.
Consider now the case of infinite dimension. We give a sketch of the proof,

as in [2]. For the details see [8]. Let us denote by cc~ the isomorphism between
J~(P) and .P(V). For every finite dimensional subspace M of V there exists
a finite T E J~(P), such that = M. c,~ is an isomorphism between

Annales de l’Institut Henri Poincaré - Section A
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an orthocomplementation of [0, T], hence J~(M) has an orthocomplemen-
tation induced by the one of [0, T].

Let Mo be a fixed 4-dimensional subspace of V. Since is ortho-

complemented, there exist, by the theorem of Birkhoff and von Neumann,
an involutorial antiautomorphism ~, ~,* and a Hermitian form fo on Mo,
such that for E 

For every finite dimensional subspace M of V containing Mo, there exists
a pair (~ such that, for all E 2 M ,

Owing to the unicity of the pair (*,f0) in Mo, there exists a 03B3 ~ K such that
~* = andfM(v, w) =fo(v, w)y for every v, we Mo. Then, substitut-
ing (~. fM) by (*, we get a unique Hermitian form fM (with respect
to *) which induces the orthocomplementation of 2(M) andfM = fo on Mo
If Mo  M 1 c M2, thenfMl = fM2 on M 1.

For every pair 03BD, w E V define

It can be shown that the function .f’ so defined is a Hermitian form on V,
that the image of the mapping OJ is just and that cv preserves order
and orthocomplementation between (P)

COROLLARY. There exists an orthoinjection of the logic L into the set

By theorem 4, the mapping j : a ~ Pais an orthoinjection of L
into the set ff(P). Then, by Theorem 5, the mapping 03C9 o.j is an orthoinjec-
tion of L into ~ f(V).
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