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Presymplectic Lagrangian systems I:
the constraint algorithm

and the equivalence theorem (*)

Mark J. GOTAY (1) James M. NESTER (2)

ABSTRACT. 2014 The global presymplectic geometry of degenerate Lagran-
gian systems is investigated. A geometric constraint algorithm proposed
earlier by us is used, in conjunction with techniques developed by Klein,
to define and solve « consistent Lagrangian equations of motion » . This
algorithm enables us to prove an equivalence theorem for the Lagrangian
and Hamiltonian formulations of dynamical systems which are described
by degenerate Lagrangians.

RESUME. 2014 On examine, dans ce travail, la geometric présymplectique
globale des systemes Lagrangiens irreguliers. L’emploi d’un « algorithme
des contraintes » precedemment propose par les auteurs [5], et des techniques
developpees par J. Klein [2], permet d’etablir, sous certaines hypotheses
precises, un « theoreme d’équivalence » pour les formulations Lagrangienne
et Hamiltonienne de systemes dynamiques decrits par des Lagrangiens
irreguliers.

I. INTRODUCTION

The Lagrangian formulation of classical mechanics, from both philoso-
phical and calculational standpoints, is the most fundamental approach

(*) From a dissertation to be submitted to the Graduate School, University of Maryland,
by Mark J. Gotay in partial fulfillment of the requirements for the Ph. D. degree in Physics.
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130 M. J. GOTAY AND J. M. NESTER

to dynamics. Nevertheless, it is usually found necessary (and/or convenient)
to cast the theory into Hamiltonian form, especially for the purpose of
quantization. One underlying mathematical reason for this is that the
Hamiltonian phasespace T*Q (where Q is configuration space) is canonically
a symplectic manifold whereas velocity phasespace TQ is not. It is the
symplectic structure on phasespace which gives rise to the elegant simpli-
city of the Hamiltonian formalism [1].

In the so-called regular case, this « defect » of the Lagrangian formulation
can easily be remedied. It has long been established, given a regular Lagran-
gian L on TQ, that it is possible to induce a symplectic structure Q on TQ
by either of two equivalent methods : via the « almost tangent » structure
naturally associated to TQ (studied extensively by Klein [2]), or by using
the Legendre transformation FL to pullback to TQ the canonical symplectic
structure on T*Q (the method of Abraham [1]). When the Lagrangian is
regular, then, a canonical formalism can be established on TQ itself by means
of this induced symplectic structure; it is apparent that one need not resort
to the Hamiltonian formulation on T*Q in order to « cast the theory into
canonical form », or even to quantize the theory [3].

Thus, in the regular case, the basic mathematical object of the Lagrangian
formulation of mechanics is the symplectic velocity phasespace (TQ, L, Q).
The dynamics of a given system is determined by solving the Lagrange
equations

where the « energy » E plays the role of the Hamiltonian on TQ. As Q is
nondegenerate, these equations possess unique solutions.
The assumption of regularity is, however, too restrictive (e. g., the Max-

well and Einstein systems). The major implication of the degeneracy of
the Lagrangian is that Q will now be merely presymplectic (i. e., Q is no

longer of maximal rank). Consequently, the equations of motion (1.1)
as they stand need not possess solutions at all (and in general, even if
solutions exist they will not be unique).
The study of degenerate or irregular Lagrangians was initiated by Dirac

and Bergmann [4]. For many years it was thought that the degeneracy
of Q precluded the possibility of establishing a canonical formalism on TQ
itself. Consequently, in order to « canonicalize » such degenerate systems
it was believed necessary to change the theory into Hamiltonian form.
Dirac and Bergmann developed an algorithm for doing this, and, at the
same time, for solving the resulting Hamilton equations. No method was
known for dealing directly (i. e., within the Lagrangian framework itself)
with the equations (1.1).
The most important result of this paper is that the presymplectic structure

on TQ is sufficient in and by itself to establish a canonical formalism on TQ.
Put another way, the presymplectic geometry itself is the canonical for-
malism.

Annales de l’Institut Henri Poincaré - Section A



131PRESYMPLECTIC LAGRANGIAN SYSTEMS I: THE CONSTRAINT ALGORITHM

In a companion paper [5] we have developed a constraint algorithm
which generalizes and improves upon the Dirac-Bergmann technique.
Our algorithm is phrased in the context of global presymplectic geometry
and consequently can be directly applied to the Lagrangian case. This
generality is not illusory, as there exist well-behaved Lagrangian systems
whose Hamiltonian counterparts are highly singular or even nonexistent
(Section IV). This algorithm has several major advantages over the Dirac-
Bergmann procedure. Specifically, the Dirac-Bergmann algorithm can
only be applied locally. Insofar as the quantization of a theory is thought
to depend significantly upon global considerations [3], this drawback
becomes a major shortcoming. More importantly for our considerations,
the application of the Dirac-Bergmann algorithm depends crucially upon
the fact that the presymplectic manifold of interest (viz. the primary
constraint submanifold FL(TQ)) is imbedded in a symplectic manifold
(viz. T*Q). Even though the Lagrangian description can be cast into cano-
nical form on TQ itself, one cannot transfer the Dirac-Bergmann results
to velocity phasespace as there does not exist a Lagrangian counterpart
to the symplectic imbedding space T*Q. The algorithm we have proposed
does not suffer from this defect.

With regard to the Lagrange equations ( 1.1 ), our algorithm finds whether
or not there exists a submanifold P of TQ along which these equations
hold; if such a submanifold exists, then the algorithm gives a constructive
method for finding it. In other words, the algorithm can be used to define
and solve « consistent Lagrangian equations of motion ».
To the authors’ knowledge, such an algorithm has never before been

successfully attempted in the Lagrangian formulation. A superficially
similar algorithm was proposed by Künzle [6] who was concerned only
with homogeneous Lagrangians. Hence, he did not consider the « Dirac-
Bergmann » problem per se [7] but rather a related question concerning
the nature of solutions to the Lagrange equations, which we call the « second-
order equation » problem. This is not directly relevant to our work here
and will be discussed in depth in a companion paper [8] (see also Sections II
and III).

The algorithm can be used to compare the Lagrangian and Hamiltonian
formalisms. In the hyperregular case [1], it is well-known that the two
formulations are completely equivalent. If L is regular but not hyperregular,
then generally there will not exist a global Hamiltonian formulation of the
dynamics of the system, as we show later (Section IV). In the homogeneous
case, Sniatycki [9] distinguishes a class of « almost regular » Lagrangian
systems and shows that they possess Hamiltonian counterparts. We
generalize Sniatycki’s definition of almost regular system to the heretofore
untreated degenerate inhomogeneous case, and apply the algorithm in
order to prove an equivatence theorem which states that to every (consistent)
Vol. XXX, n° 2 - 1979.



132 M. J. GOTAY AND J. M. NESTER

almost regular Lagrangian system there exists a corresponding (consistent)
Hamiltonian formulation.

Section II provides a very brief introduction to the almost tangent
structure canonically associated to TQ and its exterior calculus; its appli-
cation to Lagrangian systems is briefly outlined. A much more compre-
hensive treatment of these topics is found in the text by Godbillon [77].
In the third section, we review the constraint algorithm alluded to earlier [5]
and apply it to the Lagrangian formalism, while in Section IV we state
and prove the equivalence theorem for degenerate Hamiltonian and Lagran-
gian systems. In general, we try to keep our notation and terminology [12]
consistent with that of reference [77].

II ALMOST TANGENT STRUCTURE

AND THE PRESYMPLECTIC GEOMETRY

OF LAGRANGIAN SYSTEMS [2, 77] ]

A manifold is said to be symplectic if it carries a distinguished closed
nondegenerate 2-form. If we drop the requirement that this form have

maximal rank the manifold is presymplectic. In this section, we develop
just enough of the theory of vector-valued differential forms to enable us
to put a presymplectic structure on velocity phasespace. We first establish
some notation.

Let Q be a manifold with tangent bundle TQ and second tangent bundle
T(TQ). The bundle projections are ~ TQ --~ Q and T(TQ) ~ TQ.
The prolongation of TQ to T(TQ) is denoted Trp, and is such that the
following diagram commutes :

The vertical bundle V(TQ) is the subbundle of T(TQ) defined by [12]
V(TQ) := ker T~Q.

Let 03BEy denote the vertical lift TxQ ~ Vy(TQ), that is,

where

Using this we can define a map J

for all Z E Ty(TQ). We thus obtain a linear endomorphism

Annales de l’Institut Henri Poincare - Section A



133PRESYMPLECTIC LAGRANGIAN SYSTEMS I: THE CONSTRAINT ALGORITHM

such that J~ =0, ker J = 1m J = V(TQ). The vector-valued 1-form J is
called the almost tangent structure naturally associated to TQ. In a natural
bundle chart on T(TQ), the action of J is q~, v‘) = vi, 0, ~).
We define the adjoint J* of J to be the linear endomorphism of the exte-

rior algebra A (TQ) given by

where f E a E T*(TQ) and X E T(TQ). J* is then defined on A (TQ)
by homomorphic extension. We define the interior product of J with a
p-form 03B2 by

where Xi, ..., Xp E T(TQ), and set !j/:=0 ~ for any function f . Finally,
the vertical derivative ’ d is

It is apparent that d and dJ anticommute, and furthermore that d~ - 0.
Also, from (2 . 2) and the definition of iJ it follows that dJf = J*df.

In order to apply this machinery to physics, take Q to be the configuration
space of some physical system; TQ is the velocity phasespace. The almost
tangent geometry of TQ, in and by itself, is not enough to define a pre-
symplectic structure. However, if we are given a distinguished function
L : TQ -~ R (the Lagrangian), then J determines a preferred presymplectic
form

By construction and (2 . 3), J is Hamiltonian for Q, i. e.,

In a natural bundle chart (2.5) becomes simply

The Lagrangian L is said to be regutar iff 11 is nondegenerate; other-
wise L is degenerate or irregutar. In more familiar terms, (2.7) shows that 11
is nondegenerate iff the velocity Hessian of L is invertible. The

triple (TQ, L, 11) is said to be a Lagrangian system.
In order to geometrize the equations of motion we need to define yet

Vol. XXX, n° 2 - 1979.



134 M. J. GOTAY AND J. M. NESTER

one other object, the « fiber derivative ». Let f E so that df E T*(TQ),
and suppose y E TQ. Consider the map F f ( y) defined by

where x = zQ( y). F/(y) is clearly linear on TxQ, and consequently is

a 1-form on Q. The map F f : TQ ~ T*Q is called thefiber derivative of f .
It is fiber-preserving, but not necessarily a bundle map as it may not be

linear on the fibers [13].
We call the function TQ --+ R defined by A/w) ==  w 

for w E TQ the action of f. The Liouville vectorfield V is then defined by
its action on as follows :

Alternately, it is possible to characterize V by

The operations dJ, iJ and i~ are related by

Note that V is vertical, that is, JV = 0.
Return now to the Lagrangian system (TQ, L, Q). The fiber derivative FL

naturally associated to this system is said to be a Legendre transformation.
When L is regular, FL can be shown [1] to be a local diffeomorphism.
It may happen that FL is in fact a diffeomorphism, in which case L is said
to be hyperregular. If AL is the action of L, then the energy E of L is simply
AL - L. In these terms, the Lagrangian equations of motion are

as can easily be checked in a natural bundle chart using (2.7) and (2.8).
Variational as well as physical considerations [l4] require that one should

append to equations (2.11) the seeond-order equation condition

or in more familiar terms,

This effectively demands that the Lagrange equations (2.11) be second-
order differential equations, a property that is not usually possessed by
these equations in the degenerate case [6, 8].

It is clear that the presymplectic structure (2.5) is sufficient to establish
a canonical formalism for Lagrangian dynamics. We now turn to a dis-
cussion of how to solve the above equations in the degenerate case.

Annales de l’Institut Henri Poincaré - Section A



135PRESYMPLECTIC LAGRANGIAN SYSTEMS I: THE CONSTRAINT ALGORITHM

III. THE CONSTRAINT ALGORITHM
AND DEGENERATE LAGRANGIAN SYSTEMS [5, 7~] ]

Let (TQ, L, Q) be a Lagrangian system. We search for necessary and
sufficient conditions which will enable us to solve the Lagrangian equations
of motion

As was mentioned in the introduction, if Q is symplectic, then (3.1) has
a unique solution X.
When L is degenerate, however, this will not be so. Nonetheless, it may

be possible to solve (3 .1) in the following restricted sense : there exists
a submanifold [15] P2 of TQ and a vector field X on TQ such that equa-
tion (3.1) holds when restricted to P 2’ Suppose this is the case and let

(note that is just ker D) [12]. Then I P 2 = 0,
so that (3.1) requires that I P 2 = 0. Conversely [5], it is possible to
show that if P2 is a submanifold of TQ such that Z E implies that
i(Z)dE I P 2 == 0, then there exists a vectorfield X on TQ I P 2 which satis-
fies (3.1). Thus, the points of TQ where the equation (3.1) is inconsistent
are exactly those for which 0 for any Z E Consequently
we can characterize P2 as follows

with obvious shorthand notation.
We now try to solve the equation (3.1) restricted to P 2’ viz.

Equation (3.2) evidently can be solved algebraically for X, but this is not
enough. Physically, we must demand that the motion of the system be
constrained to lie in P 2’ Thus the vectorfield X appearing in (3.2) must be
tangent to P 2’ This additional requirement will not necessarily be satisfied,
leading to further conditions as follows : since X must be tangent to P 2’
TP2 annihilates the first term in (3.2). Consistency then demands that
we again restrict to the set P 3  P2 of points where TP2 annihilates the
second term.

It is clear now how the algorithm must proceed. We generate a string
of imbedded submanifolds

defined as follows

The functions on 1 which define the constraint submanifold Pj
are called t-ary constraints and are of the form  TPi 1 | dE &#x3E; = O.
Vol. XXX, n" 2 - 1979.



136 M. J. GOTAY AND J. M. NESTER

Once the constraint algorithm so defined is « set into motion », it is

not difficult to show [5] that the equations (3 .1 ) will be solvable iff the

algorithm terminates with some nonempty final constraint submanifold PK.
On PK we have completely consistent equations of motion of the form

However, the solutions of (3.3) tangent to PK are not necessarily unique,
being determined only up to vectorfields in ker Q n TPK.

This algorithm completely solves the problem of degenerate Lagrangian
systems in the following sense ; it tells us whether or not the Lagrange
equations (3.1) have solutions : if they are solvable, the algorithm provides
a constructive method for finding the submanifold PK along which tangen-
tial solutions exist. Moreover, it is possible to show that PK is maximal in
that if N is any other submanifold along which the equations (3.1) are
satisfied, then N ~ PK.
The constraint algorithm does not, however, assure us that the solutions

of (3 . 3) will satisfy the second-order equation condition (2.12). Kunzle [6]
has addressed this issue (for homogeneous Lagrangians) and has developed
a technique for finding simultaneous solutions of (3 . 3) and (2.12). We have
developed an alternative approach to this problem [8] and have found
that it can be dealt with separately (without invalidating any of the conclu-
sions of this work) and so we shall not consider it further here.
The algorithm as detailed above in the Lagrangian case is but an example

of a much more general technique [5] applicable to any presymplectic
manifold (M, co) and equations on M of the form i(X)cv = a where a is

a closed 1-form. The algorithm is global, geometrically natural, and well
adapted to calculation (for an example, see ref. [5]). In addition, the algo-
rithm requires very few assumptions for its applicability (besides the usual
manifold-theoretic considerations) and thus furnishes a powerful physical
tool.

IV. LEGENDRE TRANSFORMATIONS
AND THE EQUIVALENCE THEOREM [7, 9]

Given a Lagrangian system (TQ, L, Q), we consider the following two

questions :
A) Does there exist a Hamiltonian formulation of the dynamics of the

system?
B) If so, then when and in what sense are the Hamiltonian and Lagran-

gian descriptions equivalent?
As noted in the introduction, a number of results have already been

achieved along this line. We extend these to the irregular inhomogeneous
case.

A special Hamiltonian system consists of a submanifold M1 of T*Q,

Annales de l’Institut Henri Poincaré - Section A



137PRESYMPLECTIC LAGRANGIAN SYSTEMS I: THE CONSTRAINT ALGORITHM

a function Hi 1 on M 1 (the Hamiltonian) and a presymplectic form c~ 1
on MI, The presymplectic structure on M1 is induced by the canonical
symplectic form cv on T* Q ; this comes about as follows : on T* Q, there
exists a canonical 1-form e given by

where WE T(T*Q) and Q, T*Q are the
bundle projections. The exact symplectic structure on T*Q is then
OJ = 2014 the inherited presymplectic structure on M1 1 being given by
~i 1 == where g1 is the inclusion M 1 ~ T*Q.

Generically, the Hamilton equations of motion

will not be consistent as they stand, and to solve them one must apply the
constraint algorithm encountered in Section III (as elaborated in ref. [5])
with (M1, Hi, replacing (TQ, L, Q).

In this paper, we are only interested in those special Hamiltonian systems
which arise in a natural way from Lagrangian systems. The transition from
Lagrangian to Hamiltonian form is accomplished via the Legendre transfor-
mation FL : TQ --~ T*Q defined by (2. 8). The image of TQ under FL
defines a submanifold [15] M1 of T*Q, the primary constraint submani-
fold [4, 5].

As was mentioned earlier, the symplectic structure cv on T*Q is intima-
tely related to the presymplectic structure Q on TQ. In fact, we shall now
show that FL *8 = J*dL. Let Z E Ty(TQ); then by (4 .1 ),

Since the diagram

commutes, we have by (2 . 8) and (2 .1 ), where y = zTQ(Z),

Thus J*dL = FL *0, so that

Vol. XXX, n° 2 - 1979.
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With regard to question (A), we first consider the hyperregular case.
Then FL is a diffeomorphism, and (T*Q, EoFL’B is the required
special Hamiltonian system. In the general case, FL is no longer a diffeomor-
phism of TQ onto T*Q. Consequently, we cannot define the Hamiltonian
to be E o FL -1; however, it may be possible to define Hi implicitly by

This will give a well-defined function H1 on FL(TQ) iff for any two points
w, z È TQ such that FL(w) = FL(z), we have E(w) = E(z). There is of course
no particular reason why this should be true, and thus we see that in the
general case, there will not exist a special Hamiltonian formalism corres-
ponding to the Lagrangian system (TQ, L, Q) [7d].

This motivates the following definition. A Lagrangian system satisfying
the following two physically reasonable assumptions :

AR 1 ) FL is a submersion onto its image, and
AR2) for v E TQ, the fibers of FL are connected sub-

manifolds of TQ,
will be called an almost regular system.

For such a system, FL(TQ) can be canonically identified with the leaf
space of the foliation of TQ generated by the involutive distribution ker FL~.
In particular, a regular Lagrangian is almost regular iff FL is injective.
We now prove that every almost regular system has a special Hamiltonian

counterpart. Indeed, we need only show that (4.4) defines a single-valued
Hamiltonian. Since each fiber of the submersion FL is connected, it is
sufficient to show that LZE = 0 for Z E ker FL,~. From (2 . 9),

Now Z is vertical and so there (locally) exists a vectorfield W such that
Z = JW. Thus,

by (2.10). But V is vertical so locally V = JY for some vectorfield Y. Then
by (2.6) and (4. 3),

as Z E ker FL*.
Consider a Lagrangian system (TQ, L, Q) and its special Hamiltonian

Annales de l’Institut Henri Poincaré - Section A
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counterpart (Mi, We say that the Hamiltonian and Lagrangian
descriptions of the system are equivalent provided :

1) for every solution XL of the Lagrange equations, exists)
satisfies the Hamilton equations, and

2) if XH satisfies the Hamilton equations, then every XL E XH }
solves the Lagrange equations.
When L is hyperregular, FL is a diftcomorphism of symplectic manifolds.

Consequently, if XL satisfies (3.1) we have, using (4 . 4) :

which implies that FL*XL solves (4.2). That requirement (2) is satisfied
follows simply by reversing the above calculation.
The almost regular case is complicated by the fact that the Lagrange

equations will in general be inconsistent, forcing us to apply the algorithm.
However, we now show that this will also necessitate the application of
the algorithm to the special Hamiltonian system (M1, H1, as well,
and moreover that the two algorithms differ in no essential respect. More
precisely, we will define submersions FLl such that the following diagram
will commute is the inclusion M1 ~ MI _ 1 ) :

The strategy will be to show that == MI. We do this step-by-step,
beginning with == 2. The core of the proof is contained in the following
result [17]: in a point-wise sense, = TMj-, where FL1 is
defined implicitly via g1  FL1 == FL. To see this, let Then
by (4 . 3),

Vol. XXX, n° 2 - 1979.
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which implies that == 0 as FL and consequently FL 1 are

submersions. Hence, FL1*Z ~ TM|1. The converse is similar. In fact, this
suffices to show that

Now, if is such that Z|dE&#x3E; = 0, then (4 . 4), (4 . 5) and a
pointwise calculation show that ( = 0. Again, the converse
is obtained by reversing the calculation.
The above results only hold in a pointwise sense, but it is possible to

find a local basis of vectorfields in T(TQ) which locally span such
that their prolongations by FL1 exist and locally span Consequently,
the above calculations imply that if 03C6L is a secondary Lagrangian constraint
of the form  Z dE )&#x3E;, then there exists a secondary Hamiltonian constraint
ØH = ‘ such that ØL == ØH 0 FLl and vice-versa. In other
words, we have shown that FL1 0 j2(P 2) = g2(M2). If we define the map FL2
by FL2 = it follows that FL2(P2) = M2. Furthermore, as FLl
is a submersion, FL2 is also.
The proof for cases t ~ 3 consists of similar and only slightly more

complicated calculations.
Iterating this procedure, we have that FL1  k1(Pl) = where

k~ == j 2 0 ... 0 jl and hI is defined similarly in terms of the gI. Consequently
the maps FLl given by hl  FLl = FL 1 o kl are submersions of Pl onto M j,
thereby proving the commutativity of the diagram.

Turning now to requirement (1), suppose that XL satisfies the Lagrange
equations (3 . 3). Then, ifFL1 *(XL) exists,

by the commutativity of the diagram. Thus, as FL1 is a submersion, FL1*XL
solves the Hamilton equations

Conversely, we can show that requirement (2) is satisfied by running the
above calculation backwards.

Thus, we have proved the following (no period).

Equivalence Theorem. 2014 Let (TQ, L, Q) be an almost regular Lagrangian
system. Then

1) There exists a special Hamiltonian formulation (FL(TQ), of

the dynamics of the system, and
2) The Lagrangian and Hamiltonian formulations are equivalent.

Annales de l’Institut Henri Poincaré - Section A
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This theorem generalizes the work of Sniatycki [9], who proved a similar
result for homogeneous systems. Sniatycki, in fact, also proved a converse
to the above theorem in the homogeneous case stating that to every reaso-
nable Hamiltonian system (M1, 0, there corresponds an almost regular
homogeneous Lagrangian system. Such a converse does not appear to
exist when Hi 1 7~ 0.

We briefly discuss the assumptions (ARl) and (AR2) which define an
almost regular system. Actually, it takes little consideration to see that

they are seldom true as global statements; however, this need not result
in sharply restricting either the algorithm or the theory we have developed
as a useful tool. In practice, it is almost always possible to find reasonable
physical systems which w ill violate any sort of regularity assumption.
Such violations are dealt with routinely; for example, one may work locally
where everything is manageable, or one may use rather more sophisticated
techniques of a global nature.
As an amusing aside, we note from the above commutative diagram that

one need not transform to the Hamiltonian formulation directly from TQ.
One could, if so desired, and work through the algorithm to the hh step in
the Lagrangian formalism, then transform to the Hamiltonian description
via In this case, M1 would be the « primary constraint sub manifold ».

V. DISCUSSION

We have emphasized the fact that a Lagrangian system in and by itself
defines a canonical formalism, as embodied in its natural presymplectic
structure. From a geometric stance, the Lagrangian formulation of dyna-
mics is therefore essentially no different than the Hamiltonian description.
Furthermore, we have developed a constraint algorithm which allows us
to treat degenerate Lagrangian systems (i. e., to define and solve consistent

Lagrangian equations of motion) directly on velocity phasespace itself.

This, combined with the fact that our techniques are global, enables us to
completely cope even with those Lagrangian systems which have no Hamil-
tonian counterparts. Even though this extreme case may be rare, in practice
the methods we have developed are still useful for it may be much easier
to work on velocity phasespace rather than on the Hamiltonian phasespace
depending on how pathological the Legendre transformation is. In parti-
cular, the system can be quantized directly in the Lagrangian descrip-
tion [3 ], the transition to the Hamiltonian formalism being either unneces-
sary or perhaps impossible.

In addition, we have distinguished a class of « almost regular » Lagrangian
systems and have shown that every such system possesses an equivalent
Hamiltonian formulation.

Vol. XXX. n° 2 - 1979.
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