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Topology of vortices

C. von WESTENHOLZ (*)
Department of Mathematics, The University of Zambia,

P. O. Box 2379, Lusaka (Zambia)

Henri Poincaré,

Vol. XXIX, nO 3, 1978,

Section A:

Physique théorique.

ABSTRACT. A conceptual new approach to field theory is given in terms
of unifield intrinsic field quantities which consistently describe interacting
elementary particle systems. These non-local field quantities provide a
classification of vortices in terms of homotopy theory and the Rham’s
cohomology framework. By way of such a classification scheme, interacting
vortex lines, i. e. interacting particles associated with these vortex lines,
are described in terms of a topological linkage property. A topological
scattering set-up of this type displays similar features as Born-scattering.

I. INTRODUCTION

Local relativistic field theories with interaction are known to be divergent
Therefore, an approach to elementary particle physics in terms of non-local
field quantities is given. Two-component fields, consisting of a physical

p

component ill and a topological component cp are introduced as follows [7]:

Fp(M) denotes the vector space of differentiable p-forms and Cp(M) the
space of differentiable p-chains on the configuration space M [2], [3]. With
the fields (1) can be associated physical observables (integral laws) as can
be illustrated in the case of Gauss’s law of electrostatics :

(*) On leave " of absence " from Institut fur Angewandte " Mathematik Universitat Mainz,
Postfach 3980 I D-65 Mainz (West-Germany).
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286 C. VON WESTENHOLZ

2

whenever = Eijdxi A dx’ E p2(M), stands for the electrostatic field

E = (E1, E2, E~) ; ~ ~ C2(M), M = 1R3 (i, j =1,2, 3). The role of the phy-
sical field component of ( 1 ) is displayed in table A where conventional
(quantum) field theory (QFT) is compared to a relativistic hydrodynamic
string theory with continuous degrees of freedom.

Unified intrinsic fields of the type (1), when related to string theory, are
those with 7? = 1. The corresponding topological « particle units » are
1-chains or 1-cycles (closed 1-chains or loops) of the following type :

’ Henri Poincare - Section A



287TOPOLOGY OF VORTICES

II STRINGS AS VORTEX LINES

String solutions of relativistic field equations are vortex type solutions
whenever the strings are closed or infinite (fig. 1 ). Such relativistic vortex
lines occur in the case of the Higgs model with Lagrangian density

Alternately, such a model can be given in terms of fields (1) on account
of table A. The physical field of ( 1 ) is then a Higgs vector-current 1-form

cc3 j = j which derives from (3) ; the topological component ci stands for
a closed or an infinite string (fig. 1), so

where

stand for a Yang-Mills potential and a Higgs scalar field ~p, respectively.
Vortex lines occur when quantized flux is defined in terms of the differential
action 1-form field dS which is associated with (4) by :

hence

Since the field (6) must be uniform, the phase must change by a multiple
of 27T along any loop Ct- Hence quantized flux is associated with a I-field
of type (1), i. e. is an integral law or observable of type (2) :

Vortex lines occur for solutions where n ~ 0.

Vol. XXIX, nO 3 - 1978.



288 C. VON WESTENHOLZ

Given the 1-field (7), i. e. consider the quantized flux ( 1’) associated with dS,
then arises the following

Problem. 2014 Determine the dynamics of relativistic strings (cf. table A)
which gives rise to the quantum condition ( 1’).

The dynamics of strings is defined in terms of some dynamical system
S : = E (/, B), where f : P   is any observable on phase space P and
B = B vdx   dxv E P2(M4) a Yang-Mills field. Then the Euler-Lagrange

1

1-form on M4, accounts for the dynamics, i. e.

and

is the Lorentz force " field.
1

Define - the circulation r of cv to be the contour integral

then the dynamical system E( f, B), corresponding to (8) may be characte-
rized in terms of the following

PROPOSITION 1. Let

and let C1 1 c i be two homotopic 1-cycles embrassihg a 2-dimensional

tube T = M 2 which is generated by the trajectories of the differential systesn

Then

Proof : - Let

Annales de Henri Poincare - Section A
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~

be the action integral along the arc x0x1 of the trajectory y : [ -r 0’ -r d -* M4
’t’ 1-+ y(~c) - Then the variation ~S is evaluated to be

since

If the two-chain c2 E C2(M 2) denotes the portion of T = M 2 which is

limited by cl and ci, integration along trajectories ofE then yields

2 2 2
Discussion. 2014 If D is closed, i. e. dS2 - 0, then Q assumes the form

2 0

In fact: S2 E P2(M4) yields

Then

and

2

are " the necessary and 0 sufficient conditions for = 0 to hold. By de " Rham’s
theorem there ’ exists locally a potential A such that

2

Therefore (14’) Q = d~ which means that the trajectories of the given
dynamical system admit the integral invariant

Vol. XXIX, no 3 - 1978.



290 C. VON WESTENHOLZ

The physical interpretation of (15) and (12) is the following. The I-form (15)

I (7) . 
a~ 2014%~ 

......equals (7) iff 2014 = ~ = 20142014 Hence Quantisation of relativistic
~x  2e03C603C6

strings amounts to quantizing the « space-time-flux » ( 12) :

whenever a generalized Bohr-Sommerfeld quantum condition

is postulated. Therefore clearly n = n

is quantized flux (required quantum condition) associated with string
dynamics.

CASE OF STATIC VORTICES. - In this section we classify pure vortices
without monopoles (a classification with monopoles is given in section III)
i. e. we exhibit a vortex solution in the static cylindrically symmetric case.
Let (r, 9, z) be cylindrical coordinates and take Ao = Ar - 0,
A~ ~ 0. For an infinitely long static vortex line lying along the z-axis (fig. 2),
having 8- as the azimuthal angle, the axial symmetry reduces the problem
to a two-dimensional one. The field (6) is written as a differentiable map

(loop)

where S 1 : == { z E 0 : ) z| = 1 }. On account of 203C0t = oc, n03B1 = 03B8 the

field (6’) is interpreted as being " parallel transferred " along the circle S 1 ,
and one may write U(oc) =  

" 

(6~). We give 2 types of vortex classifications.
A homology classification and a homotopy classification.

11.1. Homology classification of static vortices

1

Define a 1-field of the type ( 1 ), (00, c1) in terms of

Annales de ’ Henri Poincaré - Section A
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Let == e [R } (closed 1-forms modulo
exact 1-forms on 51) denote the first de Rham group and = : Hi
be the first homology group of S 1 [3]. Then, by de Rham’s first theorem
there exists a nondegenerate bilinear form B, given by ~3] :

If c1 : = S 
1 and n E 7Z c IR we have on account of a smooth map

which is referred to as the winding number of ~ about 0. It states how many
times c1 = S 

1 winds around the origine and which stands for the vortex
number corresponding to ci. In defining the quantity

the number 11 may be regarded as quantum number associated with
f

the field (cv, cf) E Hf x H1. That is, n is associated with the Higgs-field
~ == ) which is parallel transferred around c and hence

11.2. Homotopy classification of static vortices

Vortices are physical objects exhibiting homotopic conservation laws.
Let M = S 1. Then the vortex number n E 7~ as given by (18) which is a
topologically conserved quantity, can be associated with the Poincare

group (first homotopy group) of S 1, by

Vol. XXIX, nO 3 - 1978.



292 C. VON WESTENHOLZ

which is isomorphic with the additive group of integers. That II1(S 1) is
homomorphic to Z is displayed by the degree d(03C6) of (6’) :

In fact, if are two differentiable loops as given by (6’), then

and

The homomorphism d is surjective : Tf n E ~, then the loop

satisfies deg = 1 dt. Hence
2~i Jo 

(18’) = n in agreement with (18)

This is consistent with the fact that the integrand of (21 ) is related to the
1-form ( 16) in the following way :

Hence the 1-field ( 16) is given to be

TO SUMMARIZE. The scalar Higgs-field cp = ’ |e203C0 int (eqs. (6) and (6’ ) )
determines the degree n, which is an injective and surjective homo-
morphism TI1(Sl) -+ Z. Hence homotopic conservation laws are obtained
in terms of this isomorphism. The inverse of this isomorphism is the map
n ..* [cpn](1). Vortices are classified by the fundamental group Z.
Each vortex is labelled by a homotopic invariant, the integer n E ~.

(1) The class of the differentiable map t -+ e203C0 int is a generator of el).

Annales de l’Institut Henri Poincaré - Section A



293TOPOLOGY OF VORTICES

III. CLASSIFICATION OF STRINGS WITH MONOPOLES

Within the frame of Lagrangian formalism a physical action field S E 
(cf. table A) may be related to a string model M, by

where 1 is the measure of length along a string, L is a line density and
Ld~ E the corresponding Lagrangian 1-form field. The Euler-Lagrange
eq. of motion are [5], [6] :

where the vector-valued map x : (l, r) ~~ xi(l, 1"), ’t’ = ict, is regarded as
a string in space, which, as time changes, sweeps out a 2-dimensional
Riemannian manifold M 2 : - (M 2, ds 2). The string-model given by (23)-

p

(24) may be cast in terms of topological fields cp) (eq. ( 1 )), whenever~ = 2
as follows : Let

be a vector-valued map of class Ck (k &#x3E; 1) and define a topological action
field S E associated with the topological 2-field

in terms of the assignment

The field (27) generalizes (23), since with the particular parametrisation
u I === l, ~~ 2 === T = ict one recovers the physical action field (23). The pro-
blem then arises if there are any topological charges (conserved quantities),
playing a similar role as ( 1’) or ( 18) and being associated with fields
2

(~~ c2) (27).

111.1. Homology classification of Higgs-fields

2

Define a 2-field of the type (1) (cc~, c2), where

Vol. XXIX, nO 3 - 1978.



294 C. VON WESTENHOLZ

and

Consider a gauge theory [1], [3] with Yang-Mills group G = SO (3), Yang-
Mil ls field Ak  (  = 0, ..., 3, k = 1, ..., 3) and a Higgs-field 03C6 given by

The construction of a topological quantum number associated with (28)
can be given in terms of cohomology as follows. Let

be a smooth map, where

2
stands for the normalized Higgs-field (28). With the 2-field 03C9 = sin 03B8d03B8 A d03C6
(eq. (26’)) can be associated the Brouwer degree in terms of the following
commutative diagram :

where

and

are linear isomorphisms which determine a unique linear R)

Then

is by definition the Brouwer degree. Since o c~* - , f’~ o Is~ and since
2 2

OJ E [~v] E H 2(S 2(r~~ one obtains from (31 )

Annales de l’Institut Henri Poincaré - Section A
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’This is just the topological action field as given by eq. (27), whenever c2 = 82.
Hence conserved quantum numbers may be associated with the action

field S. - - Let x = (9, cp) E S2{r) be a regular point so that d~(x) :
.~.~ T~~x~(S~) is a linear isomorphism between oriented vector spaces.

Then  determines an integer valued function

.~ + 
1 if preserves the orientation

sgn {Jx{~)) _ 
- 1 if d~x .. reverses the orientation

where

is the Jacobian of ø. So

Hence

is an integer [9]. On account of the Higgs field (28) the integer k equals n.
In fact

Hence, by formula (34) one obtains

To SUMMARIZE. - By virtue of (33)- (35) one may associate with a topo-
2

logical 2-freld ~cv’, c2) a conserved integer quantum number n, in setting:

Vol. XXIX, nO 3 - 1978.
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It turns out [8], that from the topological structure of the Higgs-Reld
(0i, O2, 03) originates magnetic charge. In fact, let

where

then

is magnetic charge, whenever (cf. [10]) :

As shown in [8], the magnetic charge M is given to be

III.2. Homotopy classification of strings

A homotopy classification of strings makes again use of the degree 
of a map (cf. sect. n.2). In fact, if 1/1 :S2 ..~ S2 are smooth maps, such
that then 03C6 and 03C8 are homotopic. Otherwise stated.
The degree d{~p) - depends only on the homotopy class of cp,
and induces an isomorphism d:II2{S2) -~-~ (cf. (20), section 11.2). Hence,
by (40), Higgs fields belonging to the same homotopy class have the same
magnetic charge M.

IV. CHARACTERIZATION
OF INTERACTING VORTEX LINES

~ 
o

Consider interacting vortex-line like particle structures Cl, c~ E 
(cf. fig. 1 b) which are assumed to be interlinked as shown in figure 3. It
is the aim of this section to show that such an interaction set up (i. e. topo-
logical scattering) results from a combination of Higgs-scalar fields of type (6)
with Higgs-vector fields (28)-(29)-(30), i. e. in terms of homology classifi-
cations as given in section II.1 and 111.1. Referring to the non-relativistic

Annales de /’Institut Henri Poincaré - Section A
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case of a Higgs-field of the type (6’), i. = R = R(x, t), S = t)
where p = e~~ - eR2, we obtain for the velocity of the corresponding
non-relativistic fluid flow :

and hence, for the circulation around a vortex-line particle) :

where

denotes, what we refer to as quantum of circulation. So (42) stands for
law This law is susceptible to an interpretation

in terms of the topological linking number l(ci, which describes a lin-

kage property of the type as displayed in figure 3, whenever c 1 is a closed

vortex line of an incompressible fluid and c~ a loop which winds around
the vortex tube displayed in the figure 4.
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Then one can show that

where v must satisfy Biot-Savart’s law (45) and relation (41) (cf. subsequent
remark 1).

First quantisation for the interlinked field quantities c1 and c’1 is then given
in combining (42) and (44), that is

PROPOSITION 2. Let f: S 1 ..+ R3, .f(S 1) - cl - ac2 6) be a loop
which is the orbit of a rnaterial particle of an incompressible fluid. Then the

circulation around the loop c~ is given in terms of

- -&#x3E;..

where v, div v = D, is the corresponding velociry field.

Proof. - Let.!: S 1 --~ ~ 3, f {S 1) - ac2 {c2 a compact oriented 2-mani-

fold with boundary, figure 6) and g: S 1 .-? 1R3, g(S 1) - ci, such that

g(S 1) = ø consider the map

In substituting S1  S 1 to in the commutative diagram (31 ),
section III.1 one obtains the formula

Annales de l’Institut Henri Poincare - Section A
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On account of the map (47) and formulae (44’)-(45) it suffices then to prove
the following relationship :

where

2It remains to compute the 2-form Let ç(s, t) : = g(s) - f’(t), then

and hence

REMARK 1. 2014 Relations (41 ) and (45) for v yield

whenever

Discussion. - The topological scattering device of figure 5 is similar
to conventional scattering as exhibited in figure 7:

Vol. XXIX, nO 3 - 1978.
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To see this similarity between topological and physical scattering consider
2

a scattering field of type ( 1 ), p = 2 i. e. (cc~, c2) where c2 = S 2(r) is the « geome-
try of collision ». By virtue of eq. (41), section IV, we may write :

With respect to the basis { 03B11 - dr, 03B12 = 03B13 = r. 
write :

2 2

The 1-form (48) relates to the scattering field (co, S 2(r)), since úJ = r 2.
sin M9  d03C6 = r2d03A9 (cf. eq. (26’)) is the solid angle 2-form. In fact, applying
the Hodge star operator [Yj, * : Fp --~ we obtain :

which is, up to a factor, the number of particles dn scattered into the solid
angle that is

Within an approach to scattering in terms of fields (c,~, c~) (eq. ( 1 )) there
3

is a Born-field (B, c3), such that

is a non-degenerate bilinear map [~]; (H 3, H3 stand for the 3rd cohomology
and homology group ofM:==~2014{0}, respectively). Schrodinger’s eq.
for Born scattering becomes then a relation between differential 3-forms :

Annales de Henri Poincaré - Section A



301TOPOLOGY OF VORTICES

whenever

In fact, applying Hodge’s star operator to both sides of Schrodinger’s eq.

where

REMARK 2. - The formula dn = (48"’) of particles dn scattered
into the solid angle ~Q has its geometrical counterpart. Assume that c2 c S 2

. 
0

(fig. 5) is pierced by n closed vortex lines (cf. fig. 1 b) c~ E C 1 (M), M = c2
S 1 --~ Il~ 3. Then the number is given by

~~ is the number of intersections n c~ (ng. 5) where -y points in the
same direction as ~ E T~.([R~) 2014 = E c~. ~* is the number
of other intersections. Note that the quantized version of (51) is given by

(Cl’ ~) =~(cf. eq. (46)).

V. MAGNETIC MONOPOLE CHARGE
AS COUPLING CONSTANT

As proved in [2], proposition 14, the linkage property /(ci, c~) between
~ 

o

interacting 1-cycles Ci, c~ E C1 (M) is related to the topological winding
number

which measures how many times S 2 is winding around the origine 0 E 
This relationship (cf. proposition 14, p. 424, ref. [2]) is given by

Vol. XXIX, nO 3 - 1978.



302 C. VON WESTENHOLZ

Since eq. (52) is just relationship (33), whenever’ = Ø, that is

w(~) ~ deg (~) (by eq. (36)), so ~(~) = M.e by eq. (40). This is consistent
with the fact, that eq. (52) is a geometrization of Gauss’s law of electro-
statics (cf. eq. (2), sect. 1). Hence the following interpretation for eq. (53)
holds :

The interaction between vortex-line-like particle structures cl and c’1 which
are associated with potentials (cv, and (03C9’, c’1) of the (1), section I,

times the coupling constant M.e.
Hence it turns out that (53) is the topological counter-part to the Lagran-

gian L = ej A  corresponding to the principle of minimal interaction

(cf. table A, sect. I).

To SUMMARIZE. A set-up of topological fields (1) in conjunction with
eq. (53) describes interaction with a coupling constant, provided there are
finite vortex-lines (fig. 1 a) terminating at Dirac monopoles (fig. 8 in [2]).

VI. CONCLUSION

A description of an elementary particle approach has been given which
consists of the following elements :

1 ) Non-linear interacting fields or particles are characterized in terms
of a « non-linear » configuration space M.

2) Field quantities are non-local.
3) The interaction set-up underlying this particle description is not

based on the conventional Lagrangian approach to Field theory.
4) Topological « scattering » is similar to Born scattering.
5) Quantal effects are characterized in terms of first quantization only.

Effects due to second quantization are « simulated » by the geometrical
structure of the configuration space.
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