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Physique theorique.

ABSTRACT. The purpose of this paper -is to put in evidence the close
connection between the existence of coherent states and the square integra-
bility of an irreducible unitary representation of a Lie group. It is shown
that, in the case of a reductive group, an irreducible unitary representation
with discrete kernel admits a system of coherent states if and only if it
belongs to the relative discrete series, and that, in such a situation, it is
in fact a coherent state representation (in a sense to be precised in the
body of the paper). Results of the same nature are proved in the solvable
case, but only for coherent state representations, and under the additional .

assumption that the group involved is an extension of a torus by an expo-
nential Lie group.

INTRODUCTION

The theory of group representations, whose important role in the develop-
ment of quantum mechanics is well-known, was recently recognized as an
adequate tool for studying the coherent states of a quantum model. One
of the fundamental questions one can raise in this respect is that of deter-
mining when a given irreducible unitary representation of a Lie group,
acting as a symmetry group on the underlying quantum model, admits
a system of coherent states. Of course, one may ignore a subgroup whose
action is trivial and thus assume that the representation in case has discrete

’ 

kernel.
A very satisfactory answer to this problem was obtained in the nilpotent

case. Namely, in [9] one of us proved that if 03C0 is an irreducible unitary
representation, with discrete kernel, of a simply connected nilpotent Lie

l’Institut Henri Poincaré - Section A - Vol. XXIX, n° 2 - 1978. 6



140 H. MOSCOVICI AND A. VERONA

group G, and X~ is the orbit under the coadjoint action of G (on the dual
vector space g* of the Lie algebra 9 of G) associated with 03C0 by the Kirillov
correspondence, then the following statements are equivalent :

(SCS) 7T admits a system of coherent states;
is square integrable;

(AV) X~ is an affine variety in g* ;
is a coherent state representation.

This last assertion requires an explanation. In many significant cases,

including those we deal with in the present paper, an irreducible unitary
representation 7r of a Lie group G arises by the geometric quantization
procedure from a Hamiltonian G-space Xn (see [6], [7~]). In this process,
the symplectic homogeneous space X,~ can be regarded as a classical phase
space, while the Hilbert space on which the produced representation
acts, plays the role of the corresponding quantum phase space. From this
point of view, it is natural to distinguish, among all irreducible represen-
tations which admit coherent states, those representations whose coherent
states are based precisely on the associated Hamiltonian G-space X,~.
Such representations were called in [9] « coherent state representations ».
When G is nilpotent, the assignment 03C0 H X03C0 is just the Kirillov corres-
pondence between the orbits of G in g* and the equivalence classes of irre-
ducible unitary representations of G.
Our concern in this paper is to investigate to what extent results of the

same nature as in the nilpotent case are valid for other classes of Lie groups.
It should be said from the beginning that even the progression from nil-
potent to solvable, which is a natural step, raises a number of difficulties
which we have not succeeded to surpass entirely. First of all, we were not
able to relate in a nontrivial way (SCS) to the remainder of the properties.
(Note that either (SIR) or (CSR) trivially implies (SCS)). However, for
solvable Lie groups which are extensions of tori by exponential Lie groups,
we can prove that (CSR) and (SIR) are equivalent. Clearly, any exponential
Lie group is of this type. In addition, we shall show that any quasi-algebraic
solvable group (i. e. the identity component of an irreducible real algebraic
solvable group) is of this type too. As a matter of fact, in the exponential
case, the properties (CSR) and (SIR) are also equivalent to" the following
reasonable substitute for (AV) :
(OAV) X~ is open in its affine hull in g*.

This last property should be considered as accidental, the equivalence
between it and the others being no longer true in general (as can be illus-
trated by a simple example the « diamond » group). For an arbitrary
solvable Lie group we have only obtained that (SIR) implies a slightly
weaker form of (CSR), but there is no evidence that this is the best possible
result. Actually we suspect that the converse implication is also true.

Finally we have found, somehow unexpectedly, that all relevant equi-
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141COHERENT STATES AND SQUARE INTEGRABLE REPRESENTATIONS

valences (i. e. between (SCS), (SIR) and (CSR)) are still valid in the case of
a reductive group.
The proofs are generally based on the same technique as in [9] in the

solvable case, while in the reductive case we use at an essential point a
result by C. C. Moore in [8] .

1. PRELIMINARIES

We write down in this section the basic facts concerning coherent states
and square integrable representations of locally compact groups.
We use the following notation concerning a locally compact group G.

A left Haar measure is denoted and the modular function is denoted ~G.
The connected component of the identity is denoted Go. If 03C0 is an irre-

ducible unitary representation of G then denotes its representation
space and [7r] denotes its unitary equivalence class. By G’ (resp. G ") we
shall denote the quotient G/Ker 03C0 (resp. and by 7r’ (resp. 7c")
the representation of G’ (resp. G’) to which 03C0 factorizes.

1.1. Let 7T be an irreducible unitary representation of a locally compact
group G. We shall say, after [9, § 1], that 7r admits a system of coherent
states if there exist a closed subgroup H of G and a family {Px} of one-
dimensional projections in where x runs over the space of right
cosets X = G/H, such that the following conditions are satisfied :

X admits an invariant measure that is ~~(h) _ A~) for
any h E H and then = 

(SCS2) Pgx = for any and x EX;
(SCS3) there exists a nonzero vector ~ such that

t/

In such a case, the family {Px} will be called a 03C0-system of coherent
states based on X. The last two conditions can be restated in a more conve-
nient form (at least for our purposes). Namely, if one chooses a vector ~p
of norm one in the range of where e is the unit element of G, then
from (SCS2) we infer :

there exists a unitary character A of N such that = ~,(h)~p
for all h ~ H.

Furthermore, one has

These being noted, the property (SCS3) says that :
there exists a nonzero vector 03C8 ~ H03C0 such that
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142 H. MOSCOVICI AND A. VERONA

As it was observed in [9, § 1 ], (SCS2) and (SCS3) can be replaced by 
and (SCS3)..

If the conditions (SCS1), and (SCSg) hold, we shall say that
the pair {~ ; ~} defines a ~-system of coherent states based on X = G/H ;
the corresponding coherent states are given in fact by the formula (CS).

1.1.1. REMARK. Assume 03BB} defines a 03C0-system of coherent
states based on G/H. Then 03C0 is equivalent to a subrepresentation of the
induced representation G, ~,) (cf. [9, Prop. 1. 2] ).

1.1. 2 . PROPOSITION. - Let H c K be two closed subgrou ps of G and
Iet 7r be an irreducible unitary representation of G. Assume that there exist
a vector ~p E ~,~ with ~ ~ = 1 and a unitary character ~, of K such that

= 03BB(k)03C6 for att k E K, and let 03BBH be the restriction to R. 
the following statements are equivalent:

i) {~ ; ~,H ~ defines a ~-system of coherent states based on X = G/H;
ii) {~ ; ~, ~ defines a ~-system of coherent states based on Y = G/K

and K/H admits a finite K-invariant measure.

Proof. 2014 0 =&#x3E; ii). Since ~H = the homomorphism ð : K -~ [R+,
5(~) = extends the homomorphism h H hEH,
so that one may form the relatively invariant measure  = on 

On the other hand, let p be a continuous positive function on G such
that 03B4(k)-103C1(g), for g E G and k E K. Then = is a quasi-
invariant measure on Y.
Now every coset gK E G/K defines a positive measure gK on X by

the formula

According to [3, Ch. II, 3.4], has an integral decomposition of the form

Thus, if we denote

and take into account the fact that for a suitable 03C8 ~ H03C0

we get that

for almost all gK E Y, and further that
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143COHERENT STATES AND SQUARE INTEGRABLE REPRESENTATIONS

Now

since clearly = It follows firstly that ,u(K/~1 )  oo and

secondly that

which further imply that p(gk) = p(g) for all g E G and k E K. Hence
= 0394K, in particular = 0394G| H = 0394H which means that  is

K-invariant, so that we may take p = 1. It follows that is an invariant

measure and that

which concludes the proof of i ) =&#x3E; ii).
ii) =&#x3E; i ). By hypothesis, Y = G/K and K/H admit invariant measures.

Hence X = admits an invariant measure too. Then, in the above

notation, one has

so that

This completes the proof.
1.2. Let Z denote the center of the locally compact group G. An irre-

ducible unitary representation ~c of G when restricted to Z is a multiple
of a well determined unitary character 03B603C0 of Z. This will be called the central
character of ~c.
The following statements concerning an irreducible unitary represen-

tation 7c are known to be equivalent (see for instance [1, Prop. 1. 2] ) :
(SIR’) there exist nonzero vectors ~ ~p E ~~ such that

(SIR") for every ~ and ~ in a dense linear subspace of ~

Vol. XXIX, n° 2 - 1978.



144 H. MOSCOVICI AND A. VERONA

(SIR"’) 7T is equivalent to a subrepresentation of the induced represen-
tation ind (Z, G, ~~).

If one of these conditions holds, 03C0 is called a square integrable represen-
tation or a member of the relative discrete series of G.

1.2.1. REMARK. It is a trivial observation to note that 03C0 is square
iritegrable if and only if 7r admits a system of coherent states based on G/Z.
Furthermore if 03C0 is square integrable then, for any 03C6 in a dense linear

subspace of with ~ ~ = 1, the ~,~ ~ defines a ~-system of
coherent states based on G/Z. It is less trivial to prove that a square inte-
grable representation is a coherent state representation (in the sense

explained in the introduction).

1.2.2. PROPOSITION. - Let G be a connected locally compact group,
7r an irreducible unitary representation of G, r a closed, discrete, normal
subgroup of G contained in Ker 7c, and nr the representation of Gr = G/r
to which 03C0 f ’actorizes. Then 7r is square integrable if and only if 03C00393 is square
integrable. 

’

Proof First, it is clear that F is central and that z/r is contained
in the center Zr of Gr. Now let cr E Zr. Then, for any g E G, E 1,.

Since the map g ~ is continuous, G is connected and F discrete,
it follows that 1 

= e, for any g E G. Therefore c E Z. We conclude
thus that Zr = z/r. To complete the proof it remains to notice that

where gr denotes the right coset gr E Gr.

1.2.3. COROLLARY. - Let ~c be an irreducible unitary representation
of the connected, locally compact group G, and let ~c’, ~" be the corresponding
representations of G’ - G/Ker 03C0, G" - G/(Ker 03C0)0 respectively. Then 03C0’

is square integrabte if’ and only i~f ~c" is square integrabte.

Proof - One applies the above proposition to the subgroup
r = 03C0/(Ker 03C0)0 of G".

2. THE SOLVABLE CASE

Before going to treat the case of a solvable Lie group, let us introduce
some notation concerning an arbitrary Lie group G. The Lie algebra
of G is denoted 9 and g* stands for the dual vector ,space of g. The adjoint
action of G on 9 is denoted Ad and the coadjoint action is denoted Ad*.
Given a functional f E g*, G(f) denotes the isotropy subgroup of G (acting
via Ad* on g*) at .f’, and g(f) denotes its Lie algebra. As it is known,

Artnales de I’Institut Henri Poincare - Section A



145COHERENT STATES AND SQUARE INTEGRABLE REPRESENTATIONS

g(f) _ ~ x E g ; ~ f, [x, 9] &#x3E; = 0 }. The set of all orbits of G acting on g*
will be denoted g*/Ad*(G). If X E g*/Ad*(G), we denote

2.1. The following two lemmas are established in the general case
of a connected Lie group G, although they will be used only for G solvable.

2 .1.1. LEMMA. Let X E g*/Ad *(G). Then g[X] is an ideal of 9 and

one has g[X] ] _ n ker ( f ~ g(.f )) .
fEX

Proof If x E g[X] ] and f E G, then

Thus g[X] is Ad( G)-stable, or equivalently it is an ideal. Now clearly

1 ker ( f ~ g( f )) is contained in l ker ~: Conversely, let x E g[X] ;
fEX fEX

g[X] being an ideal, [x, gj c g[X], hence [x, g] c ker f for any f E X, or

equivalently x E ng(f). On the other hand, x E ~ker f.’ In conclusion
fEX fEX

x E 1 ker ( f ~ g(, f )).
fEX

2. 1 .2. LEMMA. - For X E g* / Ad*( G) the following assertions are

equivalent:

i) g(f) is an ideal for any f EX;
ii) g(f) is an ideal for some f EX;
iii) X is open in its affine hull.

Proof. - i) =&#x3E; ii). This is obvious.

ii) =&#x3E; iii) Let g E G and x E g(, f ’). Since g(f) is an ideal,

hence

Therefore, X is contained in the affine variety f + where

g(/)~ = { ~ E g* ;  k, g( f ) ~ = 0 } . Moreover, X is  submanifold of the
same dimension as f + and thus it is open in this affine variety.

iii) =&#x3E; i) Let f E X. By hypothesis X c f + W where W is a linear
subspace in g* of the same dimension as X. If x E g and

then
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146 H. MOSCOVICI AND A. VERONA

By taking the derivative in t = 0, we get

This proves that g[W] c g( f ). Since both these spaces have the same
dimension, it follows that g(f) = g[ W ]. But W does not depend on the
choice of f in X. Hence g(f) = g(Ad*(g)f) = for any g E G,
which shows that g(/) is and thus it is an ideal.

2.2. In the remainder of this section, unless otherwise stated, G will
denote a connected and simply connected solvable Lie group.

Let f E g*. Since G(f)o is simply connected, there exists a unique
character x f of G(/)o such that 203C0if | g(/). We denote Q f = 
If X E g*/Ad*(G), we set G[X] = Clearly, the Lie algebra of G[X]
is g[X]. ~ex

2.2.1. By extending the Auslander-Kostant-Pukanszky procedure,
we constructed in [lo] a series of irreducible unitary representations of G.
Without entering into details, we shall recall here this construction.

Let f E g* and let r be a subgroup of G(f) containing G(f)o, such that
there exists a unitary character x of r which extends ~f. For, any positive,
strongly admissible polarization 1) of G at f and any character x of r with
the above property, one constructs by holomorphic induction a unitary
representation p(f, x, 1) of G. This representation is irreducible if and
only x cannot be extended to a subgroup larger than r, and its equivalence
class does not depend on t). Furthermore, an irreducible representation
of the form p(f, x, g) is normal (see [12, p. 81] for the definition) if and
only if the orbit X  = Ad*(G) f is locally closed in g* and G(/)/r is finite.
Conversely, any irreducible normal representation ~c of G is unitarily
equivalent to such a representation p{ f x, ))), where the orbit X f is uniquely
determined by [7r]; accordingly, it will be alternatively denoted X,~.

Finally we mention that when G is of type I, all the irreducible unitary
representations of G are normal, the above construction becomes a bit
simpler (since for any f E g*, r = G(/)), and in fact it is just the Auslander-
Kostant construction (cf. [2] ).

2.2.2. LEMMA. be an irreducible normal representation of G.
Then (Ker 7~ = 

Proof The representation ~" of G" = 7c)o is irreducible and
normal too. By what we said above, there exist f " E g"*, where g" is the
Lie algebra of G", a subgroup r" of G"( f ") with ro - G"( f ")o, a character
x" of r" and a polarization 1)" of g" at f ", such that [~"] _ [p{, f’", x", f)")].
Let p" : G -+ G", dp" : 9 -+ g" be the canonical projections. Then, the
naturality of the construction in 2.2.1 ensures us that, if we take f = 
r = ~-’(r~ ~ = x.. o p.. (dp..)- lth")~ then = x, ~)]~
Consequently X ~ = while of course = It is not
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147COHERENT STATES AND SQUARE INTEGRABLE REPRESENTATIONS

difficult to see that = p" -1 (G"[X n"] ). In particular, (Ker ~)o c 
hence (Ker c 

To prove the other inclusion, let us consider the quotient group
G = with Lie algebra g = g/g[XJ. Now if = [~ x, t))],
then clearly f x and ~ « factorize » to the entities f X, t) corresponding
to G. Moreover, the naturality argument gives us M = [~c ~ p], where
p : G ~ G is the canonical projection and 03C0 = ;(,t)). Therefore
Ker 03C0 = p-1 (Ker 7r). In particular, G[XJo, hence (Ker =3 

2.3. Let 7r be a square integrable representation of G. As it was proved
in [~], 7r is normal and for any G(/)/Z is compact ; in addition,
G(f)/G(f)oZ is a finite group. Here Z denotes, as usually, the center of G.
Let Yf = G/G(/)()Z. This is a finite covering space of the orbit Xn, and
thus a Hamiltonian G-space. In particular it possesses an invariant mea-
sure ~c ; it is given by the invariant volume form which comes from the
canonical G-invariant symplectic 2-form on Yf.

2.3.1. THEOREM. Let 7r be a square integrable representation of the
connected and simply connected solvable Lie group G. Then 03C0 admits a

system of coherent states based on Yf, where f E X~.

Proof. 2014 By hypothesis, [7r] == [~(~ x, ~)], where x is a character of a
subgroup r of G(f) containing H = G(f)oZ, and ~ is a positive strongly
admissible polarization of  at f E X n. It is easy to see that the restriction
of x to Z is just the central character ~n. Thus, if we denote by xH and 7~
the restriction to H of X and 03C0 respectively, then ~H1 ~ 03C0H is trivial on Z
and hence defines a representation of H/Z. Note that H/Z, being isomorphic
to G(f)o/G(f)o n Z is compact, connected and solvable ; therefore it is
a torus. Consequently, 7~ splits as a direct sum of characters on H whose

restriction to Z is ~. If ~, is such a character then P~ _ 

being a normalized Haar measure on H/Z) is the orthogonal pro-
jection on the isotypic subspace of ~~ corresponding to ~,.
Now let cp be a nonzero vector such that

Since ~p 7~ 0, there exists a character A on N such that = P~~ 7~ 0 ; there
is no loss of generality in assuming II = 1. We will show that { ~ ; ~ }
defines a 03C0-system of coherent states based on Yf.

First it is clear that = 03BB(h)03C603BB for any hE H. Now let 03C8 E H03C0.
Then
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148 H. MOSCOVICI AND A. VERONA

hence

and further

But H/Z being compact, = 1, and thus we finally get

To conclude the proof it remains only to apply Proposition 1.1.2.

2.3.2. REMARK. In particular, if yr is a square integrable represen-
tation with the corresponding orbit X~ simply connected, then ~c is a

coherent state representation, that is 03C0 admits a system of coherent states
based on Xn.

2.4. We shall restrict ourselves now to the case when G is exponential.
As it is well-known G is of type I, hence the Auslander-Kostant construc-
tion [2] works and all equivalence classes of irreducible unitary represen-
tations can be obtained by their procedure. In addition, every orbit in g*
under the coadjoint representation is simply connected, since for any

f E g* the isotropy subgroup G(f) is connected and simply connected.

2.4.1. THEOREM. - Let G be a connected and simply connected expo-
nential Lie group. The following statements, concerning an irreducible

unitary representation 7r of G, are equivalent :
(CSR) 7T admits a system of coherent states based on X03C0 ;
(OAV) open in its affine hull ;
(SIR) 7r’ is a member of the relative discrete series of G’ = G/Ker 7r.

Proof 2014 (CSR) =&#x3E; (OAV). Fix a 03BB} defining a 03C0-system of
coherent states based on Xn, with ~p E ~~ and x a unitary character of G(f),
for some f E Xn. Recall that 03C0 is contained in the induced representation
ind (G( f ), G, ~,). (Cf. Remark 1.1.1). We want to apply the Mackey sub-

- group theorem [7, Th. 12.1] to decompose the restriction to G(f) of
ind (G( f ), G, ~). To do this we need to prove first that the space of double
cosets is countably separated or, which amounts to the

same thing, that the orbits of G(f) acting on the left on G/G(/) are locally
closed. Since g* is a G-module of exponential type, we may apply [3, Ch. I,
Th. 3 . 8 and Remark 3 . 9] to deduce that G/G(f) is homeomorphic to the
orbit Xn c g*. Now the action of G(f) on g* being also of exponential
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149COHERENT STATES AND SQUARE INTEGRABLE REPRESENTATIONS

type, its orbits in g*, in particular those in X n’ are locally closed. Conse-
quently, Mackey’s theorem cited above can be used to obtain the direct
integral decomposition

where ~,g(h) _ ~,( ghg -1) for g=G(f)gG(f) and v is

an admissible measure on (see [7] and also [9, 3 . 2] ).
Now 03C0| G(/) is contained in ind (G( f ), G, 03BB)| G(/) and, on the other hand,

03BB is contained in 03C0| G(/). Therefore, 03BB is contained in ind (G( f ), G, 03BB)|
This further implies (see [9, 3.3]) that ~, is contained in

for g running over a measurable subset M~ of strictly positive Haar measure
in G.

Let us fix an element We will prove now that = G(f).
Since ind (G( f ) n G( f ), Ag) contains a finite-dimensional repre-

sentation, by [7, Th. 8 . 2], the homogeneous space 
admits a finite invariant measure. In view of [77, Th. 7.1] this implies
that is compact. We immediately get that

since is diffeomorphic to an
euclidian space which cannot be compact unless it reduces to a single
point.
Now let G~, _ ~ g E G ; g-1 G( f )g = G( f ) ~ . This is clearly a closed

subgroup of G. Since M~, c G~, G~, will be of strictly positive Haar measure
in G, and thus it must be in fact the whole G. Thus G(f) is a normal sub-
group of G, which by Lemma 2.1.2 proves that X,~ is open in its affine
hull.

(OAV) ==&#x3E; (SIR). We begin by a few comments which will put our

problem under a more convenient light. First, in view of Lemma 2.1.2,
we may consider that the hypothesis consists in assuming g(f) to be an
ideal, for some f E X n. Next, according to Corollary 1. 2. 3, we may replace
in the conclusion G’ by G" = G/(Ker and 7r’ by 7c". Further, by
Lemma 2 . 2 . 2, (Ker = G[XJo. Finally, in view of [4, Th. 3], we have
to prove that is compact, where Z" denotes the center of G"
and f " is the functional on the Lie algebra g" of G" to which f E X~ fac-
torizes.
Now g( f ) being an ideal and [g, 9([)] being contained in ker ( f ~ g( f )),

it results that ker ( f ( g( f )) is an ideal too, hence g[XJ = ke~ ( f ~ g( f )).
By going down to g" we obtain ker ( f " ( g"(, f ’")) = 0. As

it follows that Q"(y) coincides with the center 3" of g". We know that
G(f) is connected and simply connected. Hence G "(~ f ") will be connected

Vol. XXIX, n° 2 - 1978.



150 H. MOSCOVICI AND A. VERONA

too. It follows that G "( f ") = Zo’. On the other hand Z" is always contained
in G "(, f ’"). Thus G"( f ") = Z".

(SIR) ==&#x3E; (SCR). In view of Corollary 1.2.3 we may consider that ~"
is square integrable. As noticed above, the orbit X 1t" is simply connected.
According to Remark 2 . 3 . 2, this implies that 7~’ admits a system of coherent
states based on Xn". Thus, there exist with I = 1 and
a character 03BB" on G"( f ") such 03BB"} defines a 03C0"-system of coherent
states based on X~ ~ G/G "(/"). It is an easy matter to check ~, ~
defines a 03C0-system of coherent states based on G/G(/).

2.4.2. REMARK. The following example illustrates the fact that

(SIR) does not necessarily imply (OAV) for non-exponential solvable Lie
groups. Let g be the solvable Lie algebra spanned by { el, e2, e3, e4 ~ with
the nonvanishing brackets : e2] = e3, e3] _ - e2, [e2, e3J = e4.
The corresponding simply connected Lie group is known as the « diamond
group » (see [3, Ch. VIII, § 1]). It is a type I solvable Lie group, diffeomorphic
to ~4, whose center is Z = {(2~, 0, 0, t ) ; n E Z, t e !R }. Let f E g* be
the functional: ./;~&#x3E;=~2&#x3E;=~3&#x3E;==0, (~~~=1. Then
G(f) is simply connected and G(/)/Z is compact, hence the representa-
tion 7T associated to the orbit X = Ad*(G) f is square integrable. However,
g(f) = + is clearly not an ideal.

2. 5 . In this subsection, G denotes a (not necessarily simply connected)
connected solvable Lie group of the following type : it contains a connected
and simply connected closed subgroup M which is exponential, such
that G/M is a torus. Such a group is known to be of type I. (This is an easy
consequence of Mackey’s theory of representations of group extensions).
Consequently, if 03C0 is an irreducible unitary representation of G, it lifts

to an irreducible normal representation % of the universal convering
group G of G. As recorded in 2.2.1, yr is unitarily equivalent to a represen-
tation of the form p(f, x, 1)), where f E g*, X is a unitary character of a
subgroup r c G(f) of finite index, and t) is a strongly admissible polariza-
tion at f Now, since x when restricted to the center Z of G is exactly the
central character ~n, it drops down to a character x of r = r/L c G(f),
L being the kernel of the canonical epimorphism of G onto G. Then, one
can construct the holomorphically induced representation 1)) of G,
which clearly is unitarily equivalent to 7r. We shall denote by Y03C0 the homo-
geneous symplectic manifold G/r, which is a finite covering space of the
orbit X, = 
With these preparatives, we may now formulate the converse to

Theorem 2.3.1.

2.5.1. THEOREM. - Let 03C0 be an irreducible unitary representation
of G which admits a system of coherent states based on ~. Then 7~ is square
integrable.
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Proof. 2014 In view of the above discussion, we may assume that 03C0 is of
the form p( f, x, !)). Let = G(/) n M. We claim that M(/) is connected
and simply connected. Indeed, this is a consequence of the following
lemma, which will be stated below, after introducing some more notation.
Denote by m the Lie algebra of M, by t the restriction of f to m, by

M(t) the isotropy subgroup of M (acting on m*) at t, and by m(/), the
Lie algebras corresponding to M(/), M(t) respectively. Finally, let

a=Tn+{~eg;~~[~,m]~=0}, which is an ideal in g since [ g, g] c m,
and let a1- c g be the space of all linear functionals that vanish on a.

2. 5 . 2 . LEMMA. 2014 The mapping H induces a

homeomorphism o,f onto f + a1 c g*,

This can be proved exactly as Lemma 11.1.2 in [2], so that we shall
omit the details.
Now M being exponential, M(l) is connected and simply connected.

On the other hand, the above lemma shows that is also connected
and simply connected. It follows that M(f) is connected (and, being a
subgroup of M, simply connected) as claimed before.
By hypothesis, there exists a vector of norm one ~p and a unitary

character 03BB of r c G(/), such defines a 03C0-system of coherent
states based on ~. Notice that c G(/)o c r, and denote by ~,’ the
restriction of ~, to M(f).

2. 5.3 . LEMMA. - The ~,’ ~ defines a ~-system of coherent
states based on 

This clearly follows from Proposition 1.1.2, if we are able to prove that
G(/)/M(/) is compact. In turn, the compactness = G(/)M/M,
will follow from the compactness of G/M, provided that we can prove
that G(f)M is closed in G. Now is easily seen to be the isotropy
subgroup of G, acting on the orbit space at the point

We next observe that g, hence g*, is an M-module
of exponential type, since m is such a module and M acts trivially on g/m.
Thus, the fact that is closed, and hence Lemma 2.5.3, is a conse-
quence of the following result.

2. 5.4. LEMMA. Let T be a topological group acting on a topological
space X, such that for any x E X the map a E ax E X is continuous.
Assume that alt the points of X are locally closed. Then the isotropy sub-
group of T at any x E X is closed.

Let us prove this statement. Fix a point x eZand let T(x) be the corres-
ponding isotropy subgroup. Further, let T ( ~ x ~ ) _ ~ a E T ; a ~ x ~ _ ~ x ~ ~ .
Clearly, T(x) c T( { ~}). The point is that the other inclusion is also true.
Vol. XXIX, n° 2 - 1978.
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being the only relatively open one-point subset 

every homeomorphism of must fix it. Thus

which shows that it is closed.

We continue now the proof of the theorem. According to Lemma 2. 5. 3
and Remark 1.1.1, ~ is equivalent to a sub representation of ind (M(/), G, ~).
On the other hand, as noticed before, g* is an M-module of exponential
type. Therefore, when viewed as an it is also of exponential
type.

So, the arguments used in the first part of the proof of Theorem 2.4.1
((CSR) =&#x3E; (OAV)) work in the case at hand too, and lead us ultimately
to the conclusion that M(f) is a normal subgroup of G, or equivalently
that m(f) is an ideal in g. Now let 1 = ker ( f rn(/)). Since m(/) is an

ideal, [ g, m(/)] c m( f ). On the other hand [ g, m( f )] c [ g, g(/)] c ker f.
Therefore 1 is an ideal in g too. Denote K = exp 1, G1 = G/K, M1 = 

g 1 = m 1 = m/f, fi the functional on g 1 induced = 

T/K, and Xl the character on h1 induced by X. Then ~1 - p(fi, xl, t)J
is a unitary representation of G1 which lifts to vr. In other words, ~ drops
down to G1 and yields the representation ~cl.
To prove the theorem, it clearly suffices to check that ~1 is square inte-

grable. To this end, let us note that m1(fl) = m(/)/t is 1-dimensional
and gj = 0. Thus, is contained in the center 31 of gl, so
that is contained in the center Z 1 of G 1.
Now is isomorphic to which, as we already

noticed, is compact. It follows that G1( fi)/Z1 1 is compact, which finishes
the proof.

2.5.5. REMARK. Let G be a real algebraic solvable group which is
connected with respect to the Zariski topology. Viewing G as a Lie group,
let Go denote the connected component of the identity with respect to the
underlying Lie group topology. We claim that Go is a solvable Lie group
of the type described at the beginning of this subsection, in particular that
Theorem 2.5.1 works for Go.

Indeed, as it is known, G can be decomposed into a semidirect product
of a torus T and a unipotent algebraic normal subgroup U. Now ~I is a
connected and simply connected nilpotent Lie group, and T is an almost
direct product of two uniquely defined real subtori f and T", such that T’
is R-split and T" is anisotropic over [R. These being said, it is easy to see

that M = T’0U is a connected and simply connected exponential (in fact,
completely solvable) normal subgroup of Go, and that Go/M is a compact
connected Lie group.
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3. THE REDUCTIVE CASE

Throughout this section G will denote a connected and simply connected
reductive Lie group, with Lie algebra g.

3.1. The semisimple Lie groups (with finite center) with a non-empty
discrete series of irreducible unitary representations have been characterized
by Harish-Chandra [5], who also has given a parametrization of the set
of all equivalence classes of square integrable representations. His results
were extended by Wolf [15] to the case of a reductive group. Finally,
W. Schmid [13] has recently proved that all the discrete series represen-
tations can be realized in terms of the geometric quantization, as was
conjectured by Kostant and Langlands. We shall present here the « orbital
picture » of the relatively discrete series, extracted from their results.
As above, G is a connected and simply connected reductive Lie group,

with Lie algebra g and center Z. The Killing form on g permits to identify g
with g* ; let f H x f be the canonical bijection of g* onto g. An element
f E g* will be called elliptic if the corresponding x f E g has the following
properties : is semisimple and G(/)/Z is compact. An orbit

will be called elliptic if it consists of elliptic elements, and
will be called regular if it is of maximal possible dimension. The set of all
regular elliptic orbits in g* will be denoted A.
The group G has a non-empty relative discrete series if and only if A

is non-empty. Moreover there is a canonical bijection between A and the
set disc of all equivalence classes of square integrable representations
of G. If X E A, we denote by the corresponding class in and

conversely if M E disc we denote by X03C0 the corresponding orbit in A.
The irreducible unitary representation ~X associated to an orbit XeA
can be realized on an L2-cohomology space of a holomorphic line bundle
over X, by a construction which fits into the general framework of quantiza-
tion.
We mention finally the following fact to be used below. If X E A and

f E X, then G(f) is a connected Cartan subgroup of G and G(/)/Z is a
compact Cartan subgroup of G/Z.

3.2. Here are our results concerning the reductive case.

3.2.1. PROPOSITION. - Let 03C0 be a square integrable representation
of the connected and simply connected reductive Lie group G. Then 03C0 admits
a system of coherent states based on X~.

Proof Let f E X n. Since G(f) is abelian, there exists a character x
of G(f) extending the central character 03B603C0 of 03C0. Denoting by the restric-
tion of 03C0 to G( f ), we see that X - 1 (8) is trivial on Z, hence it becomes
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a representation of G(/)/Z. But this quotient group is a torus. It follows
that ~G~ f~ splits as a direct sum of unitary characters of G( f ). Now pick
a character ~, occuring in this direct sum decomposition and then a vector ~p
of norm one in the isotypic subspace of corresponding to ~,. Since G
is unimodular, the dense subspace of ~~ involved in the definition (SIR")
is in fact the whole so that we have

for any 03C8 E H03C0. Finally, by making use of Proposition 1.1. 2, we get that
{03C6 ; /).} defines a 03C0-system of coherent states based on X03C0.

3.2.2. THEOREM. be an irreducible unitary representation of
the connected and simply connected reductive Lie group G. If 03C0 admits a
system of coherent states, then 7r~ is a square integrable representation o, f
G’ = G/Ker 7r.

Proof. 2014 By Corollary 1.2.3 it is enough to prove that 03C0" is a square
integrable representation of G" = G/(Ker On the other hand, in view
of Proposition 1.1.2 we may enlarge, if necessary, the subgroup involved
in the system of coherent states of 03C0 (whose existence is assumed by hypo-
thesis), to include 7r)o. In this way, 7~’ will inherit a system of coherent
states too. Thus, there will be no loss of generality in assuming from the
begining that Ker 03C0 is discrete.

Now G being reductive, it is a direct product A x S with A abelian
and S semisimple. Further, the irreducibility of 7r implies that 03C0 = a (8) 6,
exterior tensor product, where a is a unitary character of A and 6 an irre-
ducible unitary representation of S acting on the same Hilbert space as ~.
We parenthetically add that A ~ [R, since Ker 03C0 is discrete. The same reason
ensures us that Ker cr is discrete too.

We want to prove that 03C3 admits itself a system of coherent states. To
this end let us note that if the 03C0-system of coherent states is defined by a

v}, with v a unitary character of a closed subgroup K, then by
using once more Proposition 1.1.2, we may consider that K is the set of
all kEG such that E In this case K contains both Ker 03C0 and

the center Z of G. Furthermore, we will show that K = A x H, where H
denotes the projection of K onto S.

Indeed, we first have A x ~ e ~ c N since = E for

any On the other hand, if hEH, there exists aEA such that k = (a, h)EK
and then

hence
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Thus K = A x H; accordingly, v = a (8) À, where À is the restriction of v
x H. Further, we have for any 03C8 E H03C3

which shows À} defines a 6-system of coherent states based

Let C be the center of S. Since Z = A x C is contained in K, C will be
contained in H. We intend to prove that H/C is compact. This will be done

by using Theorem 2 in [8].
We need to introduce some more notations. The group S is a direct

product S 1 x ... x Sn of simple groups and consequently 6 = 61 Q ... ~ 03C3n
where 03C3i is an irreducible representation of Si. We denote by S* (resp. 5**)
the adjoint group of S (resp. Si) and observe that S * = S/C. Finally let
p : ~ -~ S* and pi : S -~ S~‘ be the canonical projections.

These being settled, we claim that H/C = p(H) is compact. Indeed,
assume the contrary. Then there exists 1 ~ ~/  ~ such that is non-

compact. In addition, E ~~p for any h E H. In view of [8, Th. 2] these
two facts imply that = ~p for any si E Si. Since 6t is irreducible, it

follows that 6i is the trivial representation of Si. Hence Si c Ker 7, which
contradicts the discretness of Ker 6.

Now, for a suitably normalized invariant measure on we have

for any 03C8 E Thus, cr is a square integrable representation of S.
To conclude the proof it suffices to notice that

which means that 7: is a square integrable representation.
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