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Filter theory and covering law

Wawrzyniec GUZ

Institute of Physics, Gdansk University, Gdansk, Poland

Ann. Inst. Henri Poincaré

Vol. XXIX, n~4, 1978,

Section A :

Physique ’ théorique. ’

ABSTRACT. 2014 The main aim of this paper is to compare the operational
approach to quantum axiomatics with the well-known lattice theoretic

one, known under the name « quantum logic approach », and to show some
advantages of the former, which consist in resolving the old troubles connec-
ted with quantum logics : the question of the complete lattice structure of
the logic, the atomicity, and the validity of the covering law in the logic
of propositions. By the way some equivalent forms of the covering property
in a general orthomodular orthoposet are established and its geometrical
sense is clarified in some details. Also the dimension theory for AC-ortho-
posets is developed.

1. INTRODUCTION

Among main attempts to axiomatize quantum theory (here we have in
mind the C*-algebraic and the quantum logic theoretical frameworks) the
so-called « operational approach » (1), in which the basic significance is
attached to the set of states and the set of operations transforming the former
one into itself, seems to be very promising and, at the same time, physically
natural.

It is not a purpose of this paper to describe the operational approach in
its all aspects. Our aim is much more modest ; we want to compare it with
the well-known quantum logic axiomatic scheme, and to show some advan-

(1) This axiomatic method has been advocated and developed (mainly) by Gunson [12],
Pool [26], [27], Mielnik [21], [22], [23], Davies and Lewis [4], [5], [6], Edwards [7], [8],
Srinivas [28], and others.
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358 W . GUZ

tages of the operational approach. Especially, we are aimed here to show
that in the framework of the operational axiomatics we are in a position
to resolve the well-known troubles of the quantum logic approach. Namely,
we are able to answer the questions concerning the complete lattice structure,
atomicity, and the validity of the covering law in the logic of propositions.
It must be emphasized here that although the complete lattice property
and atomicity can also be justified in the framework of the quantum logic
approach by a suitable extension of the propositional logic (see, e. g. [3], [16]),
the covering law, as yet, do not admit a unquestionable physical justification,
although many attempts have been made to clarify its significance (see,
e. g. [17], t/L Here (see Section 4) it appears as a consequence of the
assumed axioms, any of which being of a direct physical significance. By
the way, some equivalent forms of the covering law in a general ortho-
modular orthoposet are established, and its geometrical sense is clarified in
some detail (see Section 3). Also, the dimension theory for AC-orthoposets
is developed (Section 3).

2. AXIOMS, DEFINITIONS, NOTATION

With each physical system we shall associate a triple (B, F, d) consisting
of two non-empty sets : an abstract set B, whose members will be interpreted
as and the set F of filters, whose members are mappings from B into
itself (i. e., any filter transforms beams into beams), and the function d
from B into non-negative reals (d : B ~ R+), called the intensity (or strength)
functional. The properties that we shall require for the triple (B, F, a~ will
be formulated below as axioms.

A. Basic axioms (the first group)

AXIOM 1

AXIOM 2

The two postulates above express physically obvious facts that every filter
must act on beams as an idempotent, and that there is no any new beam
produced by the filter a itself, hence the intensity of the beam am must be
necessarily not greater than that of m.

AXIOM 3

It is convenient to adjoin to the set of beams some fictitious beam, called
the zero beam, the intensity of which is zero. This is the content of the next
axiom :

Annales de l’ Institut Henri Poincaré - Section A



359FILTER THEORY AND COVERING LAW

AXIOM 4

By axioms 2 and 3 the beam mo satisfying d(mo) = 0 is necessarily unique;
we denote it by 0. Of course, a0 = 0 for all a E F.

Also, it will be useful to adjoin to the set of filters the identity and zero
transformations from B to B :

AXIOM 5. The transformations I, 0 : B -~ B defined by 1m = m and
Om = 0 for all m E B, respectively, belong to F. We call them the identity
and the zero filter, respectively.

The beam m in the axiom above is, owing to axiom 3, unique; we denote it
by t1m1 + t2m2 and call the mixture o.f’ml the proportion t1 : t2.
Axiom 6 imposes on the set B the structure of a convex cone. From this
axiom one finds that

in particular, if we put a = I, we get

for all ml, m2 E B and all tl, t2 &#x3E; O.
Hence

B. Partial ordering and orthogonality

By an operdtion on the set B of beams we shall mean any mapping from B
to B. Of particular importance for us will be the set of idempotent
operations on B, as it contains the set F of filters as a subset.
For any two idempotent operations P, Q E we define

The above-defined relation  is, of course, a partial ordering in 
Note also that the definition of the partial ordering above requires every
comparable operations to be compatible (in the sense that they commute),
which, for filters, is physically obvious.

Further, for P, Q E Oi(B) we define

Let us note the following properties of the relation 1:

i) P 1 P implies P = 0,

Vol. XXIX, n° 4 - 1978.



360 W. GUZ

V is used to denote the least upper bound,

iv) 0 implies where ’ A denotes the greater lower
bound o in I 1

C. Further axioms (the second group)

AXIOM 7. For any two orthogonal filters a, b E F, a + b is also a filter.
As a consequence of the axiom above one gets immediately that

Note also that

AXIOM 8

AXIOM 9

From the axioms above one easily finds that :

(1 ) The filter b in the axiom 8 is unique: we denote it by a’.

(6) F is orthomodular, that E F) implies b = a v c for some

(7) Two filters a a and c are compatible e , a H b, if and only y it ab E r and
ab = ba. Furthermore, b, then ab = a A b and there exists also a V b.

Therefore, we find (F, ~, 1, ’, 0, I) to be an orthomodular orthoposet
(the abbreviation « orthoposet » one should read : orthocomplemented
partially ordered set).

D. Last axioms (the third group)

AXIOM 10. 2014 f) For every non-zero filter a E F there exists a homogeneous
beam (4) p such that d(ap) = d(p) ; moreover :

(2) As we know (see, e. g. [29]), c is uniquely determined by a and b, as c = b A a’; we
denote it by b - a.

(3) The compatibility relation ~ is defined, after Mackey [18], as follows : iff

a = a~ V c and b = bl V c for some mutually orthogonal c E F.

(4) A non-zero beam m is said to be homogeneous, if it cannot be written in the form
m = t1m1 + t2m2, where th t2 are positive real numbers, and mh m2 are two other non-zero
beams, being not proportional to one another.

Poincaré - Section A



361FILTER THEORY AND COVERING LAW

ii) If, at the same time, ~ ~ a, then the beam p can be chosen in such
a way that &#x3E; 0.

Formally, the axiom 10 can be written as follows :

where Bh stands for the set of all homogeneous beams.
The first part of the axiom above assumes that Bh, the set of homogeneous

beams, is not only non-empty, but also sufficiently large. The second part of
this axiom we easily find to be equivalent to the following statement, which
was taken as a postulate by Gudder [10] :

(*) If for every pure state (5) p with 1 we have also 1

(where a, b E F), then a  b.

In fact, assume the first part of the statement (*) and suppose that a  b.
Then a ,,~. &#x26;’, and by axiom 10 there exists a pure state p with = 1 and

&#x3E; 0, hence d(bp)  1, which contradicts our assumption. Conversely,
assume the validity of the first part of the axiom 10; then (*) implies ii).
Indeed, let a, a ~ 0 ; then a  &#x26;’, and by (*) there exists a pure state p
such that = 1 and  1, the latter being equivalent to &#x3E; 0

(The existence of at least one pure state p with d(ap) = 1 is guaranteed
by i)).

Therefore, our axiom 10 may be formulated in the following equivalent
form (see [16]) :

AXIOM 10’. 2014 ~) For every non-zero filter a E F there exists a pure state
p such that = 1; moreover :

ii) If for each pure state p, for which = 1, one has also J(&#x26;/?) = 1 for
some b E F, then a  b.

We complete our list of axioms by postulating the following (compare [19]) :

AXIOM 11. For every homogeneous beam p E Bj~ there exists a filter
a E F such that d(ap) = and  for all homogeneous beams q,
which are not proportional to p.
The above axiom asserts that pure beams can be realized in the labora-

tory : there exists a filter (measuring device) a E F answering the experimental
question « Is a physical system in the pure state/?/~(/?) ? o.

(5) By a state we mean any normalized beam m E B (that is, satisfying d(m) = 1 ). Any
homogeneous state will also be called a pure state. For states we will also write m(a)
instead of d(am).

Vol. XXIX, no 4 - 1978.



362 W. GUZ

3. COVERING LAW
AND THE MINIMAL SUPERPOSITION PRINCIPLE

Suppose F to be an atomic orthoposet. We shall say that the covering law
holds in F, or that F possesses the covering property, if

i ) for any a E F and any atom e E F there exists a V e in F,
V e &#x3E; &#x26; ~ ~ implies either b = a or b = a V e (that is, a V e covers a,

provided e  a).

THEOREM. Assume the condition i) to hold in F, F being an atomic
orthomodular orthoposet. Then, the following statements about Fare
mutually equivalent (6) :

(1) Minimal superposition principle (abbreviated to MSP; compare
Gudder [77]):

(2) MSP restrieted (brieHy: MSPR; see [15]) :

(3) Weak MSP + Weak AEP (7) (abbreviated to WMSP and WAEP,
respectively) :

ii) Weak AEP : If e  g V h, h (e, g, h being atoms), then 
+ e (8).

(4) condition (see Jauch and Piron [17]) :
For any a E F and any atom e E F not contained in a, a V e - a is also an

atom.

(B) For the case, where F is a complete lattice, the equivalence of the conditions (1), (4),
(5), (6) and (7) was shown by Bugajska and Bugajski [2].

(1) The abbreviation « AEP » one should read : « Atomic Exchange Property)).
(a) The symbol + is used to denote the least upper bound for orthogonal elements.

Annales de l’Institut Henri Poincaré - Section A



363FILTER THEORY AND COVERING LAW

(5) Varadarajan’s Property (see Varadarajan [30]) :
For any a E F, 0  a  I, and any atom e E F there exist two atoms

el, e2 E F such that a, e2 1 a and e  el V e2.

(6) Covering Law :
For any a E F and any atom implies either b = a or

b = a V e.

(7) Zierler’s Condition (see Zierler [31 ]) :
For any three finite elements (9) a, b, c E F such that b A c = 0 and a  c

one has a = (a V b) A c, provided (a V b) A c there exists in F (1°).
Remark 1. - Note that the Weak MSP implies the following property

of F : (**) V  g, e ~ h (e, g, h being atoms), then g  e V h.
Also, it will be useful to note the following consequence of the Covering
Law (6), which is known under the name Atomic Exchange Property (AEP,
in short) :

f  e V a(a E F ; e,f being atoms) =&#x3E; ~ ~ f V a.
Rernark 2. - Note that (2) admits a simple geometrical interpretation.

To see this, two cases should be considered (compare [7~]):

CASE I : e2. Then f = el and the property (2) reduces to the following :

which means that the line ( ) el V e3 is also determined by another pair of
its points ( = atoms), e and e3.

CASE II : e2. As, according to (2), V e2 V e3 and e  e1
we have e3 ,~ el V e2 (in particular, el, e2, e3 are all distinct). By (2) then
f  el V e2 and f  e V e3 for some atom/ (This means that any two distinct
lines lying in the same plane (here, the lines el V e2 and e V e3, which lie on
the plane el V e2 V e3) have always a common point (When the lines el V ~2
and e V e3 are parallel, f becomes the point at infinity). In other words,
case II tells us that two lines in the same plane always cut.

Proof o, f ’ the theorem. The implications ( 1 ) =&#x3E; (2) =&#x3E; (3) are straight-
forward. To prove the implication (3) =&#x3E; (4), let us consider an element
e V a - a E F, where a E F, e E A(F), e ,~ a (A(F) stands for the set of all
atoms of F). Then, of course, e V a - a ~ 0, and, therefore, there exists
at least one atom contained in e V a-a. Let us suppose, in contrary to the
statement (4), that there are two distinct atoms such that el, e2
 e V a - a, and consider the element el V e2 V e. One can assume, without
any loss of generality, that e  a’, as the inequality e  a’ implies, by the

(9) A filter a E F is said to be finite, if it is a join of a finite number of atoms.
(1°) Note that a U b always exists for finite a, bE F.
(") By lines we mean such elements of F which cover atoms.

Vol. XXIX, no 4 - 1978.
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orthomodularity of F, that e V a - a = e E A(F). Note that e ~ ei as

the inequality e  el V e2 would imply e  a’, which contradicts our

assumption. Note further that, owing to the orthomodularity of F, el V e2 V e
V 0, hence, by the atomicity of F, there is an atom V e2 V e

- el V e2, hence e3  el V e2 V e and e3  e1 V e2. Let us now apply (4) to
the set { e3, el, ~2.~ }’ Note that e ~ e3, as required in (4), since e = e3 1 el
V e2 would imply e V a - a to contain an atom orthogonal to e for
instance), which is impossible. In fact, and e1 1 e imply
el 1 e V a (as e1  a), a contradiction with e1  e V a. By (4) we see that
there is an atom e4 such that e4  e3 V e and e4  e1 V e2. Note that e41 e3,
as el V e2 1 e3, and that e4 ~ e, as e  el Obviously, e4  el Ve2,
since the equality e4 V e2 leads to el, e3 V e (where el 1 e3, e),
hence, by WAEP, e  e3 V el, hence e2  e3 V e  e3 Vel (where e2 1 e3,
e2 ~ which leads, by (**), to a contradiction with
e3 1 el Note further that, by orthomodularity, el V e2 - e4 ~ 0, thus
there exists (by atomicity) an atom e~ V e2 - e~., hence es 1 e4. Also
e5  e3, as el V e2 and el V e2 1 e3. But, by WAEP, e4  e3 V e (where
e41 e3, e4 ~ e) implies e ~ e3 V e4, where e3 V e41 e5 (as e3 and e4 are
both orthogonal to es), hence e 1 es. Also el V e V a - a, and
therefore we have shown that e V a - a contains an atom e5 orthogonal
to e, which, as we already proved, is impossible. This completes the proof
of the implication (3) =&#x3E; (4).
We shall now show that (4) implies (5). Let e E A(F), a E F, ~0, I;

then, by {4), e V a - a E A(F) or = 0 (the latter is when ~ =~ a). When
e V a - a = 0, one gets e  a (by orthomodularity), and we thus have
e  e + f, where f is an arbitrary atom ~ a’. When e V ~ 2014 ~ 5~ 0, we
meet two possibilities:

and then e  e +/ where f is an arbitrary atom  a; and

In the case b) we have, by (4), e V a’ - a’ E A(F). In fact, e V ~ - ~ = 0
would imply e  a’, hence e V a - a = e, which contradicts our assump-
tion b). Applying now (twice) the dual version (12) of the following lemma
due to Varadarajan [29] :

LEMMA l. - Let L be an orthomodular orthoposet, and let

a, a1, a2, ... E L. if a +-+ ai for each i = 1, 2, ... , and if Vai and n ai)

(12) The dual form of the lemma 1 one obtains by replacing the symbols V and A by A
and V, respectively.

de Poincaré - Section A



365FILTER THEORY AND COVERING LAW

and

one easily finds that

which proves the implication (4) =&#x3E; (5).
Now, we shall show that (6) is a consequence of (5). This will be done in

two steps : first we shall prove that (5) implies (4), and next that (4) implies (6).
Suppose (5) to hold in F, and let e E A(F), a E a. One can assume,

without any loss of generality, that ~ 5~ 0. Then, by (5), there exist two atoms
such that V e2; hence e V a  (el V e2) V a = e2 + a,

and therefore

by the lemma 1, hence This proves the

implication (5) =&#x3E; (4).
Assume now the validity of (4) and then prove (6). One needs to show

that e V a covers a, provided e  a. Let e V a &#x3E; b &#x3E; a; then

hence, as we find e V a - a to be an atom by (4),

hence, by orthomodularity,

This proves that e V a covers a indeed, and therefore the implication (4)=&#x3E;(6)
is established.

Before proving the next implication, the implication (6) =&#x3E; (7), one needs
to develop the dimension theory for an atomic orthomodular orthoposet F
with the covering law holding in it. Such an orthoposet will be called below
the AC - orthoposet.

Let A ~ A(F). We shall say that the subset A is independent, if for every

LEMMA 2. Let el, ... , en be a finite set of distinct atoms of F, where
n &#x3E; I. Then { el, ..., ~ } is independent if ans only if

for each i = 2, 3, ..., n.

Vol. XXIX, nO 4 - 1978.
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Proo, f. 2014 It needs to be shown only the « if » part of the lemma, as the
part « only if » is an immediate consequence of the definition of indepen-
dence. To prove it we use arguments of Varadarajan (see [30], Lemma 2. 6).
Assume the validity of (3.1) for the ...,~} and suppose,
in contrary, that this set is not independent, i. e. that ej  Vei for some j,
1  j  n. By (3.1) one finds that j ~ n.
We set, for any m  n,

note that ej  fn. Let k be the smallest positive integer  n such that
(In view of (3 .1 ) one finds k &#x3E; j ) . Then ~ ~ But, as k - 1 ~ j,

a contradiction. The lemma is thus proved.
As a consequence 0 Lemma 2 one gets :

LEMMA 3. - Let a E F be finite, say a = ei, where ei are atoms, and
i=1

be an independent set of atoms  a. Then m  h.

Proof. - Apply the arguments used in the proof of Lemma 2 . 7 in [30] .
As an immediate consequence of the lemma 3 we obtain :

COROLLARY 1. .... ~ } ..., are two independent
n m

COROLLARY 2. - If a E F is finite and b  a, &#x26; 5~ 0, then also b is finite.

.Proof. Apply the orthomodularity and the atomicity of F, and next
use the lemma 3.

COROLLARY 3. Any finite element of F is a join of independent atoms.
Moreover, these atoms can be chosen as pairwise orthogonal.

Proof. Apply the orthomodularity and the atomicity of F, and next
use the lemma 3.

For any finite element a E F we define its dimension to be, as usually, the

Annales de l’Institut Henri Poincaré - Section A
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number of elements of any independent set of atoms, whose lattice sum is a.
By Corollary 1, this number depends only on a, and not on the independent
set in question. We write for this number, and call d the dimension
function on Fr, F~. denoting the set of all finite elements of F. For a = 0 we
set, by definition, = 0. Note that when ~ 7~ 0, there is, by the atomicity,
at least one atom contained in a, so that then ~) ~ 1.
By Lemma 3 we see that for any finite a E F one has

We shall now prove that d is a true dimension function on i. e., that

except the obvious property

the following holds for d:

ii) d is strictly increasing, i. e., a  b(a, b E F ) implies  

d(a V b) + A b) = + for all E Fy, for which there
exists a A b(a 11 b is then finite, by Corollary 2, provided a A &#x26; 7~ 0).
Note that ii) is a consequence of the fact that &#x3E; 0 for a ~ 0, and

of In fact, a  b implies, by orthomodularity, b = a + c for some
non-zero c, c 1 a, hence by and i)

It now remains to prove This will be done in three steps. First, let
~ b E F f be orthogonal : a 1 b ; we shall show that

Let

are independent sets of atoms. To prove (3 . 2) it is now sufficient to note that
the set { el, ..., f’~, ... , fm ~, having a V b as its lattice sum, is indepen-
dent. Indeed, otherwise some member of this set has to be contained in the
lattice sum of the preceding members (by Lemma 3), but since such a member
cannot belong to { el, ..., en }, as the latter set is independent, one then has

(13) Also 0 will be regarded, by the definition, as finite, i. e. 0 E F~:

Vol. XXIX, no 4 - 1978.



368 W. GUZ

as 1 a (in fact, to prove (3.3) one needs to use the following simple
i=1 J-1

implication: ~ ~ ~ ~ 1 z =&#x3E; x = (x V z) 11 y, in which one puts x - 
j i = 1

y = B/ /~~ = ~)? which contradicts the independence of the ... ~ }.
i=1

Thus the set { el, ..., ... , fm } is independent indeed, and therefore
d(aV b) = n + m = d(a) + 

COROLLARY 4. For any Unite ~ ~ E &#x3E; b, also a - b is finite, and

Proof. Finiteness of a - b follows from Corollary 2. Further, by ortho-
modularity of F one has a = (a - b) + b, which allows to be applied the
orthoadditivity (3 . 2) of the dimension function d, by which = d(a - b)
+ which proves the corollary.
Our second step consists in the proof of the inequality :

for finite a, b. Before proving it, one needs to show the following statement:
n

LEMMA 4. For two filters a &#x3E; b, if a = b V et, where ei are atoms,
i= 1

there exist at most n atoms~ ~ a orthogonal with each other and orthogonal
to b such that a = b + B//~.

f

Proof (by induction). - Let n = 1, and let a = b el E A(F). Let fi be
atoms such that ~ ~ ~ fi 1 b and suppose that fz are pairwise orthogonal.
Then, as b  b +/~ ~ one deduces from the covering law that
b V e1 - b + f~, hence, by the orthomodularity, Ii = b V for all i,
and thus we see that i cannot be greater than 1.

Suppose now the lemma to be true for n, and show that it is true for n + 1.

Since

nr i

there exists, as we proved above, at most one atom f0  b V Vei orthogonal

Annales de , l’Institut enrz Poincaré - Section A



369FILTER THEORY AND COVERING LAW

which implies, owing to the covering law,

Now, by the inductive assumption one can find at most n mutually orthogonal
atoms fi, being, at the same time, orthogonal to b, such that

and therefore

where, of course, the atoms from the ’-’ } are mutually
orthogonal and all orthogonal to b. Thus, we have proved the lemma for
n + 1, as desired.

COROLLARY 5. For finite a, b E F one has

~roof. 2014 JLet a, E r~, an let c = a V ~ 2014 ~. suppose c ; then, by
Corollary 2, c is finite (as e  a V b E and from Corollary 3 we know
that c can be written as a j oin of pairwise orthogonal atoms, whose number,
being the dimension of c, is by Lemma 4 (as a V b = b + c) not greater than
d(a). When c = 0, the statement (3 . 4) is trivial. The corollary is thus proved.
From aVb = (a V b - b) + b, where a, one finds by (3 . 2)

hence, by Corollary 5,

as claimed.
In the last, third step, we prove that for finite a, b E F

provided a A b there exists.
Let c = a A b ; we have on applying twice the lemma 1

as a, b ~ c’, and at the same time

Vol. XXIX, n° 4 - 1978.
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Hence, by using (3.5) and Corollary 4 we find

which leads to

and, at the same time,

hence

which is the inequality opposite to (3.6). Summarizing, we have shown the
property iii).

COROLLARY 6 (Zierter’s condition (7)). For any finite a, b, c satisfying
a  c and b A c = 0 we have a = (a V b) n c, provided (a V b) n c there

exists in F.

Proof - Applying and taking into account that b = 0 and

b 11 c = 0, we find

hence

Hence, by the property ii) of the dimension function d we get a = (a V b) A c.
To close the proof of the theorem it remains to be shown the implication

(7) ~ ( 1 ).
Suppose (7) to hold, and assume that e  G B/ (GrB{ ej })

for ally =1,2,...,~ where G={~...,~}, ~~~...,~eA(F).
Suppose next, in contrary to ( 1 ), that there is no an atom f such that

....

I u J being some partition of the index set { 1, 2, ..., n }, I n J == 0, i. e.

that
/ B/B v /B/B _

B

Then, if we apply (7) to

Annales de l’Institut Henri Poincare - Section A
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we shall obtain

t~

hence

which contradicts the assumptions of ( 1 ). This proves the implication
(7) =&#x3E; ( 1 ) and, at the same time, completes the proof of the theorem.

4. FILTERS AS PURE OPERATIONS

It is physically reasonable to assume for filters the following property :

AXIOM 12. Any filter a E F transforms homogeneous beams into homo-
geneous ones.

As a consequence of the axiom above one obtains :

LEMMA 5. Let p E Bh, Bh being the set of homogeneous beams (14),
and a E F. Then :

i) ap is proportional to a pure state q such that q(a) = 1, with d(ap) as
the coefficient of proportionality, i. e.

where q E B~ satisfies = = 1.

ii) ep e = pe, where p e denotes the unique pure state, whose carrier is e (1 s),
that is, pe = carr-1 e.

iii) Every atomic filter e E F is a positively-homogeneous mapping of the
set Bh into itself, i. e.

for all p E Bh and s 

Proof. - Ad. i). 2014 By axiom 12 one can write ap = sq, where q is a pure
state and s E R+, which implies s = d(ap), as = 1. If 0, then

0 and we have q = apjd(ap), hence q(a) = d[a(apjd(ap))] = 1; if

ap = 0, then q may be chosen as an arbitrary pure state such that q(a) = 1.

Ad. ii). 2014 By i) we get epe = = q, = 1. Hence = 

= d(epe) = = 1, hence carr q = e = carr pe, which implies q 

(14) We put, by definition, 0 E Bh for the zero beam 0.
(15) See Section 5.
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as the mapping carr is one-to-one (see Section 5). Thus we have indeed
pe.

where q is a pure state satisfying = 1, hence (see Section 5~ q = pe, and
therefore

as claimed.

THEOREM. - Let a E I, and let e be an arbitrary atom not contained
in a. Then, there exists a V e, a V e - a is an atom, and

where pe is the unique pure state with carrier e.

Proof - To prove that a V e there exists, let us assume for some c E F to
satisfy c &#x3E; a, e. Then, as pe by Lemma 5 ii), we have

hence

since a’ H e(16) (see the property (7) on page 360).
Hence, as by Lemma 5 i )

for some pure state p with = 1 (hence carr p  a’), one finds

hence, after applying the functional d to (4.1), one gets

hence

since 0 (Indeed, = 0 would lead to e = carr a, which
contradicts our assumption that ~ ~ a). The equality (4. 3) leads immediately
to carr /? ~ c.

Note now that there exists a V carr j9, as a 1 carr p (see above), and that
a V carr p  c, c and carr p  c. Since (carr p)’ ~ a’ (16), one finds
by the property (7) on page 360 that

This follows from the well-known facts (see, " 

e. g. [29]) that in any orthomodular
orthoposet x  y implies x ~ y, implies x ~ y’.
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hence, by applying the functional d to (4 . 4) we get
~

which implies

Collecting the inequalities

carr p + a  c = any upper bound for a and e, we find that carr /? + a
= ~ V ~, hence ~ = carr p E A(F).

Finally, using the inequality carry? ~ ~ and the Lemma 5 and 5 ~’)
one finds that

(carr p)pe = = 

or that

as claimed.

COROLLARY 7. F is an AC-orthoposet.

COROLLARY 8(~).2014If~eF~~ 0, and if e is any atom 1;. a’, then there
exists e V a’, e V a’ - a’ is an atom, and

Proo,f: 2014 Only the last equality has to be proved. By Lemma 5 i) we get

for some pure state/? satisfying ~) = 1, hence ~ as

= wmcn completes the proot.
We thus see that the action of a filter a E F on pure states may be equi-

valently described as the action on atomic filters e E A(F) defined by the
formula :

This is the so-called Sasaki projection on the filter logic F.

5. TWO EMBEDDINGS OF THE FILTER LOGIC

We shall say that two states ml and m2 are mutually exclusive or ortho-
gonal [10], and write m 1 1 m2, if for some filter a E F one has = 1 and
m2(a) = 0. This orthogonality relation is, obviously, symmetric.

(17) Under another axiom system a similar theorem was proved by Gunson [12].
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The set P of all pure states endowed with the above-defined orthogonality
plays a very essential role in quantum axiomatics (see, e. g. [1], [l4], [15D.
We shall call the pair (P, 1), 1 being the orthogonality defined above
restricted to P, the phase space of the physical system.

Let S £ P; define S1 to be the set of all pure states such that p 1 S (read :
p 1 q for all q E S), and write S - instead of Obviously, S c S - . When
S = S -, we call the set S closed, or, to be more precise, 1 - closed. The
family C(P, 1) of all closed subsets of P we shall call the phase geornetry
associated with the physical system under study (see [14D. It is not difficult
to check [14] that, under set inclusion, C(P, 1) becomes a complete lattice,
whose joins and meets are given by

({ S j } being an arbitrary family of closed subsets of P), and that the corres-
pondence S t-~ E C(P, 1)) defines an orthocomplementation in

C(P,1) (i 8). Moreover, the axioms that we have assumed in Section 2 imply
the following [~6] :

i) The filter logic F is atomic (actually, it is also atomistic, see [16]), and
there is a one-to-one mapping /? )2014~ carr p, p E P, of the set P of pure states
onto the set A(F) of atoms of F such that carr p  a = 1;

ii) The phase geometry C(P,1) is atomistic;
iii) For every a E F the set ~ : = { ~ E P : p(a) = 1 } belongs to C(P, 1),

and the mapping a is an orthoinjection of the filter logic F into the
phase geometry C(P, 1).
Another embedding of the logic F into an orthocomplemented complete

lattice can be realized by forming the so-called completion by cuts of F
(see [3J for details). Alternatively, this embedding one can construct as
follows. Define for any M ~ F

and let F = { M ç; F : M = }; obviously, M ç; for any M ç; F.

With respect to the set inclusion F becomes a complete lattice with joins
and meets given by formulae identical with (5.1) and with the orthocomple-
mentation given by M ~ M-L. F coincides with the usual completion by
cuts of F (see, e. g. [19], Theorem 2.4), as for every M £ F one

= MV 6, where

(18) For the empty set 0 we put, by definition, 0~ = P, which leads immediately to

Annales de l’Institut Henri Poincaré - Section A



375FILTER THEORY AND COVERING LAW

(we use here the notation of Bugajska and Bugajski [3]). Note also that [3J

where

The embedding of F into F is given by the mapping a H f a ~ - a } .LL,
which, as it may easily be seen [3], has the desired properties of an ortho-
injection.
We shall now state some facts about F, which follows from the axioms

and from the properties of F.

PROPOSITION 1. F is atomic and satisfies MSPR.

Proof 2014 Atomicity of F is obvious, as it follows directly from the atomi-
city of F. Indeed, let M E F, M ~= { 0 }; then there is a non-zero a E M, and
therefore, by atomicity of F, ~ ~ ~ for some e E A(F), hence { 0, e ~ ~ M

(we use here the fact that, for imply b E M),
which proves the atomicity of F, since the subsets of the form { 0, e ~ (and
only these subsets), where e E A(F), are the atoms of F.

Similarly, MSPR holding for F implies the validity of MSPR for F. In
~O,e~ ~ ~O,e3~

and ({ 0, U { 0, e2 }) v 6. This, as it may easily be seen, is
equivalent to the following assumption: e  e1 V e2 V e3, e ~ e3, e  el 
which implies (see the MSPR for F) the existence of an atomfE A(F) such
that f  e V e3 and f  e1 V e2. This may equivalently be written as

or as

which shows that MSPR holds in F. This completes the proof of the pro-
position.
Now we will want to show that the orthomodularity of F implies the

orthomodularity of F. However, in order to prove such a statement, we
have to assume an additional postulate (19) :

AXIOM 13. For each sequence { ~ }~=i 1 of pairwise orthogonal atomic
00

filters there exists a filter a E F such that = for all homoge-
i=1

neous beams p E Bh.

This is a weak form of the so-called « orthogonality postulate o, the latter being
commonly accepted in the quantum logic axiomatics.
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Note that the filter a in the axiom above is unique, as a = Indeed,
t=i

as ei1 ~ a1 for all i, we find by using the property (*) from Section 2 that
n

for all /. If now b  ei(i =1,2,...), we get b  B/c, i for all

n = 1, 2, ..., hence

which leads to

i=1
00

Hence a1 ~ bl, which implies a  b by (*). This shows that a = ei, as
i= 1

claimed.

Now, having proved that for any countable family of pairwise orthogonal
atoms there exists its lattice sum in F, we are in a position to show the ortho-

modularity of F. This can be done in an exactly the same way as the proof of
Corollary 3 in [3]. Thus we can write :

PROPOSITION 2. F is orthomodular.

Summarizing, F becomes a complete atomic orthomodular lattice satisfy-
ing MSPR, hence we find F to be also atomistic (by atomicity and orthomodu-
larity) and possessing the covering property. Therefore, our axioms 1-13,
implying the above-mentioned properties of F, are sufficient to get
the well-known Piron-MacLaren’s representation theorem for F (and
therefore for the filter logic F also) see, e. g., [25], [19], [30], [2~]2014if, of
course, we assume F to be irreducible and of the projective dimension not
smaller than 4.

Note that the irreducibility of F is not a restrictive assumption, as if it
does not hold, then any irreducible part of F may be taken into consideration
in place of F. Moreover, the irreducibility of F can also easily be understood
from the physical point of view, as it may be formulated in the form of the
so-called « superposition principle » for F (compare [9]). This is the content
of the following statement :

PROPOSITION 3. F is irreducible if and only if every line in F has at least
three distinct points ( = atoms) lying on it.
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Proof : F is irreducible if and only if every line in F has at least three
distinct points lying on it (see, e. g. [25]), but, as the atoms of F are precisely
of the form { 0, e }, where e E A(F), this will be fulfilled when and only
when any line in F contains at least three distinct points.
Note that the physical significance may be assigned to the following corol-

lary to the proposition above (see [13], [14]) :

PROPOSITION 4. F is irreducible if and only if the set P of pure states
possesses the following property (20) : For any pair p, q of distinct pure
states there is a pure state r ~ p, q such that r ~ {p, q}-.

Proof 2014 Replace pure states by their carriers, and then apply the pro-
position 3.

Remark. - Note that the two embeddings of the filter logic F described in
this section are, in fact, the same, as one can easily find C(P,1) to be ortho-
isomorphic with F. To prove the latter it suffices to replace pure states by
their carriers and then apply theorems 2.4 and 2. 5 from [19].
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