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Iteration of endomorphisms on the real axis
and representation of numbers

B. DERRIDA (*), A. GERVOIS, Y. POMEAU
C. E. N. Saclay, B. P. 2, 91190 Gif-sur-Yvettc, France

Ann. Inst. 

Vol. XXIX, n° 3, 1978,

Section A :

Physique theorique.

ABSTRACT. - We study a class of endomorphisms of the set of real
numbers x of the form: ~ 2014~ ~/M, ~ E [0, 2]. The function f is continuous,
convex with a single maximum but otherwise arbitrary; A is a real parameter.
We focus our attention on periodic points : x E [0, 2] is periodic if there

exists an integer n such that the nth iterate of x by ~.f coincides with x.
Because of their special importance, we restrict ourselves to periods invol-
ving the maximum.
As shown by Metropolis et ul., for each mapping, one may represent

in a non ambiguous way these periods by finite sequences of symbols Rand L
[the i th iterate of the maximum is represented by R (right) or L (left) depen-
ding on its position relatively to maximum] and these sequences have many
universal properties. For example they can be ordered in a way which does
not depend on details of the mapping.

In this paper, we prove two points :
i~ the ordered set of all the symbolic sequences possesses a property

of internal similarity : it is possible to find a monotonous application of
the whole set into one of its subsets ;

ii3 we give a simple criterion for recognizing whether a sequence is allowed
or not and to know in which order two given sequences appear.
For reasons of universality property, it will be sufficient to derive these

results for the simplest case, namely the « linear )) transform, i. e.

We are led to define an expansion of real numbers analogous to 03B2-expansion
of Renyi. A few other properties of this peculiar case are briefly discussed.

(*) Institut von Laue-Langevin, B. P. 156, 38042 Grenoble Cedex
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306 B. DERRIDA, A. GERVOIS, Y. POMEAU

RESUME. 2014 On etudie une classe d’endomorphismes de 1’ensernble des
nombres réels x, de la forme

La fonction f est continue, convexe avec un seul maximum mais par ailleurs
arbitraire ; A est un parametre reel.
Nous nous interessons surtout aux points périodiques: x E [0,2] est perio-

dique s’il existe un entier n tel que Ie nième itere de x par 03BBf coïncide avec x.
En raison de leur importance particuliere, nous nous limitons aux periodes
comprenant Ie maximum.
Comme l’ont montre Metropolis et ses collaborateurs, ces periodes peu-

vent etre representees de maniere non ambigue par des sequences finies
de symboles R et L [Ie itere du sommet est represente par R (« right »)
ou L (« left ))) suivant sa position relative par rapport au maximum] et
ces sequences ont des proprietes universelles. Par exemple, on peut les
ordonner d’une maniere qui ne depend pas de 1’application.
Dans cet article, on clarifie 2 points :
i) 1’ensemble ordonné de toutes ces sequences symboliques presente

une propriete d’homothetie interne : on peut trouver une application mono-
tone de tout 1’ensemble dans l’une de ses parties,

ii) on donne un critere simple pour decider si une sequence est autorisee
et pour savoir dans quel ordre relatif deux sequences apparaissent.
En raison de l’universalité, il suffit de montrer ces proprietes pour Ie cas

Ie plus simple, 1’application « lineaire »

On est amene a definir un developpement des nombres reels semblables au
03B2-développement de Renyi. Quelques proprietes supplementaires liees a ce
cas particulier sont egalement discuses.
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1. INTRODUCTION

Let ,f’ be a real valued function defined for 0  ~  2 which satisfies
the following requirements

Let A be a real number 0  ~,  2//(c). Consider the transformation
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308 B. DERRIDA, A. GERVOTS, Y. POMEAU

a) in the general case, f(x) may not be convex,
b) for f(x) = x(2 - x).

of the interval [0,2] into itself. The lth iterate ofTB denoted as is defined

by recursion, T~,1 ~(x) - T,(~), = T~, [T~,~ -1 ~(x)], l &#x3E; 1. The number x

belongs to a period of length k iff x while T~(jc) ~ x, l  k,
and, given x, this will happen only for particular values of ~,. The periods
containing c and the corresponding values ~, are of special importance and
we will consider only these in what follows. Such a period may be repre-
sented by a finite sequence of signs ± 1 (or of letters Rand L) as follows.
Without loss of generality we start with c. If T~(c) - c, then c belongs to
a period of length 1 and we denote this period by a blank (or 0 or the let-
ter b). If T~(c) ~ c and c belongs to a period of length k &#x3E; 1, then

c = 0, while c ~ 0 if 1  l  k - 1. The period (or
the values of A for which this period exists) is represented by the k - 1

signs of the differences c - (or replace each + 1 by an L and each
- 1 by an R). Thus for example, if T ;.(e) &#x3E; c,  c and T~3)(C) = c,
then c belongs to the period (- 1, + 1) (or RL).
Note that if T~(c)  c, then c, l &#x3E; 1 is impossible under the

conditions on f Thus every period starts with a - 1 (or the letter R).
Also not every finite sequence of signs will represent a period.

Annales de l’Institut Henri Poincaré - Section A



309ITERATION OF ENDOMORPHISMS ON THE REAL AXIS

The periods are completely ordered by the values of A corresponding
to them. Thus if the periods P = (j" 1 (j" 2 ... ~k -1 1 and Q = ! 1 ! 2 ... ~~ -1,
03C3i = ± I 

= ± 1, arise for the values Ap and 03BBQ of 03BB, then P is said to be
less (greater) than Q if Àp is less (greater) than ~Q.
One may ask several questions :
1. Given a finite sequence of signs ± 1 (or of letters Rand L), how to

decide whether it represents a period (i. e. whether a value of À exists for

which this is the period) ? When it does we say that the sequence is allowed.
2. Given two allowed sequences P and Q, which one is smaller ?
3. Does the answer to the above questions depend on the details of f?

According to a theorem of Metropolis et al. [7] the answer to question (3)
above is « no » for a large class of functions f, in particular for those satis-
fying conditions i)-iii) above. One may even relax some of them. We refer
to this property as the universality property. In what follows we will try
to answer the other two questions by choosing a particular f for which all
calculations can be carried to the end.

Metropolis, Stein and Stein (1] give an algorithm to get all the allowed
sequences (U sequences in their paper, MSS sequences here).
The prescription is quite complicated and there is no simple relation

between the length k - 1 of the sequence and the position on the real
axis of the corresponding parameter A. One of the aims of this article is to
give a simple rule for ordering all sequences. As the order of occurrence
of the MSS sequence is universal, it is sufficient to study it on a special
transformation for which all necessary calculations may be done. We have

considered the « broken linear )) transformation

where g(x) is the function

Obviously, is not differentiable at x = 1 and condition i) is violated.
Nevertheless, the order of the periods is the same as for functions/satisfying
conditions ( 1.1 ) except that some of them (mostly « the harmonics )))
are absent [1]. It is easy to see which ones and why and then to reconstruct
the whole set of MSS sequences.
As shown in section 4, many properties of these sequences are connected

with a representation of the real numbers, which we have called the Â-expan-
sion by reference to the 03B2-expansion of Renyi [2]-[3]. This Â-expansion is
defined as follows. Given À, 1  A  2, the Â-expansion of a number x
I  x  2 in the basis aL is represented by the sequence Co, Cl, c2, ... such
that

Vol. XXIX, nO 3 - 1978.
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This is an expansion of the number x, as I  1/~,m. The digits
used in a À-expansion are + 1 or - 1, although the digits used in a 03B2-expan-
sion are 0 or 1 for 1  /3  2 (The digit 0 does not really exist in the
~-expansion, as it cannot be inserted between two non zero digits, it just
marks the end of a 03BB-expansion when it is finite).
A particular case of ),,-expansion is the so-called auto-expansion of the

basis, that is the set { constructed by choosing for A and x the same
number. The « digits » of these auto-expansions are simply related with
the symbolic sequences of Metropolis et al. This connection becomes clear
when one considers the particular « broken linear » transform of

eqs. ( 1. 3)-( 1. 4).
More precisely, in sections 3 to 5, we derive :

i) a criterion indicating whether a given sequence of symbols R and L
(in the sense of Metropolis et does or does not correspond to a period
(in other term, whether this sequence is « allowed » or not) ;

ii) the ordering criterion for the periods ;
iii) the Sarkovskii theorem [4-5-6-7] ;
iv) some complementary properties of the ~-numbers related to the

broken linear mapping L~.
In part 2, we show that the whole set of MSS sequences is similar to some

parts of it. This property is called internal similarity and is proved just by
using the algorithm of construction given by Metropolis et al. After recall-
ing briefly the main results of ref. [1], we display the mapping which mani-
fests the internal similarity property. The sequences given by the construc-
tion of Metropolis et al. is countable and fully ordered. Thus, one may
define accumulation points for this set. Using the law of internal similarity
we may show that the set of accumulation points has the power of the
continuum.

2. INTERNAL SIMILARITY

In this section, we show that the family of MSS sequences is similar
to some of its parts. This result does not depend on the particular expression
of the function f(x) of eqs. (1.1-1.2).

After recalling some notations and defining the ordering of the sequences,
we build recursively all the MSS sequences (subsection 2.1).

de 1’lnstitut Poincaré - Section A
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It is then possible to define mappings of this set of sequences into itself
which preserve the ordering relation. We exhibit a particular class of them
which reduces the domain of values for the parameter ~. (subsection 2.2);
we get thus the principle of internal similarity.
At the end of the section, we study other properties of this mapping

considered as a composition law ; one consequence of its existence is that
the accumulation points of the parameter set associated to the MSS family
of sequences has the power of the continuum.

2.1. The construction of Metropolis et al.

We intend to order the values of ~, for which MSS sequences exist i. e.

values of }, for which

with

The application is defined recursively by

Following Metropolis et al. [1] one may associate to this period a sequence
of (k - I) characters or symbols R (« right ») or L ( «left))) in the following
manner :

where

This may be written also

with vi,  positive integers.
From now on, we shall denote by P or Q such sequences.
Several sequences may exist for a given k. For example, if lc = 5, 3 sequen-

ces are found in the construction of Metropolis et al.:

RLR2, RL2R, RL3.

These « allowed )) sequences correspond to three values ~1, ~.2, ~3 of the
parameter }...

In their paper, Metropolis et al. [1] show that the ~, associated with the
allowed sequences are ordered in a way which is independent offprovidedf
belongs to a large enough class of functions (roughly conditions 1.1).
In the example above, one shows in this way that ~,1  ~  ~3’
Vol. XXIX, nO 3 - 1978.
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Remarks. 2014 a) All sequences of Rand L characters are not allowed. For
example no allowed sequence begins with an L since in that case, we should
have  c,  since is strictly increasing for
x  c and the equation T~(c) = c is never satisfied.

b) The sequence P corresponding to k = 1 [TB(c) == c] has length 0
and we shall denote it from now on by the symbol b ( = blank)

Ordering relation on the sequences

Being given P and P’ associated with À and ~,’, we shall write

This orders totally the MSS-sequences. Note that there is no simple
connection between the length k - 1 (or cardinality) of a sequence and its
order. For example

2.1.1. HARMONIC AND ANTI-HARMONIC MAPPING

Again let P be an allowed sequence of (k - 1 ) characters R or L.
The harmonic of P is defined by the mapping H : P ~ H(P) where

with 6 = L (resp. 7 = R) if P contains an odd (resp. even) number of R
symbols. For example,
when Pi 1 = RL2R and RLR2
one gets H(P1) = RL2R3L2R and H(Pz) = RLR2LRLR2.

Metropolis et al. [1] prove that, if P is allowed, H(P) is allowed too (their
theorem 1 ) ; we have P  H(P) and the harmonics are adjacent i. e. no

allowed sequence exists between P and H(P). When we iterate the process

In a similar way, the anti-harmonic mapping A : P 2014~ A(P) is defined as

with T = R (resp. T = L) if P has an odd (resp. even) number of R symbols.
For the sequences P1 and P2 of the above example :

In general, P being an allowed sequence, A(P) is not allowed and must be
considered only as a mathematical tool.

de Poincaré - Section A
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Let Ai 1  )B,2 be two values of A corresponding to two allowed sequences P1
and P2. The theorems of Metropolis et al. give an iterative algorithm for
constructing all the allowed sequences between P and P2, that is any sequence
corresponding to a value say ~ such as  A*  a~2. For that pur-
pose construct H(P1) and If H(P1) = ... and 
= 

..., ~u 1 ~ then P* is an allowed sequence lying between P1
and P2 and it has the smallest possible length. One may replace PI or P2
by P* and start again.

Example. Consider Pi 1 = RLR4 and P2 - RLR4LR, then P2 &#x3E; P 1,
H(P1) = RLR4LRLR4, A(P2) = RLR4LRLRLR4LR and P* = RLR4LRLR.

2.1.2. CONSTRUCTION OF ALL PERIODS

The above prescription makes possible the construction of any allowed
sequence between two given allowed sequences PI and P2 corresponding
to ~.1, Àz with )B,1 1  a~2.

If A  c/f(c), = c has no solution. The first period appears for
~. = and corresponds to a sequence of length zero,

P 1 = b.

When i increases the set of sequences RLi increases (i. e. RLi &#x3E; RL~
if i &#x3E; j ) it is easy to see that the greatest allowed value for /L, i. e. ~, = 2
corresponds to the « limit )) sequence when i ~ oo, which is written RL~
for obvious reasons (*).

(*) The notion of infini te sequence is intuitive in the case of RL 00. More generally,
as the set of all allowed sequences is countable, there are certainly accumulation points
of the corresponding set of the parameter ~,. These accumulation points correspond to
infinite sequences that are defined as follows. One first considers an equivalence relation
in the monotonous sets of sequences. Let { and { be two increasing sets [{ is

increasing iff Sl &#x3E; Sk ~~ i &#x3E; k], then { .., ~ any Q that is larger than any P.
is also larger than any P~ and conversely. If { is increasing and { decreasing,
then { P~ } ~ { P~. } iff, given a sequence Q larger than any Pl, a sequence Pl exists that
is smaller than Q although any P’~ is greater than any Pi. The quotient set of the monoto-
nous sequences by this equivalence relation is by definition the set of the infinite sequences.
They are totally ordered in an obvious way, finite allowed sequences being a subset of
them. Furthermore, this set of infinite sequences is closed under the formation of accumu-
lation points by increasing and decreasing sets. A simple example of such an infinite
sequence is sequence RL~ above. Similarly, the set { l E fBJ } is increasing
although { RLR2/+1, 1 is decreasing (fig. 2). It is not difficult to show that, in the

FIG. 2. - Values of the parameters defining the sequences Rand RLRn (n = 0,4) ;
I is the accumulation point.

Vol. XXIX, nt) 3 - 1978.
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All sequences appear when ~ increases from to 2 between the limi-

tmgs equences

Using the method of Metropolis et al. which extends at once to the case
of infinite sequences, one gets step by step all the allowed sequences which
are between  and The first steps of the construction are shown on
table I. As P 1 and P2 do not depend on the exact form of the defining func-

the ordering is universal.

TABLE I. Construction of all the first sequences
by the MSS method.

Before ending this subsection let us point out some auxiliary results
which are of some interest and will be recovered in a simple manner there-
after

above sense these two sets define a single accumulation point that is the infinite sequence

RLR°°. It must be noticed that it is yet not proved-although presumably true as judged
from numerical calculations-that the upper bound of the increasing set { } and the
lower bound of the decreasing set { ~,21+i ~ are the same. This common bound, if it exists
should be the value of 03BB corresponding to the infinite sequence RLR~. For the broken
linear transform to be studied below, any infinite sequence defined as above, does actually
correspond to a single value of the parameter A.

Annales de l’]nstituf Henri Poincaré - Section A
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i ) R is the smallest sequence (after b) as no sequence can be built between b
and R. So R  RLn for every integer n.

ii) if p  n, R  RLp  RL".

Between and RLn, all the sequences begin necessarily by the
pattern RL"R" ... Conversely  Q  RLn whenever Q = RL"R" ...,
x 5~ 0.

2.2. The internal similarity

One can thus reconstruct the whole set of allowed MSS sequences starting
with P1 = b and P2 - RLN, N arbitrarily large but finite. We will see in
this section that this set is similar (in a sense to be made more precise)
to some of its own parts; we will refer to this property as the law of internal
similarity.

Starting with Pi and P2, Pi  Pi  p;  P2, one can, by the algorithm of
Metropolis et al. described above, construct all sequences P’ such that

Pi  P’  P;. With a convenient choice ofPi and PZ we will find a mono-
tonous bijection between the sequences P, PI  P  P2 and the sequences P’,
Pi  P’  P;.

2.2.1. THE * COMPOSITION LAW

Let P = 03C3103C32 ... with 03C3i i either R or L, be a sequence, allowed
or not, of p - 1 symbols. Similarly let Q be a sequence of n - 1 symbols R
or L. Define 1 I, while for p &#x3E; 1

if the number of R symbols in Q is even, and

otherwise.
For example, R * RLn = RLR2n+1, while

Some properties of the * mapping may be noted.

i ) For two sequences Q 1 and Q2 of symbols R or L, Q 1 * Qz = Q2 * Q 1
in general. For example, R * RL = RLR3, while RL * R = RL2RL.

ii) The associative law holds, i. e.

This can be verified directly by first observing that the number of R sym-
bols in Q1 and Q2 has the same parity as that number in Q2.
Vol. XXIX, nO 3 - 1978.
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iii) If H(P) is the harmonic and A(P) the anti-harmonic of P, then,

So that for any Q,

iv) If P and Q are allowed sequences, then so is P * Q. The period of
P * Q is the product of the periods of P and Q.

v~ If P, Q 1 and Q2 are allowed sequences and Q 1  Q2, then

P * Q1  P * Q2.
A direct proof of this point is rather tedious. It becomes obvious by using

the criterion of classification and ordering of MSS sequences given in

section 4.

vi) Let the allowed sequences P, Ql, Q2’ Qi. Q2 satisfy

Then corresponding to any allowed Q’ with Qi  Q’  Q2 one can
always find an allowed sequence Q such that Q’ = P * Q.
We show on Table II the first allowed sequences between Q i and Q2 when

P = b, Rand RL respectively.

TABLE II. - MSS method applied together to sequences Q of lower period
k( - 4) and to sequences between Qi = R, Q 2 = R * RL~
cation of periods by 2) and sequences between Q"1 = RL, Q2 - RL * 

Annales de l’ Institut Henri Poincaré - Section A
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For any allowed sequence Q, one has

and

Let P 1 = b, P2 = RLn and P and Q any allowed sequences, P1  P,
Q  Pz. Set P; = Q * Pb i = 1,2 ; P’ = Q * P. Then to every P corres-
ponds a P’. Conversely for any P’ with Q * P 1 = Pi  P’  P2 - Q * P z
corresponds a P with P1  P  P2, P’ = Q * P.

This is the law of internal similarity alluded to at the beginning of the
section.

Remark 1. Given any sequence Q, can it be written as Q1 * Q2 with
b, Q2 ~ b ? As the number of symbols in Q2 is (~i 1 + 1 )

(q2 + 1) " 1 where ql and q2 are the numbers of symbols in Q 1 and Q2
respectively, one sees that if the number q of symbols in Q is such that
q + 1 is a prime integer, then one cannot factorize Q as Q 1 * Q2. Even
if q + 1 were not a prime integer, the factorization of Q may not exist.
For example, the (allowed) sequences RL2R2, RL3R and RL4 cannot be so
factorized. Such sequences are called primary sequences.
For a given q, the number of allowed sequences of length q is known [1]

and is roughly + 1). If q + 1 is prime, all of these are primary. If
q + 1 is composite, the number of factorizable allowed sequences becomes
rapidly negligible for large q. For q - 14, there are 1,091 allowed sequences
(2~/15 2014 1,092.3), out of which 6 are non-primary.
Remark 2. The mapping P ~ Q * P, Q fixed, considered above defines

the law of internal similarity, because of property above. The other
mapping P 2014~ P * Q does not define any law of internal similarity.

2.2.2. ACCUMULATION POINTS

Let Q be an allowed sequence, so that

is allowed. Let 03BBj and be the values of the parameter 03BB for the sequences
Q*’ * b and Q*’ * RL" respectively. Then according to (v) and above

 for any j. The and tend to definite limits Aoo
and ~ with It is conjectured that If so, we may allow
the infinite sequence since * P for any allowed P will be indepen-
dent of P (fig. 3).

This infinite sequence may be also considered as an accumulation point,
and we shall prove that the set of the accumulation points has the power
of the continuum.

Vol. XXIX, no 3 - 1978.
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Proof. Let Q1 and Q2 be two allowed finite sequences and suppose
there exists a finite sequence P’ such that Q 1 * P  P’  Q2 whatever P is.
This is the case, for instance, with Rand Q2 - RL. We look to the
sequences

The property of internal similarity shows that any sequence of the
form (2.11) is included between the sequence corresponding to P = b
and to P = RL~ respectively, and any sequence located between these
two bounds is of the form (2.11). Let us call this subset an interval in the
set of the allowed sequences.
We shall consider the structure of these intervals as

If N = 1, either ell 1 = 1, {31 == 0 or a 1 = 0 and J31 = 1. The intervals
generated by these two different choices are [Q 1 * b, Qi 1 * and
?2 * b, Q2 * RL 00[. These intervals are disconnected due to our particular
choice of Ql and Q2 (a limite sequence P’ exists such as RL~  P’

 Q~ ~ ~).
Let N = 2, then four intervals are found, corresponding to four different

choices for { and { ~3~ ~ :

As Q2 &#x3E; Qi * P whatever P is, and as the mapping Q’v is strictly monotonous
(if P &#x3E; Sand P -# S, then Q * P &#x3E; Q * Sand Q * P "# Q * S), the above
four intervals are disconnected, the first two being included into [Qi * b,
Q 1 * and the two others into [Q2 * b, Q2 * RL 00[. Iterating this
construction, one finds at the order N, 2N disconnected intervals, these
intervals being included by pair into the intervals of the previous order. This
construction is similar to the one of the triadic Cantor set, and generates
a set of accumulation point with the power of the continuum. As the whole
set of the accumulation points is a subset of the values of the real parameter 03BB,
the whole set of the accumulation points has the power of the 
nuum (fig. 4).
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3. À-EXP ANSIONS

In subsections 3 to 5, we shall study the « broken linear » mapping

which satisfies assumptions ii) and of (1.1) in the introduction not i)
as it is not differentiable at x = 1. Doing this, we are able to make explicit
calculations and to find the values of the parameter ~, corresponding to the
various periods and their order of occurrence which must be the same as
for more general mappings (1.1-1.2) because of the universality property.
A difficulty will remain, as, in example (3 .1 ) several periods may collapse
at the same value A. This ambiguity may be removed either by using results
of section 2 or by studying more general endomorphisms [8].

Practically, we replace the MSS sequences of symbols Rand L by some
related finite sequences of + 1 and - 1, that we denote f act }. We shall
see that (eq. 4.8)

with

All sequences { with + 1 and - 1 are not allowed and we get a crite-
rion to select them (theorem 2 or eq. 4.13). Then, we are led to consider

Vol. XXIX, nO 3 - 1978.
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polynomials which are simply related to these sequences. The largest real
root of these polynomials corresponds to the value of the parameter in
eq.. (3.1) such that 1 belongs to the period (Theorem 3). The order of
occurrence of the periods is then given by the natural ordering relation on
these sequences.
To prove all the above statements, we have introduced the 03BB-expansions

of numbers in analogy with the /3-expansion of Renyi [2] and Parry [3].
Definitions and theorems related to À-expansions are given in section 3 ;
the application to the MSS sequences will appear in section 4 only. In sec-
tion 5 we give some complementary results.

3.1. Definition of the À-expansion

Given A, 1  03BB  2, to each real x, 1  x  2 we associate its 
basis which is denned at each order n by the two numbers 

c" depending such that

We take as initial conditions Co = 1 (and necessarily I). If
0, then cn’ = 0 for every n’ &#x3E; n and it is easy to show by induction

that, for every m,

Our standard notation for a 03BB-expansion will be { ci }, as usual for denume-
rable sets. The expansion { ci } is unique, the sequence xn converges to x
and two distinct numbers x and y have distinct }B’-expansions. The quantity

which depends both on x and A may be thought as a remainder and

Notice that the sum 03A3cn+k 03BBk has then the same sign as cn + 1. i. e. the rest

~=1

has the same sign as the first neglected term.

de Section A
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Conversely, for a given 03BB, a sequence Co, ... of ± 1 (eventually
with 0 after a finite order) is the À-expansion of its sum x = if and

only if

The À-expansion looks very much like the ~3-expansion of Renyi [2]
and Parry [3] for real numbers. The main difference is that in the 03B2-expan-
sion of x

c~ is a non negative integer 0 ~ [~], [~8] being the integer part of the
basis, although in },-expansions C i = ± 1. Theorems are not very different
from Renyi’s but slight complications appear in the proofs as functions

00

of ~,-1 as c~/a~‘ are, a no more monotonous in the case of the

i=0

03BB-expansion.
It seems arbitrary to study only the ~ -expansion of numbers ~,1 1  x  2.

It is sufficient for our purpose, nevertheless the definitions (3 . 2-3) and results
arc still valid where setting for initial conditions [x] where [x]
is the integer part of x 1. The extension to ~, &#x3E; 2 is less obvious
as this implies the use of more than two digits.

Remark 1. The expansion is defined by an ordered sequence of + 1
and - 1 (and perhaps of zeros from a certain order) which depends both

on the basis )" and the number x. For example, in basis À1 = 20142014~2014
({( golden number »), x = y5 - 1 is written

although in basis ~.2 = B/2, its Â-expansion is infinite, not periodic and reads

Remark 2. 2014 Due to (3.4) all sequences of + 1 and - 1 are not

allowed. For example if A == ~,1 = ~ ~ , , a sequence beginning with

Vol. XXIX, n~ 3 - 1978.



322 B. DERRIDA, A. GERVOIS, Y. POMEAU

XI

Co = c2 =1 must go on with c3 = - 1 otherwise the first order rest 
i

were greater than 1.

Remark 3. Extending definitions (3.2-3.3) when 03BB = 2 and setting
then ci = 1 + 203B8i (03B8i = 0 or 1) we get a 03BB-expansion which looks very
much like the usual binary expansion of real numbers. All sequences (co, cl,
c2, ... ) are allowed except if all the c/s are the same from a certain order N.
If CN = - 1 and c = + 1 for i &#x3E; N, the sequence (... - 1,1,1, ...)
is surely not a 03BB-expansion and it must be replaced by the finite sequence
(co, cl, ... , 0, ..., 0, ... ). With this restriction, to be compared
to the convention 0.9999 ... == 1.00 ..., all expansions are allowed.

Remark 4. The basis itself has its own 03BB-expansion or auto-expansion.
We shall keep for this particular expansion the notation a~, a2, ...)
= }. We shall study later on its properties. Let us give some examples

Ordering relation on sequences

Let G be the set of the infinite and finite sequences made of + 1 and - 1.

A finite sequence of length L is written, by convention as an infinite set
{ a } where and a = 0 if ~ L. A num-
ber A being given, 1  A  2, some elements of G do not correspond to
the À-expansion of a number, and this subset of the allowed sequences
depends itself on ~,.

We shall use the total ordering relation in ~ defined as follows

if b,~  being the smallest integer for which cm. This definition

is valid even when one of the coefficients is zero.

3.2. Characterization of the À-expansions

In this subsection the sequence { is the given auto-expansion of the
basis ~L; { is some sequence in ~ and we look for the conditions { ci ~
must satisfy to be the À-expansion of its sum.
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PROPOSITION 1. A necessary condition for { c~ ~ to be the À-expansion
of the sum is that the inequalities

are strictly satisfied for every ~ ~ I.

We denote by - (cn, c~+ 1, ...) the sequence

Proof - From (3 . 4)

or

or

To show now the inequalities (3.7), we assume first cn - + I, then the
second inequality (3.7) holds. We turn now to the first one. Let n’ &#x3E; 0
be the first integer such that 7~ an,. To show that  we

assume the contrary, i. e. &#x3E; and prove it is impossible. By cons-
truction of the },,-expansion,

00

and is zero only if = 0; furthermore 03A37 has the sign of an’,
!=0

00

i. e. ¿ -"2014’  0 and is zero only if an’ = 0 ; this is in contradiction

with’(3.9). N
THEOREM 1. 2014 /) If the auto-expansion { ai } of A is infinite (ai ~ 0 ~i)

conditions (3.7) are necessary and sufficient for { ci } to be the 03BB-expansion
of 
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ii) If the auto-expansion {ai} of 03BB is finite of length L + 1

conditions (3.7) are necessary and sufficient except if there exists an inte-
ger q such that from this order q, { ci } reproduces infinitely-even-
tually to a minus sign the finite pattern - I, ao, ..., aL (i. e. cq = T l,

= ± °0’ cq+2 - ± al ...). The À-expansion of the 

t

reduces then to the finite sequence (co, cl, ..., 0, 0, ... ).
A proof is given in appendix A.
To give an example, consider the case where the auto-expansion of A is

L

so that 1/~ - ll~,k+1 _ 1/~~~ = 0 for any integer k, and let x = 

!=p
be the finite ~.-expansion of a number x on the basis A. One may obviously

L

add to a series of the form

q= 0

with ~ = ± 1, without changing the value of the sum.
Applying result of theorem 1 to the auto-expansion { a } of A, we get

THEOREM 2. A necessary condition for { to be an auto-expansion
is that V/~ &#x3E; 1 the strict inequalities

and

hold.
The sufficient condition defining an auto-expansion is rather cumber-

some to formulate, owing to the possibility that, after a certain order,
patterns yielding a null contribution to the sum are again and again repeated.
If this is not this case, the inequalities (3 .10) are sufficient. If this is the case,

L

i. e. b’i, and if L exists such as À = where { aq, 0 ~ ~  L }
q=0

de Henri Poincaré - Section A
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00 Lp

satisfies (3 .10) and if = 0, then the auto-expansion of A is ’" ~ ,~q 
q=L+ 1 ~=0

where Lo is the smallest L satisfying the above requirements.

Remark l. - In this last case the equation defining A can be factorized as

where ~j = ± 1, unless jo exists such as ~j = 0 for j ~ jo ± 1

for j  jo. As { satisfies (3.10):

Remark 2. The ordered sequence { ci } is made of (+ 1 ) and ( - 1 ).
Let M 1 be the number of consecutive + 1 from the left at the beginning

Let M2 be the number of consecutive - 1 just following

and more generally M3, M4, ... the number of consecutive + 1 or - 1.
The sequence S = ~ ai ~ for the basis (or auto-expansion) can be similarly,
represented by successive integers L 1, L2, L3, ... (L, E N +).
The condition (3.7) for { may be written

and

If we are specially interested in the auto-expansion, condition (3.10)
reads

If the sequence S is finite, and Lp is the last non-zero L then Lp  L1.
If L2 - Li 1 then the auto-expansion is infinite and L i = L 1 Vi. The cor-
responding À-number is the (unique) root of

~.L 1 - 2ÄL1-1 + 1 = 0 that is larger than 1.
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Actually this expansion is not a 03BB-expansion as the pattern - 1 1 ... 1 is

indefinitely reproduced and has a null contribution, the auto-expansion
being defined in this case by the finite sequence ( 1, 1, 1, ..., 1).

3.3. Characteristic equations. Study of the roots

In the present subsection and in most of the following we shall restrict
ourselves to auto-expansions. A necessary and (nearly) sufficient condition
for a sequence ~ d~ ~ - S to be the auto-expansion of one of its roots
is that inequalities (3 .10) hold (in short this sequence is « allowed »). The
complementary condition of non factorization is not really essential and
we shall not deal with it presently.
The problem now is to know which, if any, of the roots of the characte-

ristic equation 0 where

has { for auto-expansion. We shall prove two results.

THEOREM 3. The root with the auto-expansion {ai} is unique, it is
the largest real root x(S) of 0 (;c(S)  2 as I = 1).

THEOREM 4. Let two real numbers 03BB,  defined by their auto-expansion,
S - ~ a } T = { ~, }; 1  ~, ~c  2. Then

and conversely

the equality may occur only if the characteristic equations related to S
and T have as a common factor a polynomial in 03BB-1 with coefficients ± 1.
The proof is tedious and depends on two lemmas which are given in

Appendix B. We indicate here the main steps. We use the following nota-
tions and definitions; let us call initial length of S = ~ ai ~ the integer
L1 ( &#x3E;_ 2) which is the number of consecutive coefficients + I at the head
of the sequence: ~ = + 1, 0  i  L1, L furthermore ~-i

(resp. xi) is the only real root greater than 1 of

corresponding to the sequ.ences of length L1 (resp. L 1 - I) with only -i- 1

coefficients; we have 1  xi  xi  2. In what follows we shall often
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consider the particular sequence S = 1 ( 1, - 1)~, which is the auto-expan-
sion of B/2 and has been already considered in (3.5 &#x26;).

PROPOSITION 1. Let S be an allowed sequence such as S  S, then

where T = f b~ ~ is an allowed sequence.

Proof 2014 Condition (3 .10) implies that S  S is of the form

without the possibility for the final pattern to be 1 or - 1 alone. There
are the supplementary conditions

(unless ~ i = nl Vi and the sequence is infinite but forbidden) and

then it is easy to show that T is the sequence with

and the conditions on the are the one we had written in (3.12) for
the 

Moreover, there exists an allowed sequence U and a minimal integer l

such that S  S factorize as

with U &#x3E; s.

Then, all the theorems we shall set for sequences S &#x3E; S (especially prop. 4)
can be extended without difficulty to sequences S  s.

PROPOSITION 2. - If S is the auto-expansion of = 0] then

Proof - The characteristic equation reads for x = xo as
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If S is the auto-expansion of x0, the remainder obtained by cutting the expan-
sion after the order xo ~L~ -1 ~ is negative and

Similarly, from

we have

PROPOSITION 3. 2014 (It results from the lemma in Appendix B).
If Sand S’ are two allowed sequences with the same initial length L 1 then
i) cps(x) and have real roots.

ii) xi  x(S), x(S’)  xl where and x(S’) are the greatest real
roots of and resp.

lll) S  S’ =&#x3E;  

PROPOSITION 4. - (Again a consequence of Appendix B and proposi-
tion 1 ).

Let S be an allowed sequence:

i) if S &#x3E; S, then the characteristic equation 0 has one and only
one root larger than sup (B/2, ~) and this is jc(S) ;

ii) if S  S, then there exists an integer l and a sequence T &#x3E; S such
that the characteristic equation 0 has one and only one root larger
than [sup ~B/2, x1~2 t. This root is x(S) and x(S) - [x(~’)~ ~j2’.

PROPOSITION 5. - (From propositions 2-3-4).
If S is allowed and does not factorize, then the characteristic equation

has real roots and the largest one is the only one having S as auto-expansion.
If S begins from the left by a finite allowed sequence T such as x(S) is

a root of ~pT(x) - 0, the auto-expansion of x(S) is given by the sequence T
with the smallest length.
Theorems 3 and 4 result from proposition 5.

3.4. À-simple numbers

Every real number ~,, 1  À  2 is the largest root of a characteristic
00

equation). = a ~/~. ~ where a i = ± 1, 0, { a ~ ~ being an allowed sequence
i=0

such as the characteristic equation cannot be factorized in form (3 .11 ).
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When the sequence { a~ } is finite of length L + 1 (i. e. there exists an

integer L such that ai ~ 0, 0  i  L, = 0, k ~ 1 ), then the largest
root of

is said to be a À-simple number (this denomination is, of course, very
reminiscent of the one of 03B2-simple numbers used by Parry [3]) À-simple
numbers form of countable set on the interval [1, 2] as the finite sequences

... , aL, 0, 0, ... ) are countable.

THEOREM 5. The 03BB-simple numbers are dense on the interval [1, 2].

Proo, f: Let x be some real number 1 ~ 2 and S = f a~ ~ is its

auto-expansion. If x is not 03BB-simple, the are never zero and the sequence
is the succession of

with conditions (3.12) on the L/~; S may be written as

Either there exists infinitely many indices ik (?B 1  iz  i3 ... ) such that
1  Lt or there exists infinitely many indices jl such that  L 1

since otherwise the sequence will be forbidden.
Any finite sequence L1L2L3 ... 1 which satisfies (3.12)

defines a 03BB-simple number xk. As

Let x be the lower bound of the set { xk }, it is larger than x, and has the
same auto-expansion as x, then x - x.

4. BROKEN LINEAR TRANSFORMATIONS
AND MSS SEQUENCES

We now come back to the broken linear transformation defined

or in a more concise way
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where

From Metropolis et al. [1], we know that the order of occurrence of its
allowed sequences is the same as for the more general mappings Tz(x) of
eqs. ( 1.1-1. 2), though the conditions ( 1.1 ) are not all satisfied in that case.
For that mapping many calculations may be done explicitly and the condi-
tion that an ordered sequence of Rand L is found in the construction of

Metropolis et al. is only a rewriting of the condition that a sequence { ai ~
is allowed, in the sense of the inequalities (3.10). The price to be paid for
this simplification of the mapping is the loss of some periods (6 among 1,091
for period 15). These periods correspond to a well defined class of non pri-
mary sequences (see sec. 2.2) and to the corresponding class of factorizable
characteristic functions of section 3. However the criterion for recognizing
and ordering the MSS sequences, derived from the study of the broken
linear mapping L~(x) can be extended at once to all the MSS sequences.

In this section, we first introduce the 03BB-sequences then calculate the ite-
rates of the maximum in the broken linear case and show that the equation
for A defined by the MSS sequences is analogous to the characteristic equa-
tions of section 3. We investigate the case of non-primary sequences. The
theorems we derived in section 3 for auto-expansions are « translated ))
in terms of mappings and MSS sequences for any kind of transformations T~.
Finally, we recover the Sarkovskii theorem M-M.

4.1. Iterates of the maximum

The (l + iterate of x reads

where

and

~i depends both on x and A and

If x = ~, this can be written

Annales de l’lnstitut Poincare - Section A



331ITERATION OF ENDOMORPHISMS ON THE REAL AXIS

ao - - 1 and 0 + 1 when the (i + symbol of MSS sequence " is L

and

is a polynomial whose coefficients (= :t 1) depend explicitly on A through
the sequence { at }.

If there exists an L such that L1L)(..1) = 1, then we must put 0.

In this case (which corresponds to a finite period), as L~ + 1 ~(~,) = ~ the
next iterates are deduced at once from LÀj)(À) with 1 ; ~  L + 1.

Consider, for instance, the case where ~, is the largest root of A = 1 + ~.
As 03BB &#x3E; 1, Lí1)(À) = 203BB - 03BB2 and 03B11 = + 1 as 0  Li1)(À)  1, 
= 2)w2 - )~3 = 1 then 0. The polynomials~~ ~ x) take the form

For every ~, &#x3E; 1, ao - - 1, a 1 - + 1 and the a ~ are correlated. For

example, if a2 - - 1, then necessarily a3 - - 1 (but a4 may be + 1

or - 1 ).
The correspondence with the symbols of Metropolis et al. is obvious :

(X, = + 1 (resp. x, == 2014 1) corresponds to the case where the (i + 1)~
term of the MSS sequence is L (resp. R). The notation is also roughly the
same as that used by Milnor and Thurston [9].

is periodic of period k,

and

or, written differently

where
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± 1, a 1 = 1. If a2 = - 1. then a3 = + 1 ... Notice that if 03BB
is periodic with period k, {ai} is of length k - 1.

If 03BB is not periodic L(l+1)03BB(03BB)-1  ~ 0 as L(l+1)03BB(03BB) is bounded and we get
(~20141)/ ~oo

for A an equation with an infinite number of coefficients

the being defined as in (4.8) and depending on À.
Eqs. (4 . 7)-(4 . 9) show that we have substituted to the MSS or { a ~ ~

sequence a new sequence { (of length k - 1 if ~, is periodic of period A;)~
made of + 1 or - 1 coefficients and biunivoquely related to it. It will be

convenient to give it a name, we choose to call it the ~-sequence.
Notice that eq. (4.9) has a meaning only in the broken linear case (4.1)

though the construction of { (x~ } and { ai ~ requires the knowledge of
the MSS sequence only. The 03BB-sequences { include then all À-sequences
corresponding to periods of L~ and some complementary sequences which
do not correspond to periods of L~ [1].
One can write Eq. (4.3) also as

As

t

the remainder of the series ai when cutting after order l is less than 1/A~
f=0

and is never zero for l + 1  k. Then the finite or infinite set {ai} is the
auto-expansion 0.( À and from section 3 we know that the coefficients { a }
satisfy inequalities (3.10). Moreover the characteristic equation cannot
factorize in the form (3 .11), A being the root of the characteristic equation
made from any finite allowed subsequence (ao, ... , aL). We shall shorten
these conditions by saying is not A-factorizable.

Conversely, being given a sequence { satisfying (3.10), if its greatest
real root ~. is not the root of a finite allowed subsequence ... ~ aL,

0, ..., 0) [L + 2  k], is the auto-expansion of  and the iterates

L~t + 1 ~(,u) are given by (4.10).
From section 3, we know quite a few things about these 03BB-sequences,

especially how to recognize and order them. Before translating in terms of
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mappings and periods the results for auto-expansions of last section, we
want to clear the problem of the forgotten periods.

4.2. Non primary and « forgotten » sequences

In the broken linear case, only part of the whole set of allowed MSS
sequences corresponds to periods. Let us call « forgotten )) sequences,
those which exist in the MSS set, but are not found in the broken linear

case. These forgotten sequences may be characterized in the following two
(equivalent) ways :

i ) They are non primary (a sequence P is non primary if two sequences Q 1
and Q2 exist, Q1 1 and Q~ 5~ b, such as P = Q 1 * Q2) and P is not of the
form P = R * Q, Q being itself primary (this last condition may be equally
stated as P &#x3E; S).

ii) The polynomial built up from the { a~ ~ characterizing the forgotten
sequences satisfies (3 :10) and is ~-factorizable, its largest root being larger
than B/2.
We have already seen (see section 3, eqs. 3.11) that a ~-sequence { ai ~

which is À-factorizable defines a finite subsequence ... , aL, 0 ... )
which is primary (and corresponds to a MSS sequence P) and another
quotient sequence }. Both al, ... , aL) and { Ei ~ satisfy (3.10).
If { Ei ~ is not ~-factorizable, it corresponds to a MSS sequence Q and the
whole sequence { corresponds to the MSS sequence.

where the symbol * has been defined in subsection (2.2.1 ).
It remains to find out how the * composition law, that generates non

primary sequences, acts on the polynomial built up from these sequences.
This representation of the * mapping is derived straigtforwardly from its
definition and from the definition of the set { and { as given in (4.4)
and (4.8). The result is given in the following

THEOREM. Let P, Q be two MSS sequences of period n and m respecti-
vely, and be the characteristic functions associated with P, Q
and P * Q respectively, then

Remark 1. - We recover from (4.11) that the composition law * is not
commutative and that it multiplies the period of the MSS sequences.

Remark 2. - If P = R(n = 2), then
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the À-simple number associated with R * Q is the square root of the one
associated with Q, is then factorizable, but not 03BB-factorizable and
the sequence R * Q exists in the broken linear case (although it would not
exist if P was different from R).

Remark 3. 2014 If Q = = 2),

which shows that the À-simple number associated with P * R is the same
as the one associated with P. As already seen, P * R is the harmonic of P
(in the sense of Metropolis et al.). For the broken linear transform all the
harmonics of a given sequence (that is the sequences P * R, P * R2,
P * R3, ...) correspond to the same value of ~, although if T~ is a C1 map-
ping, the values of À corresponding to a sequence and to its harmonic are,
in general, distinct [1] and no sequence P’ exists such as P  P’  P * R.

Remark 4. 2014 If U  S, then U may be factorized as

and

Furthermore Q, if not primary, may be factorized as

where R and { Qj, 1 ~ ./  i~ } is a set of primary sequences. The
greatest real root of is the ~-number associated with Q 1.

REMARK 5. Let Q 1 and Q2 be two MSS sequences and P be any pri-
mary MSS sequence, then the same )B’-simple number is associated with
P * Qi 1 and P * Q2 and the periods associated with P * Q 1 and P * Q2
do not exist in the broken linear case. Nevertheless if Q 1 &#x3E; Q2, then P * Q 1
&#x3E; P * Q2.

4.3. Collected results

Using theorems of section 3 and remarks of subsection 4.2 we get the
following results.

4.3.1. CHARACTERIZATION OF THE MSS SEQUENCES

i ) For a general mapping TB, a necessary and sufficient condition for
a sequence P to be a MSS sequence is that the related 
satisfies conditions (3.10) i. e.

(the order relation being _ that of 3.1).
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Non primary sequences (except those of the form P = R * Q) correspond
biunivoquely to 03BB-factorizable characteristic equations for 03BB-sequences.

ii) For the broken-linear mapping L~, conditions (4.13) are necessary.
They are sufficient if the characteristic equation is not 03BB-factorizable.

If it 03BB-factorizes, the corresponding MSS sequence is forgotten, as it

defines the same parameter as the minimal characteristic equation.

4.3.2. ORDERING

Let P and Q be two MSS sequences with associated 03BB-sequences Sand T.
The inequality for MSS sequences

implies the inequality for ),,-sequences

and conversely S  T =&#x3E; P  Q, though the characteristic equation of P
and Q of Sand T may determine the same À-simple number.

In the broken-linear case (4.1), finite periods appear for values of the
parameter ~, which are the largest real roots of the corresponding characte-
ristic equations.

In the general case, the parameter A of the mapping T À is related in a very
complicated manner to the solutions ~~~.) of the related characteristic equa-
tion. However, we know [7] and [9] that ~ is a (non strictly) monotonous
function of A i. e.

4.3.3. PERIOD 8 SEQUENCES (table HI)

As an example, let us consider all sequences corresponding
to a period 8. The sequences are in decreasing order; there are 7 numbers a~
and al - 1. We write all the sequences compatible with (3.10)
or (4.13). There are 16 (numbered from 1 to 16) and we verify that they
appear in the order of Metropolis et al. [1 ].
Two characteristic polynomials are not primary and correspond to

product of MSS sequences :
sequence nO 8 (polynomial (x3 - jc~ 2014 ;c 2014 1)(x4 - 1 )) is the harmonics

RL2 * R,
sequence nO 16 (polynomial (x - 1 )(x2 - 1 )(x4 - 1 )) is the third har-

monics R * R * R.

They correspond, in the broken linear case, to a period 4 and to the fixed
point respectively. Sequence nO 15 (polynomial (x - 1)(x6 - x4 - x2 - 1))
is the product R * RL2 and defines a Â-number which is the square root of
the Â-number related to sequence RL2.
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TABLE III. Tuble of all the allowed sequences of period k = 8
by decreasing order. The 3 representations (a~), ~ aj ~, are given.

4.4. Internal similarity and Sarkovskii theorem

4.4.1. INTERNAL SIMILARITY

Again S=l(l,2014 the auto-expansion of B/2, which is associated
to the MSS sequence RLR2n+1 = R * -+ oo .

Now, let P be some MSS sequence. If P  S, there exists a smallest

integer l such that P = R* ~ * p’ with P’ &#x3E; Sand

Moreover, if Q’ &#x3E; Sand Q = R* ~ ~ Q’, then

We recover in this particular case, the transformation R* ~ * (section 2.2.1)
which preserves the ordering and maps the whole set of MSS sequences
into one of its parts.

4.4.2. SARKOVSKII THEOREM [4-6]

The period of any sequence smaller than S is even. Any odd period cor-

responds to a MSS sequence greater than S. Let So be the only sequence of
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periods So - (1, 1, 0, ... ) (or RL) and consider sequences S, S  S  So.
Because of inequalities (3.10) or (4.13), they begin with the pattern

They may stop there or go on as

The Ã-sequence Sn of (4.14) is related to an odd period q - 2n + 3 and
it corresponds to the MSS sequence RLR2n. By comparison with (4.15),
we see that the smallest sequence of period q - 2n + 3 is necessarily Sn.
The same result has been already obtained by Stefan [S], Cosnard [6] and
Li and Yorke [7] (fig. 5). We have

Following Stefan [5J we shall write that

if period k appears af’ter period k’.

As
we have
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and as

Any other even period k = 2 ~m (l &#x3E; 1 integer, m odd integer) appears first
between these two cases and all integers are ordered in this way. The first
period k = 2l m appears for R* * Sm and as

we get the ordering of Sarkovskii

Notice that the way of writing the periods in (4.16) reflects quite well
internal similarity.

Our theorem is proved for the ordering of the MSS sequences.
Sarkovskii’s result tells something slightly different. It says that if for

a given À

then the existence of a period k implies the existence of a period k’. (A period k
exists, in the sense of the Sarkovskii theorem, if a number x exists such
as T~) = ~ with T~,(x) ~ x b’j  k, but the maximum is not necessarily
a point of the period, so that different periods may « coexist » for a given ~).
Actually for the broken linear mapping L). periods, when they exist are
necessarily MSS periods for the value of À for which they appear. For
,u &#x3E; ~., they still exist and the two theorems are equivalent.

Furthermore the Sarkovskii theorem is valid for any continuous mapping,
without any restriction about the number of its critical points. Thus its

application to functions with a single critical point, as in the present case,
does not cover its full range of validity. However it must be emphasized
that the Sarkovskii theorem is proved to be the « best possible » by means
of examples of mappings with a single critical point. Accordingly one may
believe that stronger statements might be proved for transform with more
than one critical point.

5. OTHER RESULTS

In this section, we have collected some complementary theorems for the
broken linear transform L~. We shall use mainly results of sections 3 and 4
without trying to extend them to more general mapping T Â"
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5.1. Number of critical points of 

We denote by

N(n) the number of extrema (or of critical points) of L(n)03BB: 1 s 2",
the number of values of x, 0  x  1 such that L~(~) = 1; we

have the relation

and can be written in an integral form as

where 5 is the Dirac « function ». We need the intermediate functions

and

We have

and

where {03B1l = ± 1 } is the set defining the À-expansion as in eq. (4 . 4).
For every l

or

From (5 . 2) and (5.5) for l = L 1 and l = L1 - 1

where L1 ¿ 2 is again the number of + 1 at the head of the { sequence
[ao - ... == == 1, 1]. The growth of c(n) (and of
b(n) and N(n) through eqs. (5.1), (5.3)) is like
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where xl and xi are the real solutions of xLt + 1 - 2xLi + 1 = 0 and
i 
+ 1 = 0 respectively as in section 4. We have two cases :

Then d(l + 1, n - 1 - l) = 0 and c(n) Pk(n) where Pk is some

polynomial of degree less than k and  is one of the roots of the characte-
ristic equation for À

We must reject all the imaginary and negative roots as then c(n) is surely
not always increasing with n. From (5.6)

This leads to the conjecture " that A is not only the largest real root of the
characteristic equation, but that it is also o the root with the largest modulus.

CASE # À-simple

There again 201420142014 ~ ~ where ~ is a real root of the characteristic equation

and from (5.6) again  = 03BB.
It can be shown by using its definition as presented by Adler et al. [77] ]

that, in the broken linear case, In A is the topological entropy. More gene-
rally, for every mapping T~(x) with only one maximum

exists and is again the topological entropy. But it is then related to the

parameter ~, in a more complicated manner which depends on the way the
mapping TB is related to some broken linear mapping L~) [9].

5.2. Stefan’s [12] matrices

The topological entropy roughly measures the amount of information
we have on the mapping L~, (or TB). One way of seeing it, is the following.
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For A, À-simple of period k, let us divide the interval ~] into (k - 1)
adjacent intervals I~ (i = I, ... , k - 1) ending at the iterates of ~.

In other words let { = {]L~(A), L~)[}, such that no integer m’
exists with  L~m’)(À)  L~BA), so that

with

then, the information:on the transformation is contained in the matrix

with only 0 and + 1 matrix elements.
Let Xi be the length (~ 0) of interval Ii. Through application L, this

length becomes dX= and is the sum of the lengths of the intervals Ij for
which 5~ 0 :

Thus A is a root of the secular equation

where

is the Kronecker symbol.

As an example, let us take the sequence RL2R of period 5, which corres-
ponds to the ordered succession of transforms of c (6g. 6)
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and to the 4x4 matrix

of secular equation ~,4 - ,~3 - ,~2 - A + 1 = 0. This is exactly the charac-
teristic equation of A for the sequence RL2R as defined in section 4.

This is not a coincidence but a general result. The order of the iterates
of A on the real axis may be represented by a permutation 7 of integers
1, 2, 3, ..., k (if A is periodic of period k); the th point on the line corres-
ponds to some iterate of A and we have (7(/) = i.

We have (7(1) = 1, or(~) = ~ always and if the last iterate L~-1 (~,) [ = 1] ]
is the ( p + point on the line (7(/c - 1 ) - p + 1. In the above example
7(1) = 1, (7(2) = 2, (7(3) = 4, 7(4) = 3, (7(5) = 5.

Let Xi be again the length of the ith segment, i. e. the length between
the i‘h and (i + point on the axis [take care that this order of the points
on the line is not connected in a simple way to their transformation law,
for instance the (i + 1 )th points in general is not the iterate of the point],
and Y denotes the distance of the point to 1. We have

From the definition of the broken linear mapping,

and

Setting now Z t = we get the homogeneous system of k - 1 equa-
tions
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which has only the trivial solution Z~ = 0 unless

We recover the characteristic equation (eq. 4.7) and, as the transfor-
mations Xj --+ Yi  Zi are invertible, the systems for the X/s and Z/s
have the same secular equation.

These results are in agreement with ref. [9].

5.3. Invariant measures

For every 03BB, we are looking for a measure v03BB absolutely continuous with
respect to the Lebesgue measure and invariant under L~,(x) on the stable
interval I = (2/L - ~,2, ~). It is unique (Lasota-Yorke [13]) and there exists
a measurable function h~(x) (Radon-Nikodym theorem) such that

for every Lebesgue measurable set E.
If ~ is invariant under L~), then v).(E) = v).[L l(E)] for all Lebesgue

sets of I, i. e.

and

or

Let now be the step function

where are that of the auto-expansion of ~, and the summation
may be finite if ~, is ~-simple; is defined except for the countable set
of the iterates of ~, and (5.14) holds almost everywhere for x  /L
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Proof - For x  À

where we have replaced an by an + 1 = a" + 1 a"( = !, as the summation runs
over all n such that  1 )

Now

The term into brackets is the characteristic equation of A and gives o..
Furthermore, is a continuous function of À at x fixed. When A is

not 03BB-simple, A tends to A’ is equivalent to say that the auto-expansions of
A and ~/ are the same up to an order no, arbitrarily large. Then, one may
readily find two MSS sequences corresponding to two 03BB-simple numbers
say ~o and Ao which are as close as one wants of A and ~/ and such as

These two finite MSS sequences begin with the same pattern as the one
defined by the auto-expansion of ~,, up to an order no, arbitrarily large and
for any l smaller than or equal to no + 1:
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and

When 2 is ~-simple, the auto-expansion of ~/ must reproduce to a minus sign
the pattern ( - 1, ’’-~-2) and the proof of the continuity of
~p~,(x) is similar.

Similarly, A being fixed, is a continuous function of x L~~(A)
as x and x’ [) x - x’ ~ -~ 0] are in different intervals Líl)()~) Lí")(À) for some
large value of l or of l’.

It remains to prove that ~p~,(x) is positive. This can be done in two steps :
one proves it first when A is 2-simple, then as ~p~(x) is continuous with respect
to 03BB at x fixed and, as the 03BB-simple numbers are dense in ]1, 2[, then 
is positive (or eventually zero) for any À between 1 and 2.
The proof that ~p~(x) is positive when A is À-simple goes as follows :

Let ..., be the finite ordered set of the iterates of a (0" is
the above defined permutation of the integers from 1 to k). From (5.15),
~p~(x) is zero when x is less than or larger than Furthermore

takes a constant value in any interval J~-i~+1)[ 1 ~ ~  k - 1,
and it is easy to compute from (5.15) the value of in the two end inter-

vals: 03C603BB(x) = 1 03BB if x03C3-1(1)  x  x03C3-1(2) and 03C603BB(x) = 1 if x03C3-1(k-1) 1  x

 From this knowledge of 03C603BB in the two end intervals it is possible
to show recursively from (5.14) that ~p~, is everywhere positive.

5.4. Periodic points

If A is a 03BB-simple number, it corresponds to a MSS sequence Q of period k.
This means that a set of numbers x~, 1  y ~ ~ exists such as x 1 = 1,

x2 - L~.(x 1 ), ..., 1 
= x J if i ’= j.

When aL changes continuously, we can ask whether this period k still

exists, i. e. if a set of numbers { y~, 1  ./  k ~ exists such as 
..., and yi ~ yJ if i ~ j. These conditions are very similar
to the one defining the associated with the À-simple number,
except that one does not require anymore that 1 belongs to the period,
as this implies that À takes a particular value, solving the equation
1 = 

For 03BB’  À, in the broken linear case, the period {yi} does not exist;
but for C1 transformation T~), the exists.
For ~/ &#x3E; À in any case, this period k exists and yz, -~ are func-

tions of ~/.
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2014 The MSS sequence corresponding to period 3 is RL. The

... ~ r .... V5+1
03BB-simple number for this sequence is 03BB = 

2 
.

If A’  ~ we cannot find xl, ~3 all distinct verifying L~,3~(xl) - ~i.
If ~’ - ~, we have a solution 1, ~ = ~,, ~3 = 2~, 2014 ~

= ~ - 1.

If ~’ &#x3E; A we have

and y 1 2014~ 1, Y2 "~ ~? y3 -~ 2~, - ~,2 as A’ ~ A.
To show the connection existing between the À-expansion of yl and the

sequence Q it is convenient to rewrite the broken linear mapping as

sgx. This mapping maps into itself the interval [-!,+!].
Following the same procedure as in sections 3 and 4 one may write any x

between - 1 and + 1 as

’since I  1, rk = - ’ may be " thought as a remainder :

’
Like in section 4

If the maximum is not an iterate of x, 0, 1 for every k and

is the )..-expansion of x; the jth iterate of x corresponds to the shifted {3-
sequence

and for this mapping, the relation between ,-expansion and iterates is

striking. (In L03BB(x), we should consider the 03BB-expansion of . _ . to get
a similar result).
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This is true for every x, mainly for the yj which belongs to a period but
have not the maximum in their sequence of iterates; the 03BB-expansion is
then periodic.
The À-expansion of 1 reads

where the «i = - and we recover the characteristic equation of ~,.

Setting

we get again the conditions for { bi } to be a 03BB-expansion, i. e.

Remark. - If the maximum is an iterate of x, the remainder is zero for
some finite j, the expansion is no more infinite and (5.18) no more holds.
However, in view of keeping this remarkable property, we may adopt the
convention that the infinite expansion (5.17) holds by completing it with
the Â-expansion of 0 (or 1 ), i. e. the characteristic equation for ~; {3 j is no
more zero but chosen arbitrarily as ± 1 and 

.

If ~, is ~-simple, of period k, one may choose freely ~+3~. ’’’
For example the characteristic equation for ~, reads :

where ~n = ± 1 is arbitrary. This problem has already been studied in
Part 4.
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APPENDIX A

PROOF OF THE SUFFICIENT CONDITION (eqs. 3.10 and 3 . 7).

We first show the

LEMMA, if for n &#x3E; 1

and

i ) the inequalities between sequences

imply the inequalities between the sums of series

ii )

* * * We prove i ) by showing by recurrence that

implies

it is true for q = 0. We assume it is true for q = s - 1 and prove it for q = s and for
..., bn+s) (same proof for - (bn, ..., 

* either bn = am and (A . 3) is a consequence of the recurrence hypothesis

11 bn = 0, then am = 1 and ,

where ~ again ~,) is~the rest of the auto-expansion of A.

lf b~ _ - 1, either am = 0 and
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as ..., ~’ " ’’ get from the recurrence hypothesis

and

either a,~ = -I- 1 and let n’ &#x3E; 0 be the first integer such that bn-~-n’ ~ 

if is a consequence of the recurrence hypothesis,
&#x3E; straigtforward if 0, or 0,

if

by definition of the 03BB-expansions.
On the other hand ... , :::; ... , an,_s)

whence

and

The proof of inequality (A . 2) is similar. We first prove that Vq

This is obvious if bn = if bn and have different signs we use the minora-
tion (A. 3) and the identity

as

then
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Proof of theorem 1. - The inequalities (A .1 ) and (A. 2) are consequences of inequali-
ties (A . 3) and (A . 4) when ~2014"00.
Then we are assured of

and we must now drop the equalities to achieve the proof of the theorem 1.
One may assume for instance that, bn = +1. Let 7!’ &#x3E; 0 be the first integer so

that necessarily  We distinguish two cases :

The auto expansion of the basis is infinite (ai ~ 0 vi)
then

whence the strict inequality

We prove now that | 03A3bi 03BBi| ~ 0 if 0; From (A.2) it is necessary that bn+1 = - 1

and then

this is equivalent to - bn+2, ... ) = ah a2, ... ) which is impossible.

The auto-expansion of the .basis is finite of length k - 1

If .a~. proof of the right hand side inequality of (A.5) is the same as in the infinite
case.

If an’ = 0 it amounts to look when the equality bn+n’+i 03BBi=0 holds and this equality
i=o

may be included in the discussion of the l. h. s. inequality of (A.5).

Let q be the first integer so that bi 03BBi = 0; for example bq = - 1, necessarily

(eq. (A.2)) = + 1 = °0 and
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then

i. e.

oo

and bq+k+i 03BB’ = 0. We are let with the same problem /c steps further and more generally,

the expansion of x can be written for n ~ 0

~ = ± 1,0,~ remaining the same for k consecutive indices (if Gn = 0 for n = no,
then ~n = 0 for n &#x3E; no).

Sequences with this peculiar periodicity must be rejected though the necessary condition
holds.

This situation may be compared with the ambiguity where one replaces somewhat
arbitrarily

1,999 ... by 2
In the decimal expansions.
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APPENDIX B

A SEQUENCE S SATISFYING CONDITION (3.10) AND SUCH THAT S &#x3E; S HAS ONE ROOT AND

ONLY ONE FOR x &#x3E; ~).
As in the bulk of the paper S is the sequence of the auto-expansion of B/2, x~ and xi

are the roots 1 of 2xL1 + 1 = 0 and xLl - 2xL1-1 + 1 = 0 respec-
tively.
We shall show successively that

i ) the greatest real root of S, x(S), exists and for S &#x3E; S, x(S) &#x3E; sup (B/2, x~~
ii) there is no other real root for x &#x3E; sup (~/2, ~)’
To prove the two propositions, we shall substitute to the notation

where the Li’S are integers :

and denote the number of consecutive + 1 or - 1 in the { a~ ~ sequence: we have L1
coefficients + 1, then L2 coefficients - 1, L3 coefficients + 1, ... or said differently

and more generally if

Actually, inequalities (3 .10) insure some more restrictive conditions than conditions (B .1 )
for example Lp+1  LI, and if Li = Ll then L2 ... but it will be sufficient to
assume conditions (B.1). We deal then with a larger class of sequences than that generated
with condition (3.10). With these notations xl and x are the greatest real roots of the

sequences S1 == Ll, Si = (L1 - 1 ).
In the following we use the auxiliary sequences

which satisfy (B .1 ) and we denote by L the sum L = Lz + ... + Lp and the

function

Lemma 1. - i) &#x3E; 0, 03C8s(x’1)  0
~) if Li = 2 and S &#x3E; S we have the inequality: ~g(B/2)  o.
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Corollary. - x(S) exists and

i) We prove the first part of the lemma by induction ; it is = 1; from

we get

which is negative - 

as L2  Ll.
We assume it is , = l - 1 and prove it for p # = l, we have " the identity

From the recurrence hypothesis

a) p odd

from (B . 3)

from (B . 4)

is maximum for L = 1 and = L1.
The last inequality then gives &#x3E; o.

b) p even

from (B . 3)

from (B . 4)

as is minimum for Lp = L1, = 1.

Whence

ii) if Lz = 2 and S &#x3E; S

either S = 1(1 - 1 )nl 1 or S = 1 (1 - 1 )nJ 1 1 - 1 and the proof is direct
either
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then

then  0,  .0 by induction.

Using (B. 3) and (B. 4) we get the announced result.

Lemma 2. - For p &#x3E; 1, is increasing for x &#x3E; sup ("B/2, x’1).
Corollary. - x(S) is the unique real root greater than xi and

Though more complicated the proof -is similar to that of Lemma 1. We indicate briefly
the first steps of the proof and develop only the last part which is more delicate.

i) For p = 1

If p is even (p = 4, 6~ 8, ... ). &#x3E; 0 whenever &#x3E; 0. We have

as L2 + ... + Lp ~ (p - 1) ~ 3, the term in brackets is positive.
Then it is enough to prove the Lemma for p odd: p = 2k + 1.
iv) p = 2k + 1, A: ~ 1. Let Sm = We already know that

We have

which is minimum for ~2k-1-2 = Li.
/t?.l) L &#x3E; 3 we neglect the last term in the brackets

as the minimum is for = 1.
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is minimal if L is minimum, i. e. L = 2k - 1 and we have the minoration

Then doing the same for we get

iv.2) L = 2 and L2 = 1, La = 1,2.
We keep the last term in (B . 5) ; the minimum is for = 2; let again

L = L2 + ... + L2k, 2k - 1  L  2 (2k - 1 ), for = 2, the minimum in 
is got

* either for = 2 when L = 1, i. e. S is the sequence 8M == 2 122 and we prove

directly in that case &#x3E; 0.882 for x &#x3E; Ý2
* either for = 1 when L &#x3E; 1. Then

For x &#x3E; x - 20142014.20142014 we drop the middle term which is positive and replace L by
its smallest value L = 2k - 1. Then,

For -y2  x  xl we keep the whole expression and give a minoration for L = 2k - 1

again. The proof is similar to the previous one. ’.

Lemma 3. - Let

and
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if p is odd (resp. even)

Corollary. -1f Sand S’ are sequences satisfying condition (3.10) then

*** If p is odd we have the inequalities

(the inequalities are reversed when p is even).
The first inequality comes from the identity

the term into brackets being positive for Li.
From Lemma, 1 x(V), x(S), exist.

We have  0 whence x(S) &#x3E; x(V)

REFERENCES

[1] N. METROPOLIS, M. L. STEIN and P. R. STEIN, J. of Combinatorial theory, t. A 15,
1973, p. 25.
See also J. GUCKENHEIMER, Inventiones Math., t. 39, 1977, p. 165.

[2] A. RENYI, Acta Math. Acad. Sci. Hung., t. 8, 1957, p. 477.

[3] W. PARRY, Acta Math. Acad. Sci. Hung,, t. 11, 1960, p. 401.

[4] A. N. 0160ARKOVSKII, Ukrainian Math. J., t. 16, n° 1, 1964, p. 61.
[5] P. 0160TEFAN, Comm. Math. Phys., t. 54, 1977, p. 237.
[6] M. Y. COSNARD, A. EBERHARD, Sur les cycles d’une application continue de la variable

réelle, Séminaire analyse numérique n° 274 Lab. Math. Appl., 1977. Université
Scientifique et Mathématique de Grenoble, U. S. M.G.

[7] T. Y. LI and J. A. YORKE, A. M. M., t. 82, 10, 1975, p. 985.
[8] B. DERRIDA, Y. POMEAIU, in preparation.
[9] J. MILNOR, W. THURSTON, « The kneading matrix ». Preprint, IHES (1977).

[10] B. DERRIDA, A. GERVOIS, Y. POMEAU, in preparation.
[11] R. L. ADLER, A. G. KONHEIM and M. H. MC ANDREW, Trans. Amer. Math. Soc.,

t. 114, 1965, p. 309.

[12] P. 0160TEFAN, Private communication.
[13] A. LASOTA, J. A. YORKE, Trans. Amer. Math. Soc., t. 18b, 1973, p. 481.

(Manuscrit reçu le 15 juin 1978)

Annales de Henri Poincaré - Section A


