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The inverse problem at fixed energy
for finite range complex potentials

Pierre SERGENT and Christiane COUDRAY

Division de Physique Theorique (*).
Institut de Physique Nucleaire, 91406 Orsay Cedex, France

Ann. Inst. Henri ’

Vol. XXIX, n° 2, 1978,

Section A :

Physique theorique.

ABSTRACT. - In the inverse problem of scattering theory, a simple
transformation may be used to map the results for a fixed t = 0 value
of the angular momentum onto similar results at fixed energy concerning
a finite-range potential. This property is applied to non self-adjoint ope-
rators corresponding to complex potentials. Following a study of such
operators at fixed t value, one gives the condition on the inverse problem
data to be coherent, the fundamental equation is derived and the uniqueness
of the reconstructed potential is proved. A last paragraph shows that the
inverse problem data of this final potential are the initial ones.

RESUME. 2014 Dans l’étude du probleme inverse de la diffusion, une trans-
formation simple permet de passer des resultats obtenus a valeur fixee
nulle du moment angulaire a des resultats semblables a energie fixe concer-
nant un potentiel de portee finie. Cette propriete est appliquée ici aux
operateurs non-self adjoints associes aux potentiels complexes. L’étude
du probleme inverse correspondant a de tels operateurs ayant ete faite
a l fixe, celui du probleme inverse a energie fixee s’en deduit aisement :
condition pour que les donnees soient coherentes, derivation de 1’equation
fondamentale, et unicite du potentiel reconstruit. Le dernier paragraphe
assure la coherence de 1’ensemble en prouvant que les donnees du pro-
bleme inverse correspondant au potentiel final sont bien celles qu’on a
choisies au depart.

(*) Laboratoire associe au C. N. R. S.
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180 P. SERGENT AND C. COUDRAY

The inverse problem has given rise to many publications. A glance at
the concerned litterature shows that there are principaly two different
ways of studying this problem :
- the first attitude is to start from the potential itself. The aim of the

study will be to find the functions or the groups of functions which are
necessary to reproduce the given potential. The question of uniqueness
of the reproduction of the potential must be solved ;
- the second attitude is somewhat different. We want to derive some

potential from experimental data. Is this problem solvable and with what
method ? If the problem is solvable, is it uniquely ? Let us remark that
this potential may reproduce fairly well some experimental data (in parti-
cular the phase-shifts for one given value of or one given value of the
energy), but will not necessarily reproduce the other ones.

In this paper we shall adopt the first point of view, and we shall show
that the inverse problem data are not the experimental scattering data.

I. POSITION OF THE PROBLEM

AND NOTATIONS

The results of Agranovich and Marchenko [7] ] concerning the inverse
problem are well known. These authors considered the radial Schrodinger
equation with fixed l = 0 value of the angular momentum and real

potentials

Ljance [2, 3] has extended their method for potentials U(r) which are no
longer real functions of r. We are also interested in non self-adjoint ope-
rators, but our aim is to solve the corresponding inverse problem at fixed
energy.

Loeffel [4] has shown that for finite range potentials a relatively simple
transformation permits in the real case to map the results of the inverse
problem at fixed = 0 angular momentum onto analogous results for the
inverse problem at fixed energy. In this paper we shall consider complex
finite range potentials. And we will show that the same transformation as
in the real case may be used for complex potentials. Using this transforma-
tion and the results of Ljance [3] we shall be able to derive explicitely the
fundamental equation from the inverse problem data of the problem.

So, following Loeffel [4], we suppose a potential of finite range equal
to 1 (the extension to any other value being straightforward). And we
write :

Annales de l’Institut Henri Poincare - Section A



181THE INVERSE PROBLEM AT FIXED ENERGY

The first transformation is a bijection which maps the open half-line [0, oo [
of the variable r onto the open interval [1, O[ of the corresponding variable x.
The second transformation performs a rotation of - 7r/2 in the whole
plane of the variable k to obtain the new variable v. To these changes of
variable one associates the following transformation from f E 22(0, oo)
onto 1):

such a transformation is a unitary isomorphism, is transformed
d 1 1 f d ~

into 

Let us introduce the solution of Eq. (1) satisfying the integral equation :

Obviously we have :

Transformations (2) and (3) map u(r, k) onto v) such as :

Besides we introduce q(x) as :

With our new notations (Eq. 1 ) writes :

which is the equation of the inverse problem at fixed energy studied in
the real case by Loeffel. We shall call 2 the non self-adjoint operator
generated in the Hilbert space 22(0, 1) by this equation, the eigenvalues
of 2 being - V2. We recall 1(1 + 1). is defined by:

and condition (6) shows that v) is the regular solution of (8). This
last solution exists in the complex case and has been considered by various
authors [5, 3]. The wronskian associated to 2 is :

Vol. XXIX, n° 2 - 1978.



182 P. SERGENT AND C. COUDRAY

We shall in the following use the double transformation (2) to map the
results of Ljance [3] onto analoguous results of the inverse problem at
fixed energy ; so we shall suppose q(x) continuous and assume everywhere
the condition on U(r) imposed by Ljance :

or after transformation (2.~):

which is the condition imposed by Loeffel, after identifying G and 2~.

II THE DIRECT PROBLEM

1. A fundamental system of solutions
and the kernel K(x, u)

We have already introduced the two corresponding functions u(r, k)
and ~p(x, v). The domain of holomorphy of ~p deduces itself from that of u :

G

for 0  x ~ 1, it is the half-plane delimited by the condition : Re v &#x3E; - 2 .
Another useful solution of Eq. (10) is defined by the equation :

This solution is holomorphic in k when 0, k ~ and satisfies
the limit relation

So we introduce :

The corresponding limit relation will be :

and 03C8 is another solution of Eq. 8. Its domain of holomorphy is related
to that of ul by a rotation of - in the k-plane for 0  x  1, and
for each Vo &#x3E; 0, VJ is holomorphic in v when I v &#x3E; vo, Re v &#x3E; 0.

In the case of a real potential VM, ~(x, - v*) and v) are solutions
of the same differential equation with the same limit condition. They are

Annales de l’lnstitut Poincaré - Section A



183THE INVERSE PROBLEM AT FIXED ENERGY

identical. However, in the case we are interested in, ~p*(x, - v*) is no

more a solution of Eq. 8, for it corresponds to the potential V*(x) ~ VM,
and to q*(x) ~ q(x). The value of Wr(v), wronskian of v) and of

v) in their common domain of holomorphy, is given immediately
from the corresponding wronskian of u(r, k) and M(r, 2014 k) :

So v) and v) form a fundamental system of functions. Except
perhaps at the origin, it is the same for v) and v).

Similarly, for &#x3E; vo, Re v &#x3E; 0, the wronskian W rl (v) of v)
and v) writes :

and the same conclusion holds.
Under very general assumptions, it has been proved [6] that u(r, k)

admits an integral representation :

and that t) has continuous derivatives with respect to r and to t. If

we set :

Eq. 17 becomes

and a Mellin transform takes place for the Fourier transform. Estimates
for K and its derivatives are easily obtained from the corresponding
ones [3] :

where C and C’ are certain numbers.
As last if we define K(x, - v) by :

it is easily seen that K(~ 2014 ~) is holomorphic in v for Re v &#x3E; 2014 - for
Vol. XXIX, n° 2 - 1978.



184 P. SERGENT AND C. COUDRAY

E
each value of x such as 0  x  1. Furthermore, for each 03B4  2 when2

where Ca is a certain positive number.

2. The spectrum of the non self-adjoint operator ~

DEFINITION 1. A function ~1 (v) will be said a function of type (E1)
in the half plane Re v &#x3E; - Eo 0) if :

a) ~1 (v) is holomorphic when Re v &#x3E; - Eo and for each ’1  Eo one

has :

uniformly in the half-plane Re v ~ 2014 1].

b) ~1 (v) ~ 0 for 0  Re v  Eo.

c) If Re v = 0, v ~ 0 and ~~ (v) = 0 then v) ~ 0.
d ) If øa1 (0) = 0 then ~’1 (0) ~ 0.

Let w(v) be defined by the relation :

As v) = M(0, 2014 ik) the properties of w(v) deduce easily from these
of u(o, - ik), and we can state Theorem 1 (cf. Ljance [3], Lemma 3.1) :

THEOREM 1. The singular numbers of the operator .2 are the roots
of w(v) in the domain v 7~ 0, Re v &#x3E; 0. Their number is finite. If E 1 is the

distance from the imaginary axis to the non purely imaginary roots of
the function w(v), and if Eo is the minimum of Band 81 then w(v) is a func-
tion of type (E1) in the half-plane Re v &#x3E; - EQ.
We shall call 6 the number of the roots vk of w(v) :

The multiplicity of the root will be in any case mk.
For a real potential the roots of w(v) are all real and simple (mk = 1).
Let us now introduce the solution 0(~ - V2) of Eq. 8 defined by the

initial conditions :

In their common domain of holomorphy, i. e. for  8/2, the

Annales de l’Institut Henri Poincnre - Section A



185THE INVERSE PROBLEM AT FIXED ENERGY

wronskian of v) and v) is not zero (except for v = 0 but the
functions are then confounded), so these functions are linearly independent.
For 0, it will be the same for v) and v) so every solution
of Eq. 8 may be written as one of their linear combinations. One obtains

readily :

Besides Re v &#x3E; 0 the same considerations are valid for

v) and ~(x, v) :

where :

(we remark that for V(x) real w 1 (v) = w*( - v*)).
Let us define, for f finite :

As said before the transformation (3) is unitary. So it is easy to transform
Parseval’s equality given by Ljance [3] and to obtain :

where the summation upon k is reduced to the non purely imaginary
roots of w(v), the multiplicity of each one being mk. Mk( - v2) may be
deduced from the equivalent quantity in the k-plane

Let us introduce the function ~(v), logarithmic derivative of (p(x, v) at the
point x = 1. We obtain :

Vol. XXIX, n° 2 - 1978.



186 P. SERGENT AND C. COUDRAY

Parseval’s equality is valid for any functions f1 and f2 finite and subject
to the condition that one of fl and f2 is such that :

the vk being now the purely imaginary roots of w(v) and jk varying from 0
to mk - 1. The set of functions satisfying Eq. 33 is dense.
DEFINITION 2. A function will be said a function of type (SJ

in the strip 
,

a) ~1 (v) is meromorphic in this strip and for each 11  80 one has :
~1 (v) = 1 + ~(1A). ! I v I --+ oo uniformly in the strip 11;

b) ~1 (v) does not have non purely imaginary poles in the strip  So;
c) ~1 (v)~1 ( - v) = + 1. In particular ~(0) = :t 1.

Let be defined by :

The properties are easily deduced from the properties of the scatter-
ing function corresponding to Eq. 1. In fact :

THEOREM 2. The function is a function of type (S 1 ) in the strip
I Re I  80 where Eo is defined in theorem 1. Furthermore w(o) = 0 if and
only if S 1 (o) = - 1.

This theorem is deduced immediately from the corresponding Lemma 5.1
of Ljance [3]. So the singularities of Sl(V) in the strip |Re v|  ~0 are

only located on the imaginary axis. They are the roots of w(v) : /~+1, ... , P~
each one with multiplicity mk.

In the case of real potentials there are no such poles in the strip
I Re v  Eo : all the roots of w(v) are real positive, the first of them being
at the distance Eo of the origin. Let us now introduce the eigenfunction
of the operator 

The function 03C9 which appears in Parseval’s equality (31) may be written,
with the help of this new function :

Annales de l’Institut Henri Poincaré - Section A



187THE INVERSE PROBLEM AT FIXED ENERGY

So let us introduce :

Then

III. THE INVERSE PROBLEM

1. The symmetric factorization
of a function of type (S 1)

(cf. Riemann problem)

Following Ljance [3], we shall call « problem of symmetric factoriza-
tion » the following problem. Given :
a function ~1 (v) of type (Si) in the strip I  80’

a set of complex numbers R1, ..., Ry belonging to the half-plane
Re v  ~0,
- a corresponding set of natural numbers ... , My, we require

the determination of the function S1 (v) of type (E1) of the half-plane
Re v &#x3E; - Eo such as :

- possesses a root of multiplicity Mk at the point Rk (~= 1, ..., y),
~1 {o) ~ 0 if Y1 (0) = 1.
- ~(0) = 0 if ~1 (o) = - 1.

~1(v), and the set of numbers (Ri, MJ will be said inverse problem
data Ljance [3] has solved the same problem in the plane of the variable
k = iv, i. e. after rotation of the total plane of + ?c/2. He has given the
condition which secures the unicity of the solution. We shall not here
give his demonstration, but only transpose his result by ejecting a rota-
tion of - 7~/2.
We shall define the v-index of a function ~1(v) of type in the strip

I Re v| I  Eo. Let  be a curve in this strip running from + i oo to - oo
and leaving all the roots (poles) of ~1 (v) at its right (left) side. We shall
call v-index of 1(v) and denote it by indv Y1 the increment, divided

Vol. XXIX, n° 2 - 1978.



188 P. SERGENT AND C. COUDRAY

by 2~, of the argument of a continuous branch arg when v varies
on  from + i oo to - i oo .

THEOREM 3. The problem of symmetric factorization is solvable if
and only if :

Then the solution of the problem is unique.
We deduce immediately from theorem 3 that the function w(v) is uniquely

determined by the knowledge of the function of the non purely
imaginary singular numbers Vi, ..., va and of their multiplicities ..., m«.
The condition of this solution is the following :

To write the fundamental equations when the angular momentum is
fixed, a generalized Fourier transform of the scattering function S(k) is
needed. This gives the function :

As preceedingly when we put : = = this Fourier
transform is replaced by a Mellin transform, and we introduce :

FS(x) does not depend on the value S 1 (v) is meromorphic in the
strip Re v Eo and its poles are all situated on the imaginary axis. 
is a function of type so there exists a number D1 (5) such as :

For Mellin transforms, Parseval’s equality writes :

with

Annales de l’Institut Henri Poincaré - Section A



189THE INVERSE PROBLEM AT FIXED ENERGY

Equation 41 may be written :

so :

In conclusion, for any 5, 0  b  Eo/2, there exists a number D(5) such
that :

3. The normalization polynomials

To solve the inverse problem, we need informations on the continuous
spectrum of 2, and it is the role of the function but also on its point
spectrum, so we must introduce it. Let us define the analog of the func-
tion fk(r) of Ljance [3] :

where Ck is constituted of a parallel to the imaginary axis situated in the
interval ]0, So[ [ and of a circle of infinite radius in the right half plane,
this curve being described in the direct sense. It would be straightforward
to verify that fk(r) = = In formula 49, the integrant
is meromorphic inside the curve Ck and its poles are the roots vk of w(v) (*).
So :

We shall write :

where are polynomials of degree mk - 1 (mk is the multiplicity of
the root We call pk(x) the corresponding logarithmic polynomials. The
functions will be called the normalization polynomials of the ope-
rator 2. They reduce to constants in the case of a real potential, for all
zeros of w(v) are simple. They are in this last case the analog of the norma-

(*) These roots are not roots of (cf. equations 16 and 29).

Vol. XXIX, n° 2 - 1978.



190 P. SERGENT AND C. COUDRAY

lization multipliers [7]: in the Appendix, following a method given by
R. G. Newton [7], we calculate their value and we find Loeffel’s result [4] :
the polynomials reduce to constants Ck such as :

In every case we remark that the normalization polynomials determine
the asymptotic behaviour for x  00 of the eigenfunctions and associated
functions of the operator ~f.

Indeed if we combine equations 28 and 36 we obtain :

For every value of k (k = 1, 2, ..., x), Re vk &#x3E; Bo. And Vo may be chosen

 80. So ~(x, v) is holomorphic in a neighbourhood of every ~. And :

Taking in account equation 19 gives :

This formula describes the asymptotics for jc -~ 00 of the eigenfunctions
and associated functions of the operator 2, corresponding to the point
spectrum. Another remark concerns 

for one has t

4. The fundamental equation

In order to determine the operator ~ from the corresponding inverse

problem data (i. e. the function the singular numbers v1, ... , va and

their normalization polynomials), we introduce the following function which
includes information at once on the continuous spectrum and on its point
spectrum :

Annales de l’Institut Henri Poincaré - Section A



191THE INVERSE PROBLEM AT FIXED ENERGY

Estimates 47 and 55 show that for any ð, 0  5  £-° , there exists a
number D 1 (b) such that for all ~, 0  ~  b ; 2

Ljance [3] has shown the existence of the fundamental equation :

where

and k(x, t) is defined by means of Eq. 17.
Transformation (18) and its analog for f :

give immediately the fundamental equation in the case of fixed energy :

for the corresponding functions F(x) and K(x, u~.

5. Uniqueness of the solution of the inverse problem

DEFINITION 3. A function defined on the interval (0, 1) will be
said a function of type (Fl’ 8) (8 &#x3E; 0) if the two following condition hold :

a) the function possesses a continuous derivative such as :

b) if the function is summable on 0  t  x  1 and if

then = 0 for t  x.

THEOREM 3. The function F(x) defined by equation 57 is a function
of type (Fl, 8), where 8 is the number from condition 11. Let us begin by
showing condition a.

Vol. XXIX, n° 2 - 1978.



192 P. SERGENT AND C. COUDRAY

Let

So:

Besides, Ljance [3] deduces from the fundamental equation 59 the existence
of a continuous derivative /’(r) and the estimate :

for the function f(r) defined by equation 60. Applying our transforma-
tion 2 . a gives readily :

and this last equality proves the existence of the derivative of 
So equality 67 becomes

Or, applying estimate 66:

Multiplication of this relation by then integration from 0 to 1

provides, after application of the inequality :)~!2014!~)~!~+~ I

or taking into account inequality 11 :

which is the sought estimate for F(x).
Annales de l’lnstitut Itenri Poincare - Section A



193THE INVERSE PROBLEM AT FIXED ENERGY

It remains to show condition b. A first property may be found from the
last inequality. In fact, one has :

where CE is a positive constant.
And

One deduces:

Let us now introduce the function defined by Equation 64 when 03C6
E-l 1

is replaced by F, and such as is summable on 0  t  x  L

One has :

We consider the integral equation with solution Zx(t):

where K is the kernel preceedingly defined.
The introduction of this equation into the equation defining Yx(t) leads

to (cf. Fig. 1)

FIG. 1.

Vol. XXIX, n° 2-1978.



194 P. SERGENT AND C. COUDRAY

Insertion of the fundamental equation provides :

Taking in account inequalities 20 and .69 one has :

So is solution of

This last equation is an homogeneous Volterra equation, the kernel K
of which being finite. This equation admits no other solution than the
solution identically zero. So Zx(t) = 0 and consequently Yx(t) = 0
in the same domain by virtue of Equation 71.

THEOREM 4. The inverse problem data (cf. § 111.4) uniquely determine
the operator 2.

This theorem deduces easily from theorem 3. The function F(x) is obtained
from the scattering data. Then the fundamental equation (62) uniquely
determines the kernel u), this kernel satisfying Equation 19. Having
K(x, u), one has ~) by means of Equation 18. So U(r) is given by :

so this last equation provides equally q(x). One has directly :

And the operator 2 is obtained uniquely.

IV . RECONSTRUCTION

OF  FROM THE INVERSE PROBLEM DATA

The aim of this paragraph will be to show that, given a set of coherent
inverse problem data, one may build a differential operator this
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operator belonging to the class we consider here. And to show that its

scattering data are identical with the initial ones.

First let us consider u), solution of the fundamental equation :

where ~ is an arbitrary function of type E). From the transformation
of a similar estimate of Ljance [3], deduced itself by the method of Agra-
novich and Marchenko [7], we are allowed to write :

so as to differentiate Equation 77 under the integral sign (because u)
possesses continuous partial derivatives with respect to x and u). We
obtain the majoration :

(cf. § III . 5). We now introduce the function ~(x, v) defined by :

For 0  x  1 and Re v &#x3E; - s/2, this function satisfies the differential

equation

where :

From inequalities 63 and 78, one obtains :

(for

And :

Vol. XXIX, n° 2 - 1978.



196 P. SERGENT AND C. COUDRAY

Let us now introduce the following set of inverse problem data :
- a function of type (Si) in the strip Go &#x3E; 0,
- some complex numbers N2, ..., Ny such as Re So,

k= 1, ...,y,
- some polynomials (k = 1 ... y).

As has been seen formerly, in order that these data could be considered
as the inverse scattering data corresponding to a differential operator ~l,
it is necessary to impose the two conditions :

i ) the equality

holds, where indv has been defined in § III.1 and Mi is the degree of the
polynomial (f = 1, 2, ..., y),

ii) the function

is a function of type (Fl, a) for some £ &#x3E; 2~o.
Conditions i) and ii) are necessary in order to handle coherent inverse

problem data, i. e. data corresponding to a differential operator This

operator is then given by Equations 80 and 81 via the fundamental equa-
tion 76 where ~ is deduced from equations 84 and 85. The inequality 82
secures that 21 belongs to the desired class of operators. We call 

v2, ... , v« and PiM. p2(x), ..., p03B1(x) the inverse problem data of 21.
Now we show that these inverse problem data are the initial ones. The
fundamental equation 76 may be written with the help of equation 84:

As seen before, the function v) is a solution of 21 y = - v2y. sl(v) is
defined by :

Annales de /’ lnstitut Henri Poincare - Section A



197THE INVERSE PROBLEM AT FIXED ENERGY

As the kernel defining S(x, v) is u), Equation 62 may be written for
u) and the function f(x) corresponding to the operator 21 :

We extend the function u) by setting :

Then :

and the inverse Mellin transform may be written

for both functions ~(~, 2014 v) are holomorphic in the strip
~ Re v  £0. Let us now introduce :

W e have :

and this last expression shows that it is nothing else than the convolution
product for the Mellin transform. The properties of such products allow
us to write :

Vol. XXIX, n° 2 - 1978.



198 P. SERGENT AND C. COUDRAY

because of property 90. So :

But for 0  t ~ ;c ~ 1, l/t) = 0. So equality 86 may be written :

If we consider x = 1 we obtain :

or with the symbolic writing :

But d/dv does not work on z). We recognize the expression of ~(1, v)
in the summation :

This last summation is a linear combination of functions ( - Log 

Annales de l’Institut Henri Poincare - Section A



199THE INVERSE PROBLEM AT FIXED ENERGY

These functions (k = 1, ..., = 0, ..., Mk - 1) can be replaced by
inverse Mellin transforms. In fact we have :

So

And as every N~ is such that Re 80, the function N _ v n + 1 
is

holomorphic when Re v ::::; ’1. So we can write : 

where the Ak~ are numbers.
We now introduce :

and if we set

we know (cf. § II. 1) that v) is holomorphic in v for Re v &#x3E; - E/2
for each value of x such as 0  x =$ 1. Inequality 23 shows that :

Besides is a function of type (Si) in the strip Re v I ::::; Eo, so it is

meromorphic in this strip and

and may be considered as the Mellin transform of a function 

Vol. XXIX, n° 2 - 1978.



200 P. SERGENT AND C. COUDRAY

But Equation 98 implies that for 0  t ~ 1 = O. So :

We choose 11 such as 0  ’1  80 and we set 03C3 = Re v. We have first:

Then we apply Schwarz inequality :

At last Parseval equality gives :

This last inequality shows that function holomorphic in v for Re v &#x3E; 0,
admits an analytic continuation which is holomorphic in the half plane
Re v &#x3E; 0 and bounded in any half plane Re v ~ ’1, ’1 &#x3E; 0.

Let us call w(v) the solution of the problem of symmetric factorization
corresponding to the initial set of inverse problem data (1, N1, N2 ... Ny,

Then: 1(v) = -, , and . 99 becomes: .

The properties of functions w and  show that the left side is holomorphic
for  Eo and is equal to uniformly in each strip I Re v I ::::; ’1,
r~  Eo. In the right side, we remark that the poles of the fractions are the
roots of w(v) with the same multiplicity. So the right side is holomorphic
too. It is bounded for Re v ~ ’1, 0  ~  Eo. As the left side is an odd
function, Liouville’s theorem imposes that its analytic continuation should
be an identically zero entire function

Annales de l’Institut Henri Poincare - Section A



201THE INVERSE PROBLEM AT FIXED ENERGY

w(-v) f(l,-v)
or 

201420142014 
= 

2014~201420142014 
= by definition (Equation 87). So:

we deduce immediately from Equations 85 and 88 that :

And a comparison between Eq. 86 and Eq. 89 provides :

or :

where  may be equal to any Nk or vk, and j is an integer  max (Mk, mk) -1.
Inequality 76 allows us to majore the second term :

where 6 = Re  and (5 &#x3E; 0 is arbitrarily small

with E 1 = E + min 6. So :

We now choose j maximal and  with minimal imaginary part. The summa-

tion is reduced to  and the previous inequality remains valid for E’.

Vol. XXIX, n° 2 - 1978.
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In the particular case u = x2, we obtain

And the second member goes to zero with x.
So necessarily == 0. One shows similarly that the other are equal

to zero. "

This completes the proof that :

for a suitable enumeration of the singular numbers and normalization
polynomials. So we can write the following theorem.
THEOREM 5. - Suppose given a function S 1 (v) of type S 1 in the half

plane Re v &#x3E; - 80’ 80 &#x3E; 0, numbers N1, ..., Ny such as Im Eo
(i = 1, ..., y) and corresponding polynomials Pl (x), ..., Py(x), the degreeof the polynomial Pi being Mi - 1. These data will be the inverse problem
data of a certain non selfadjoint differential operator 21 if they are coherent,
i. e. if the two following conditions are realized :

ii) The function ~ (x) defined by :

is a function of type (F1, 8) for some 8 &#x3E; 2~0. Then the fundamental equation
possesses a unique solution K(x, t), from which it is possible to deduce q(x)
satisfying the following inequality :

and the inverse problem data of the operator 21 corresponding to q(x)
are identical with the initial ones.

. CONCLUSION

The next step of this work would be to deduce the inverse scattering
data from the experimental data, i. e. from the phase shifts for every entire
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value of t = v - 1/2. Loeffel was able to show that this deduction was
unique in the real case. However a numerical calculation would contain
the extrapolation to the entire imaginary axis of a function given by discrete
points on the real axis. Such a numerical procedure gives rise to instability
problems [8]. So till now, no effective calculation has ever been done. One
will easily be convinced that in the complex case the situation is still more
complicated.

Vol. XXIX, n° 2 - 1978. 8



APPENDIX

Normalization multipliers in the real case

Let us consider the function C(~ - v2) defined by Equations 26. It satisfies Eq. 28 for
! v &#x3E; vo, Re v &#x3E; 0. In this domain the wronskian of ~ - V2) and of v) is readilyobtained from Eq. 16 :

Let us differentiate (A.1) with respect to v (this differentiation being indicated by a dot):

Now we choose v = vk, root of w(v). As we limit ourselves in this appendix to the real case,
such a root is real and simple. It is positive, and such as :

So it is in the domain considered. Equation (28) reduces then to :

and the two solutions are multiples of one another. Eq. A. 2 becomes :

Let us consider now Equation 8, with the solution f(x, v) corresponding to the eigen-
value v. Multiplication of this equation by f(x, v’), then substraction from that for f(x, v’)
multiplied by f(x, v) leads to :

or after differentiation with respect to v

If now we choose v = this last equation reduces to :

By integration this last equation writes, when f - C
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For, in the domain considered Equations 26 and 28 lead to :

Equation (A. 7) becomes when f = ~p :

For Equation 6 implies that

when x -+ 0. When v = vk &#x3E; GO &#x3E; 0, this quantity is zero when x is zero. So Eq. A. 4 may
be written :

One easily deduces tath :

or with notations of paragraph 11.3

The polynomial reduces to the constant Ck.
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