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Differential forms as spinors

Wolfgang GRAF

Fachbereich Physik der Universitat,
D-7750Konstanz. Germany

Ann. Inst. Henri Poincare,

Vol. XXIX. n° L 1978.

Section A :

Physique ’ théorique. ’

ABSTRACT. 2014 An alternative notion of spinor fields for spin 1/2 on a
pseudoriemannian manifold is proposed. Use is made of an algebra which
allows the interpretation of spinors as elements of a global minimal Clifford-
ideal of differential forms. The minimal coupling to an electromagnetic
field is introduced by means of an « U(1 )-gauging ». Although local Lorentz
transformations play only a secondary role and the usual two-valuedness
is completely absent, all results of Dirac’s equation in flat space-time with
electromagnetic coupling can be regained.

1. INTRODUCTION

It is well known that in a riemannian manifold the laplacian
D := - (d~ + ~d) operating on differential forms admits as « square
root » the first-order operator ~ 2014 ~ ~ being the exterior derivative and e)
the generalized divergence.

In 1928 Dirac solved a similar problem in the riemann-flat manifold

of special relativity by introducing the differential matrix operator 2014
acting on spinor fields. ax~‘

That these two problems and their solutions despite their appearance
are essentially the same was not recognized until 1960/1961, when E. Kahler
showed ( 1 ) that at least for flat space-time Dirac’s equation

( 1 ) Compare also Lichnerowicz (1962, 19b4) with regard to the Petiau-Duffin-Kemmer
algebra.
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86 W. GRAF

can be completely reinterpreted in terms of certain inhomogeneous
differential forms ~ obeying

It is our purpose to develop the corresponding notion of spinor field
on a riemannian manifold based entirely on differential forms and to
propose it as a conceptually more economical alternative to the usual
notion (2). Our proposal will rest on the following facts, most of them
classical (3 )

a) spinors (for spin 1/2) emerge naturally in the representation theory
of Clifford-algebras (whereas the Lorentz group has in addition also
tensor and higher spin representations),

b) there is an isomorphism of the linear structures underlying a Clif-
ford-algebra over a vector space V with inner product on the one hand
and the exterior algebra over V on the other hand,

c) the Grassmann-algebra over V can be regarded in a natural way as
a (reducible) representation module of the Clifford-algebra over V,

d) the finite dimensional irreducible representations of the Clifford-
algebra are isomorphic (as modules) to its minimal ideals,

e) there is a unique bijection (implicit in Chevalley (1954), explicitly
given by Kähler (1960) and also used by Atiyah (1970)) which for a given
vector space V and quadratic form Q maps any Clifford-algebra onto the
corresponding Grassmann-algebra ( = exterior algebra with inner product
induced by Q),

f ) this map extends to the corresponding differential operators : Dirac’s
operator on the one hand, J 2014 5 on the other.

The main difference to the usual treatment of spin or fields is our use of
vector bundles related to the cotangent bundle instead of principal bundles
with structure groups homomorphic to the rotation groups 0(p, q). This
choice guarantees the naturalness of f ) and amounts to considerable
technical simplifications.

Another peculiarity worth mentioning is the following : our algebras
and bundles, being derived from the cotangent space of real manifolds,
will be primarily over the reals. Their complexification is then made by
« gauging » with the circle group D(I). This has the advantage of automati-
cally introducing minimal interactions in terms of gauge-covariant deri-
vatives.

{2) In which a spinor field on a riemannian manifold is a cross section of the associated
bundle of type id to the spin bundle which is an extension of the bundle of orthonormal
frames (comp. Lichnerowicz (1964)).

e) Comp. Brauer and Weyl (1935), Chevalley (1954), Rashevskii (1957), Bourbaki (1959).
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87DIFFERENTIAL FORMS AS SPINORS

A very thorough analysis of representations of Clifford-bundles was
done by Karrer (1973) and recently slightly generalized from a different
point of view by Popovici (1976). _

2. SOME ALGEBRAS AND THEIR RELATIONS

Let us start from a real n (finite) dimensional vector space V (in our
later applications it will be the cotangent space of a differentiable manifold)
and recall some definitions and elementary properties (comp. Chevalley
(1954, 1955), Bourbaki (1958, 1959)) :

A) The tensor algebra T(V) over IR is the [R-vector space of the direct
sum of the powers (8) PY together with the usual associative tensor product 0 ~ I
of its elements. Since V is a finite dimensional vector space, it is canonically
isomorphic to its image (8) 1 V in T(V). Therefore we will identify (8) 1 V

with V and define Q9 °y := IR. This tensor-algebra T(V)= 0 )
is 7 -graded : (8) c and infinite-dimensional if n &#x3E; 1.
On T(V) there are two important involutive morphisms (both being

linear automorphisms of 3 (8) 
a) the main automorphism (X with

b) the main anti-automorphism 03B2 mapping T(V) to its opposite algebra:

B) The exterior algebra A(V) over the R vector space V can be defined
as the quotient-algebra T(V)/J of T(V) by the two-sided ideal J c T(V)
generated by the elements of the form a Q9 a, where a E V.
As customary, we will denote exterior multiplication by the sign 11.

Since J is homogeneous in the Z-gradation of T(V) also A(V) is Z-graded:
with As before, we make

the identifications A 1 (V) = V and = [R. The subspaces Ap(V) are

(;)-dimensional and A(V) is 2n-dimensional. For homogeneous elements
and b E A q(V), their exterior product is either commutative or

anticommutative

Vol. XXIX, n° 1 - 1978.



88 W. GRAF

The morphisms a and /3 of T(V) pass to the quotient A(V). Denoting them
with the same symbols a and 03B2 we now have

C) As Grassmann-algebra A(V, Q) we will denote the pair (A(V), Q)
consisting of an exterior algebra A(V) together with an inner product
(, )Q : A(V) x A(V) -~ [R induced in A(V) by a quadratic form Q over V
as follows (4) :

then (a, b)Q := det b~)), where B is the bilinear form associated to Q
by

iii) the case of general a, b E A(V) can then be reduced by linearity
to i ) and ii).
D) The Clifford-algebra C(V, Q) of the real vector space V with quadratic

form Q is defined as the quotient algebra T(V)/J’, where the two-sided
ideal J’ is generated by elements of the form a Q a - 1, with 
As before, we can and will identify V with its image in C(V, Q). Denoting
Clifford-multiplication by the sign V (5), we have for a, b E V the familiar
relations (6)

with the bilinear form B as defined in (2.10). The ideal J’ being inhomo-

geneous of even degree in T(V) induces a Z2-gradation of the Clifford-

algebra, C(V, Q) = C+ + C-, where C+ is the image of the elements of
even degree in T(V) and C- is the image of the elements of odd degree
in T(V). Since a(J’) = ~i(J’) = J’, the morphisms a and ~i induce morphisms
(designated by the same symbols) in C(V, Q)

{4) If there is no danger of confusion, instead of (a, b)Q we shall also write a . b.

e) If there is no risk of confusion, we will also write ab instead of a V b.

{6) Compare for example Kastler (1961). More suggestively, if et s is any basis in V,

we have eiej + with gI’ := ej).

l’Institut Henri Poincaré - Section A



89DIFFERENTIAL FORMS AS SPINORS

The Clifford-algebra as defined above although closely
related is not even abstractly isomorphic to the Clifford-algebra generally
used in physics, which is a matrix algebra generated by matrices yi such
that yV + 03B3j03B3i = Whereas the former is an algebraic structure with
a distinguished subspace V, the latter does not pay attention to the parti-
cular set of yi (in fact, all such sets are equivalent under yi H :t 
This distinction can also be seen in their automorphism groups : for non-

degenerate Q, for the former it is the ( J-parametric rotation group q)~
whereas for the latter it is an (2" - 1 ) (resp. (2n - 2))-parametric Lie group
for n even (resp. odd).

3. THE KÄHLER-ATIYAH ALGEBRA

In this section we will define a new algebraic structure (7) over Q Ap(V)
containing both the Grassmann-algebra A(V, Q) and the Clifford-
algebra C(V, Q) as substructures.

First, for any element X of the dual vector space V* define the contrac-
tion of an element of T(V). with X E V* as the (V*, T(V))-bilinear map
V* x T(V) ~ T(V) of degree - 1 with

(In particular, X J X J will annihilate any element of T(V).)
Since X J J = J and X J J’ - J’ the contraction also passes to the

quotients A(V) and C(V, Q) and to A(V, Q), and we have

with

and

Define the element aeV*.
Q-adjoint to a ~ V ~ T(V), A(V), A(V, Q), C(V, Q) to be the linear function

(’) Already introduced by Kahler (1960) and Atiyah (1970).
Vol. XXIX, n° 1 - 1978.
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For any a e V c: A(V, Q) and b E A(V, Q) define their product a ~ b as

Then

By the theorem on the universality of Clifford-algebras (comp. Che-
valley (1954, 1955), Bourbaki, 1959), the 0394-algebra generated by this

relation on the elements of A(V, Q) is the Clifford-algebra C(V, Q) with V
replaced by B7.

Conversely, if for a Clifford-algebra C(V, Q) we define the 0394-product
of aEV c C(V, Q) with b E C(V, Q) as

we get

which is the defining relation of the exterior algebra. Since in the Clifford-
algebra a V a = Q(a), this exterior-algebra can be made a Grassmann-
algebra.

This correspondence of Clifford- and Grassmann-algebras does not
depend on Q being nondegenerate or not, in particular if Q = 0, the

Q-adjoint vanishes and C(V, 0) = A(V, 0) = A(V).
We now have the following situation :
on the direct sum 0 Ap(V) of the linear spaces Ap(V) we can not only

impose the structure of a Grassmann-algebra by means of 11 and Q, but
also the structure of a Clifford-algebra, and any of the two multiplications A
and V can be reduced to the other (g). Consequently, we make the follow-
ing definition :

a Kähler-Atiyah-algebra KA(V, Q) corresponding to a vector space V
with quadratic form Q is the quadruple (0 Ap(V), A, ’, V ) consisting of
the elements 3 Ap(V) together with an exterior product A, an inner

product ’ induced by Q (comp. 2 . C) and a Clifford-product V, such that
a V b = a 11 b + a . b, a, b E A 1 (V) and the products A, ., V being distri-
butive with respect to addition.

Neglecting V we have an Grassmann-algebra A(V, Q). If moreover

we neglect. we have an exterior algebra. And neglecting 11 and. we have a

Clifford-algebra.

(8) Reminding the reduction of union to intersection in a boolean lattice by means
of complementation.

Annales de l’Institut Henri Poincaré - Section A



91DIFFERENTIAL FORMS AS SPINORS

For general elements, Clifford- and exterior product are related as

follows (comp. Kahler (1960, 1962)) :

where gik:= B(ei, ek), and ei is the dual basis to any basis (9).
In what follows, Kahlefs formulas (3.9) and (3.10) will never be used
save for the special cases a or b E A 1 (V) :

Moreover, for Q nondegenerate, instead of (3.9) we have the more compact
and easier to handle expression

in which the p-elements of the product are directly displayed. The factors
~ i ... are calculated successively with the aid of (3 .11 ), and g~3
denotes the inverse matrix Our formula (3.13) is easily demonstrated
using the general identity

between the scalar part of the Clifford-product and the inner product.

4. ALGEBRAIC SPINORS

As the Clifford-algebra C(V, Q) is semisimple (simple for n even) its
finite-dimensional irreducible representations are already given by its

(9) Taken in conjunction, V and 11 are not associative, e. g.

and. is not even associative by itself, e. g.

Vol. XXIX. n° 1 - 1978.
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minimal ideals ; we shall take the left ideals IL (1 °). Consequently we define :
The elements of IL we call algebraic spinors corresponding to the mini-

mal left ideal IL ( 11 ).
The decomposition of C(V, Q) into minimal ideals can also be characte-

rized (comp. van der Waerden (1967)) by a spectral of V -idem-

potent elements of C(V, Q) such that

where rank P is defined as the rank of the 0 H&#x3E; 

Then C(V, C(V, Q)Pi and a ILi-spinor is Q)
such that = Conversely, any IL-spinor can be characterized by an
idempotent P of minimal rank 7~ 0 with = 

Taking as we have done the minimal ideals themselves as representation
modules instead of some vector spaces isomorphic to them, we have to
be careful about the notion of equivalence of representations.

It is classical that i) any simple algebra with unit is isomorphic to a
matrix algebra over a field (theorem of Wedderburn), ii) the automor-
phisms of such an algebra are given by its inner automorphisms 03C8
(theorem of Noether-Skolem) and iii) their finite-dimensional irreducible
representations are all equivalent under inner automorphisms.
However, our Clifford-algebra C(V, Q) not being just an algebra (simple

for n even) but an algebraic structure essentially consisting of an algebra
together with a distinguished subspace V, and our representation spaces I
being certain subalgebras of C(V, Q), the above mentioned classical results
apply only in part. In particular, the Noether-Skolem-theorem restricts
the automorphisms to inner automorphisms 03C8 ~ s(03C8):=S03C8S-1 such
that SVS - 1 c V for Q nondegenerate they are isomorphic to the

orthogonal group O(Q) ! (12) Consequently we define :
two representations IL and 1~ (not necessarily irreducible) of C(V, Q) are
equivalent, if there is an automorphism s of C(V, Q) such that IL = 

Remarks : i) this is the only place in our approach to spinors where the
(generalized) « Lorentz-group » O(Q) appears. Our ideals IL are just
representations of the Clifford-algebra. They could be made into spinorial
representations of O(Q) by postulating IL f2014~ SIL under automorphisms s

Recall a left ideal I is a subset of C(V, Q} such that C(V, Q)I = I. It is called a minimal
ideal if it does not contain any smaller left ideal different from I and zero.

(11) Compare Chevalley (1955), Bourbaki (1959) and Crumeyrolle (1969) for essentially
the same definition for the case of a neutral quadratic form Q.

(12~ For n odd, the only additional automorphism which appears leading
also the full orthogonal group O(Q) as automorphism group.

Annales de l’Institut Henri Poincaré - Section A
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(compare Chevalley (1955)). Although this would correspond to the usual
transformation of spinors, this would contradict our I’s being substruc-
tures of C(V, Q),

ii) the irreducible representations are now in general not all equi-
valent (13). As the discussion of Kahler’s Dirac equation will show, the
different equivalence classes also behave physically differently,
m) by means of the Kahler-Atiyah-algebra KA(V, Q), spinors can now

be interpreted as elements of the Grassmann-algebra A(V, Q). In particular,
the Grassmann-algebra itself can be considered as a (in general reducible)
representation module of the Clifford-algebra corresponding to the
idempotent P = 1,

iv) characterizing the representations IL by their corresponding idem-
potent elements P will provide a convenient starting point for the globa-
lization done in the next sections.

Before we globalize, a short discussion of the orthogonal group O(Q)
will be useful. We suppose Q to be nondegenerate. Then the elements
of O(Q) can be characterized by means of the theorem of Cartan-Dieudonne
(comp. Chevalley (1954)) as follows :
if for an endomorphism s : V ~ V.

Q(s(x)) = Q(x), then s is a finite product of symmetries sz with respect
to the hyperplane orthogonal to z :

In the language of Clifford-algebras such a symmetry is more compactly
expressed as x ~ sZ(x) _ - (compare Rashevskii (1955/1957)).
The four disconnected pieces of the orthogonal group O(Q) (two, if Q

is definite) can then conveniently characterized in terms of the element
S E C(V, Q) corresponding up to a sign to the automorphism s by two
discrete parameters E1 and E2 as follows :

a) case n = p + q even (where ( p, q) is the signature of Q).
For any automorphism s of C(V, Q) there is a S E C(V, Q) such that

and

(13) Since for any invertible T E C(V, Q) also TPT - 1 is idempotent if P is, there are
in general more than countably many equivalence classes [IJ.

{ 14) x H - the reflection of the vector x on the hyperplane orthogonal to z,
z being nonisotropic (Q{z) ~ 0).

Vol. XXIX, n° 1 - 1978.



94 W. GRAF

For any automorphism s of C(V, Q) there is a S E C(V, Q) such that

with ~ == (1 - E1)/2 and

For small n there is even a converse, given by the following

THEOREM. 5, then for any S E C(V, Q) obeying (4 . 2) or (4 . 4),
s E O(Q).

Proof (sketch~ : for any invertible S E C(V, Q) we can put S = exp 
with and 6 E C(V, Q) normalized to = 0, + 1. If ~1 = E2 = 1
then (4.2, 4) imply cx(o-) = 2014 03B2(03C3) = 6. For n  5 the only solution is

6 E Q), that is, o- is the generator of an infinitesimal rotation

and consequently S = exp In the remaining cases
(81’ G2) = (- 1, 1), (- 1, - 1) and (1, - 1) (the two last cases not occuring
if Q is definite) multiply S by the special rotations x, t and xt with x, t E V

= 1, reducing S to the case 81 = 82 = 1 already treated.

5. SOME VECTOR BUNDLES RELATED
TO THE COTANGENT BUNDLE

Since the algebraic structures considered above all posess a R-linear

structure inherited from the vector space V, for their generalization to
manifolds we will use the formalism of vector bundles (with additional
algebraic structures) (15). Our manifolds M will be real finite (n-)dimen-
sional C~-manifolds. Also our bundles, cross sections and maps will

be Coo.

A) The basic bundle, replacing V, will be the cotangent bundle T:1 of the
manifold M. Cross sections c E Sec (T~) will also be called 1 forms.

B) Given a cross section g E Sec (2M x !M) such that in each fiber 
will be a quadratic form over the cotangent space Tx(M)*, we denote the
pair g) a riemannian vector bundle (16).

C) We denote the vector-bundle whose fibers ATx(M)* are exterior

algebras over V = Tx(M)*, the Cartan-bundle 03C4*M of exterior differential

e 5) Our main reference on vector bundles is Greub, Halperin and Vanstone (1972,
1973). We use their notation.

(16) Note that this definition is slightly more general than the usual definition of Riemann
space as Q := gx may be degenerate and is a form over cotangent space instead of tangent
space.

Annales de l’Institut Henri Poincaré - Section A
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forms on M. As is well known, on a Cartan-bundle the exterior derivative d
can be uniquely characterized by the following conditions :

for any a, bE Sec ,f E Sec and X E Sec TM.
In particular, d will be homogeneous of degree + 1 in the Z-gradation

of the ring of cross sections of = (3 I1 ).
D) The pair (/B!~, g), where each fiber (ATx(M)*, gx) is a Grassmann-

algebra, we call Hodge-bundle on M with metric g.
If for any x E M, Q := gx is nondegenerate, in addition to d there is the

divergence ~, formally g-adjoint to d, defined by (1 7)

where the operator (« Hodge-star ») is defined as the unique linear
isomorphism  : -~ given by

for all p-forms ~p E Sec where 8 is a local orienting n-form with

Whereas is a local operator depending on an orientation, 5 is independent
of the particular orienting n-form and can therefore be immediately globa-
lized also to a non-orientable M. Because d2 = 03B42 = 0 the laplacian for
differential forms - D := db + bd can be written also as a square

E) A vector bundle is called a Clifford-bundle g) if each fiber is
a Clifford-algebra C(Tx(M)*, gj (18)_

If g is nondegenerate, there is a particular differential operator  called
the Dirac-operator, odd in the Z2-gradation of C(Tx(M)*, gj, defined as
follows ( 19).
For any t* E Sec iM c Sec g) and any’ t E Sec LM, consider the

bilinear tensorial map of type (1, 1) given by

e 7) Compare de Rham (1960).
(18) Essentially the « cotangential Clifford-bundle » of Karrer (1973) and Popovici (1976).
(19) Compare Karrer (1973).

Vol. XXIX, n° 1 - 1978. 4
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where 03C8 is any element of Sec (03C4*M, g) and ~t is the riemannian derivative
of 03C8 considered as element of the tensor-bundle, in the direction of t (20).
Then ~ is defined as the tensorial trace of this map (21)

In terms of a local basis {ei} of 1-forms and its dual basis { of vector

fields, we can also write

In particular, taking a local coordinate basis {dx } we have

which is the definition used by Kähler ( 1960, 1962).
The relation to the Dirac operator of special relativity is as follows.

In a connected and simply connected riemann-flat space-time g) there
exists a global coordinate-basis {dx } orthonormalized with respect
to the usual Lorentz bilinear form. For n = 4 there is a representation
dx  ~ 03B3  of the Clifford-bundle by 4 x 4 constant matrices and we get
Dirac’s operator in the usual form

but acting on the cross sections of the representation of rø(T:1, g). For an
irreducible representation it becomes exactly Dirac’s original operator
acting on « four-spinors ». The only difference to the usual four-spinors
consist in the action of the Lorentz group on them. This point will be
discussed in section 8.

F) As Kähler-Atiyah-bundle g) we define the quadruple
A, ., V ) consisting of the vector-bundle together with

the products 11, . , V such that the restriction to its fibers are Kahler-

Atiyah-algebras gx). Obviously this bundle has the Cartan-,
Hodge- and Clifford-bundles as substructures.
The Dirac operator can now be reformulated as follows. Take any

local neighbourhood U c M with coordinate Then in U,
W = V ou can be written as 11 VI! + ~~. Applying this

operator to a local form 03C8 = 1 p!03C803C11...03C1pdx03C11 11 ... 11 dxPp,

Because VrJ’ c J’, Ot passes to the quotient bundle ~(1"~, g~.
(21 ~ No intrinsic characterization of ~ seems to be known without using the riemannian

derivative explicitly.
l’Institut Henri Poincaré - Section A
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and

The form of the right-hand sides of the two last formulas being independent
of any basis, the result globalizes to

The operator d + ~ is by construction formally g-selfadjoint, that is, with
respect to the functional

for all ~p, 1/1 E Sec J~(r~ g) such that Q := (supp ~p) n (supp t/!) is compact
and orientable, oriented with a normalized rz-form 8. Is is easily verified
that our Dirac operator J - 5 is formally selfadjoint (in the above sense)
with respect to

The local bilinear form over g) making d - ~ formally selfadjoint
is thus given by

This symmetric bilinear form can also be written in terms of the Clifford-
product as

The corresponding quadratic form is then expressible as

The differential identity responsible for selfadjointness is

For any two solutions of the Kahler-Dirac equation = the right
hand side vanishes and we get a conservation law (trivial for ~p = 

REMARK. Instead of using local orienting n-forms E, it would have
been more profitable to introduce the globally defined « volume element »,
locally given in a coordinate neighbourhood by

(22) Compare Kahler (1960, 1962), Lichnerowicz (1964), Atiyah (1970) and Karrer (1973).
Vol. XXIX, n° 1 - 1978.
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This is properly speaking not a differential form, but a pseudodiffe-
rential form which gets a sign from the jacobian determinant upon going
from one coordinate patch to another (compare de Rham (1960)). The
dimensionality of our algebras and bundles would then be doubled and an
additional ~2-gradation appears.

6. SPIN STRUCTURES AND SPINOR FIELDS

Our task will now be to give an appropriate globalization of an algebraic
spinor to a spinor field.

Customarily (comp. the SC-structures of Karrer (1973)) one takes the

complex Clifford-bundle induced by the complexification of the basic
vector bundle (in our case, the cotangent bundle). It is well known (comp.
Chevalley (1954), Bourbaki (1959)) that for nondegenerate Q and even
dimension n = 2r or odd dimension n = 2r + 1 of V, the complexified
Clifford-algebra Q) has 2r-dimensional modules as irreducible

representations. For this reason a spinor field is then defined as a cross

section of a bundle (the spin or bundle) whose fibers are irreducible (mean-
ing 2r-dimensional) representation modules of ~(V, Q). The structure of
the algebras then becomes independent of the particular signature of the
quadratic form (as long as it is nondegenerate) and the corresponding
bundles depend only on global properties of the manifold, existing only
under certain conditions.
Our algebraic spinors being real (in the next section we will complexify

them by U(I)-gauging), we will use a somewhat different and finer as
usual notion of global irreducibleness.

Recall the V -idempotent elements P of C(V, Q) introduced in section 4.

A generalized spin structure is a nontrivial cross section P of the Clifford-
bundle ~(zM, g) such that P is V -idempotent and of minimal global rank,
where the global of P rank is defined as

This definition can be somewhat simplified as follows. Consider first
the case that C(V, Q) is a simple algebra (this is the case for n even). Then

by the theorem of Wedderburn, as an algebra C(V, Q) is isomorphic to an

algebra of (say N x N) matrices over a field K. A Clifford-idempotent P
is then mapped to an idempotent matrix P. For idempotent matrices P
there is the identity trace P = rank P (where rank P is the K-rank of the
matrix P), as can be seen by using the Jordan-normal form of P. Now the
trace and the rank of a matrix M and the scalar part and rank of the corres-

ponding Clifford element m are related as follows: m~ = trace (M)/N and
rank m = (2"/N) rank M, as can be seen by taking M = 7. Taking an

Annales de l’Institut Henri Poincaré - Section A
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idempotent Px we have finally rank Px = 2"(Px)a. If C(V, Q) is not simple
it is at most semisimple being the direct sum of two isomorphic simple
algebras of dimension 22r (n being odd = 2r + 1 ). Therefore also in this
remaining case rank Px - We want now to show that for M

connected, (Px)o (and therefore rank Px) is a constant, by using an infini-
tesimal argument. Consider a first-order variation P )2014~ P + p. The condi-
tion that also P + p be idempotent gives Pp + pP = p. As P is idempotent
this implies P pP = ( 1 - P)p(1 - P = 0, leaving only the terms

Pp(1 - P) + (1 - P) pP in the Peirce-decomposition of p with respect
to P. Taking the scalar part of p = Pp(l - P) + ( 1 - P) pP gives po = 0,
by means of the cyclic permutability of the factors of the scalar part and
( 1 - P)P = P(l - P) = 0. Therefore Po is a constant for each connected
component of our manifold M. In particular, for a connected M rank Px
is a constant, and instead of (6.1) we have the handier relation

(6.1’) rank P = rank Px = 2n(Px)o , x E M, M connected.

If P is a generalized spin structure such that rank P is moreover locally
minimal for almost all x ~ M, then we speak also of an elementary spin
structure (23).

In general, we will speak simply of a spin structure, if only a nonzero
idempotent P is given. In particular, P = 1 will be called the trivial spin
structure.

Obviously, the trivial spin structure P = 1 will always exist, whereas
the existence of an elementary spin structure will in general impose global
restrictions on M.
Two spin structures P and P’ are called equivatent, if there is an invertible

cross section S with P’ = SPS -1, such that S induces an automorphism
s E O(g). If moreover, for any x E Msx belongs to the subgroup 
containing the identity, P and P’ are called strongly equivatent.
The following example is physically important (Lorentz-signature !)

and mathematically instructive, as it shows that the existence of a metric g
with particular signature may in some cases imply the existence of elemen-
tary spin structures, without further restrictions on M.

Exampte. Consider a time-orientable 4-dimensional Riemann manifold
with Lorentz signature (1, - 1, - 1, - 1). On M there will always exist
a timelike vector field t with = 1 (comp. Markus (1955)). Conse-
quently there is a nontrivial spin structure P given by P = (1 + t)/2.
Since P has global minimal rank 8 which is also the local minimal rank,
P is an elementary spin structure for g). The time-reversed P’ _ (1- t)/2
is another elementary spin structure, equivalent but not strongly equivalent
to P.

(23) In the complexified version, this would correspond to Karrer’s SC-structure.
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If moreover M is orientable, with normalized orienting n-form E, then
there are also the elementary spin structures given by (1 ± which
are weakly equivalent. They are not equivalent to P or to P’.

Thus, for a M with g-signature (1, - 1, - 1, - 1) there are four strongly
inequivalent (resp. two weakly inequivalent) classes of spin structures.

Remark. 2014 In a riemannian manifold with the opposite Lorentz-signa-
ture (1, 1, 1, - 1), an everywhere timelike vector field ? does not induce
any nontrivial spin structure, in spite of the fact that there are local P’s
with minimal rank 4. Upon complexification, the role of the two different
Lorentz-signatures becomes symmetrical and ? induces nontrivial spin
structures in both cases, which are however not elementary.

A P-spinor field on g) corresponding to the spin structure P is defined
as a cross section ~ of the Clifford-bundle rc(-r:1, g), such that = ~.

According to the type of spin structure, we call a P-spinor field simply
a spin or field, a trivial spinor field, a non-trivial spin or field, an elementary
spinor field or a generalized spinor field.

In addition it is useful to introduce the notion of a P-local spinor field
as a cross section ~ of the Clifford-bundle, such that on supp (~) c M

there exists an idempotent P with = In particular, any 03C8 which is
non-invertible is a local spinor field.

Regarding the Clifford-bundle ~(iM, g) canonically embedded into a
Kähler-Atiyah-bundle K A(03C4*M, g), a P-spinor field 03C8 can now be inter-
preted in a natural way as a differential form. This was the main objective
of the present investigation.
The arguments for differential forms as spinor fields would perhaps

be more convincing if it were possible to use the usual operator d 2014 5

now acting on P-spinor fields as Dirac operator. In particular, ~ should
map a P-spinor field to a P-spinor field. This is however in general not the
case as we shall now discuss.

Because the riemannian derivative Vx is a linear endomorphism of the
left ideal generated by an idempotent P if and only if P) = 0,
we have the following theorem :

THEOREM. is a linear endomorphism of the left ideal generated by
an idempotent P, if and only if P~xP = 0.

since p2 = P, the product rule gives

Sufficiency being evident, necessity follows because = 

should vanish for any 03C8 (in particular, for 03C8 = 1).
As the Dirac operator ~ 2014 5 can be written locally as we have the
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COROLLARY. Kahler’s Dirac equation = %1/1 has a P-spinorial
solution 03C8 if and only if P~xP = 0.

Proof : By means of our assumptions we can write

The middle term in the last expression does not lie in the left P-ideal and
vanishes exactly if = 0.

This condition

imposes strong restrictions on the riemannian manifold (L:1, g) as will
be seen by its integrability conditions.
For any X, Y E Sec LM, define the cotensorial riemannian curvature

2-form K(X, Y) by the V -commutator 24

In local coordinates 

Differentiating (6.1) with respect to Y, substracting the expression
with X, Y interchanged and PVzP(= 0) with Z := [X, V], we get using the
identity = 0 the relation P[K(X, Y), P] = 0, which can also be
written

Differentiating (6 . 4) with respect to Z1, ..., Zr and using the relations (6.1)
and (6.4), we get the necessary conditions

which must hold for all vector fields X, Y, Z1, ... , Zr.
Example. Take any elementary canonical spin structure P = (1 + t)/2

of a riemannian bundle with signature (1, - 1, - 1, - 1). Since t2 = 1,
condition (C) is now ~xt + vXt = 0, which holds if and only if the
covariant derivative of t vanishes ~xt = 0. The integrability conditions
can be written   VZ1 ... VzrK(X, Y) = 0. For g the Schwarzschild
metric, these conditions cannot be fulfilled. Clearly they hold in a riemann-
flat space-time.

(24, Although closely related, K(X, Y) is not identical to the usual curvature 2-form,which is a 0(g)-Lie-algebra-valued 2-form.
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The difficulties connected with condition (C) can be resolved as follows :
If we want a) not to restrict our riemannian manifolds severely, b) not

to introduce any additional geometric structures and c) to retain d - 03B4 in
the spirit of Kähler as Dirac operator, we are obliged to discard the genera-
lized spin structures in favor of the trivial spin structure P = 1, that is,
regarding any section of g) (consequently any differential form)
as spinor field (25).

Since P = 1 may be decomposed into a sum of elementary local spin
structures P, this amounts in the general case to consider several irre-
ducible representations (particles) at once, which for strong gravitational
fields cannot be decoupled (particle creation).

However, there remains the remote possibility that in the general relati-
vistic setting of coupled Einstein-Kahler-Dirac equations, selfcoupling
effects plus boundary conditions trow 03C8 into a generalized spin structure P
such that P~xP = 0 holds.

7. U(1)-GAUGING OF ALGEBRA BUNDLES

It is well known that the homogeneous set dF = 0 of Maxwell’s equa-
tions can be understood in terms of connections on principal U(I)-bundles.
In this context it is natural to regard the typical minimal coupling to
charged matter fields as induced connections on the corresponding asso-
ciated bundles (26). Our main problem is now to extend our algebraic
vector bundles to associated U(l)-bundles in a manner which conserves
and extends their algebraic structures. Let us only sketch how this may
be done.

The finite-dimensional representations 6m of U(l) are given by

Therefore, the U(1)-associated bundles can be indexed by integers m.
In particular, for m = 0 we get the bundle of complex valued functions,
whereas for rn ~ 0, their cross sections may be regarded only locally as
complex valued functions on M. As the fiber product of two cross sections

~l~m~ E Sec and c~~m’~ E Sec I:!.f’) lies in Sec I:!.f+m’), EÐ is Z-graded
m

with respect to products. Call rn the « charge weight » of To any
connection on the principal bundle, locally given by (27)

In accordance with Karrer (1973), the trivial spin structure P = 1 together with
the local quadratic form H and the derivative Vx could be called a « complete spin structure ».

(26) For a discussion of U(l)-bundles in the context of magnetic monopoles see Greub
and Petry (1975).

(2’) iA is the U(1)-Lie-algebra-valued connection 1-form.
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there is a corresponding connection on ~M }, locally given by

Denote by a the C-antilinear automorphism l : 03A3(m)M -+ given by
complex conjugation ~ H ~.

For 03C8 E 03A3(m)M) there is a hermitean form h, defined by

Between h, ~x and there holds the identity

Let us call the Z-graded structure (@ h, Vx) the generalized hermi-
tean line-bundle associated to the principal U{1)-bundle on M (28).
The U(l)-gaugcd bundle AiM, of exterior forms is then defined as the

complex vector bundle

where 0 is the Whitney-product of bundles. Moreover, we identify
(C E~) 0 with (C S~).

If

the additional structures are extended as follows

For details on hermitean line bundles see Kostant (1970).
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The gauge-covariant exterior derivative D is defined as

where the trace is taken with respect to the entries x and X. Analogously
we define the gauge-covariant divergence A as

Define the (A, ., V )-derivation C (« charge weight ») as

All these structures then extend to the whole of by C-linearity.
As before, the divergence A can be expressed 2::).. -1 D~ a and is

formally selfadjoint with respect to the hermitean form

The corresponding differential identity is

where the gauge-covariant Dirac-operator is defined as

The complex vector bundle 11 M together with the structures thus defined,
we call a Kähler-Atiyah-bundle.
On this new bundle a spin structure is defined exactly as before by an

idempotent cross section P, with the difference that it must not necessarily
be real and of zero charge-weight. If P is idempotent with C(P) = 0, we
call it a neutral spin structure with respect to the charge-weight. As for
any complex Clifford-algebra over a vector space with dimension even
= 2r or odd = 2r + 1, there locally always exist neutral P with minimal
rank 2r (compare Chevalley ( 1954)) with respect to the cross sections with
zero charge-weight.

Example. - If in our standard example of section 6 we consider

U(1)-gauged bundles, the nontrivial neutral spin structure P given by
(1 + t)/2 is no longer elementary, as now locally there are idempotents
with lowest rank 4 given for example by Px := (1 + tx)(1 + where

ex = tx, ex and ex are real 1-forms corresponding to an orthonormalized
basis { at x. This situation does not change for the case of the opposite
signature (+++2014), only the 1-form t has to be replaced by the neutral
1-form it.

In the orientable case there are in addition the distinguished neutral
nontrivial and nonelementary spin structures of rank 8 given by
P = ( 1 ± ~)/2.
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REMARK 1. A gauging like the U(1)-gauging introduced above could
be done with any Lie-group whatsoever without impairing the algebraic
structure of the Kahler-Atiyah-bundle. A promising candidate is SO(3)
and the quaternions.
REMARK 2. 2014 In flat spacetime of signature ( + + + - ) a Kahler-Dirac

equation completely equivalent to the usual Dirac equation is obtained by
choosing a P-spinor field ~ of charge weight 1 corresponding to the neutral
spin structure P = (1 + + iele2)/4 (for the equivalence, see Kähler
(1961)).
Whereas the electromagnetic current (8.4) corresponding to P has

positive definite charge density, the nontrivial spin structures (1 ± iE)/2
would lead to a vanishing electromagnetic current.

8. REMARKS ON THE ROLE
OF THE PSEUDOORTHOGONAL GROUP.
THE U(l)-GAUGED LIE DERIVATIVE

We have already seen (section 6) that with regard to derivatives our
generalized spinors in general behave differently from the usual spinors.
There is another important difference which we want now to discuss.

In our treatment of spinor fields the local transformations / )2014~ 

where S may be understood as an element of a representation homo-
morphic to the pseudoorthogonal (« Lorentz »-) group O(Q), are conspicu-
ously absent (29). Instead, the associated principal bundles to our vector
bundles all have structure groups homomorphic to the full linear group

n) inherited from the cotangent bundle. The only place where the
pseudoorthogonal group appeared, was in the definition of equivalence
classes of left ideals of the Clifford-algebra (resp. bundle).
The only justification of calling our constructions « spinors » (resp.

« spinor fields ») rests upon our generalized spinors being irreducible
representations of the Clifford-algebra (resp. -bundle) and on the possibility
of exactly mirroring Dirac’s flat space-time equation including electro-
magnetic couplings.

However, if our riemannian bundle (!~, g) admits infinitesimal isometries,
there will exist a group of global transformations as relict of the global
Lorentz-transformations of the trivial and locally riemann-flat bundle.
Thus : if any, global transformations will appear instead of local Lorentz-
transformation. Let us now be more precise :
The Lie derivative Lx of a differential form / with respect to the vector

field X is defined as usual by

129~ In fact, in our context they would result in a inconsistency.
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Being the anticommutator of two ^-antiderivations, Lx is a ^-derivation,
that is, the usual product rule holds with respect to the exterior product 11.
Lx commutes with d. By an infinitesimal isometry of the Riemann
bundle (r~ g) we will understand a vector field X E iM (the « Killing vector
field »), such that for any two 1-forms a, b E Sec the condition

holds (implying that Lx is also a derivation with respect to the inner pro-
duct . ). 

’

Since on the other hand X(a. &#x26;) = b + a . (K) is equivalent
to the g-skew-symmetry of the tensor field Ax of type (1, 1) :

With respect to a local coordinate basis {dx } this condition reduces
to the familiar Killing-equation in the form

If X and Y are two Killing vector fields, then also their commutator [X, Y]
is a Killing field. Evidently the set of infinitesimal isometries forms a real
Lie algebra. It is well known (comp. Kobayashi-Nomizu (1963), Petrov
(1964)) that this algebra is at most of dimension n(n .+ 1)/2, the maximal
dimension being achieved for spaces of constant curvature, in particular
for a trivial manifold which is locally riemann-flat.

Since the Dirac operator = d 2014 5 involves the metric g (supposed
now to be nondegenerate), Lx and  commute if X is an infinitesimal

isometry.
For U(l)-gauged fields, the notions of infinitesimal isometry and the

corresponding Lie derivative have to be generalized appropriately.
Call the triple g, F) a Riemann-Maxwell manifold, if the pair (-r:1, g)

is a riemannian bundle and the real 2-form F on M is closed, dF = 0.
An infinitesimal Riemann-Maxwell isometry is defined as the pair (X, íi)

such that X is an infinitesimal isometry of (-r:1, g) (that is, condition (K)
holds), and íi is a real function such that

Condition (M) implies LxF = d(X J F) + X J (dF) = d2~. = 0, and if
F = da, then Lxa = d(X J a) + X J (da) = d(~, + p), p := X J a. In parti-
cular, (M) is almost trivially satisfied by the pair (X, Å) = (0, const.), which
trivially satisfies (K). If iF is the curvature 2-form of a principal U(I)-connec-
tion, we define the Lie derivative Lx,03BB of a U(l)-gauged diffe-
rential form C with respect to (X, Å) by
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commutes with the gauge covariant exterior derivative D, if condi-
tion (M) holds.

If moreover (X, À) is an infinitesimal Riemann-Maxwell isometry,
then also commutes with the U(l)-gauged Dirac-operator ~l. In
this case, for any solution C of the generalized Kahler-Dirac equation
03A6 = (with real x), also is a solution, and the neutral 

is conserved : = 0. In particular, the almost trivial infinitesimal R-M
isometry (0, const.) leads to the electromagnetic current

As in the case without gauge-coupling, the set of infinitesimal R-M
isometries has the structure of a Lie algebra, with Lie bracket now defined
as

In particular, the Lie product with (0, const.) always vanishes. By expo-
nential mapping, we get the corresponding global Lie group which replaces
(Poincare x of the trivial and riemann-flat manifold of special
relativity. In general, only will remain, which corresponds to
constant phase transformations of 1&#x3E;.

9. CONCLUSION

A notion of spin or field for spin 1/2 has been developed based ultimately
only on differential forms on a riemannian manifold. The point of departure
from the usual notion of spin or field can be traced to our particular choice
of representations of the Clifford algebra C(V, Q) : our irreducible represen-
tations are not only isomorphic to the minimal left ideals of C(V, Q)
(as modules), but are identical to them. This has the effect that local Lorentz-
transformations are almost completely absent and no vestige of spin-
transformations 03C8 H with their typical two-valuedness is present.
Moreover, not all irreducible representations (in this sense) are equivalent.
The electromagnetic minimal coupling is introduced in a manner conserving
all algebraic features and opening new perspectives for the description of

By means of a local base {?’} and its dual { this current can also be expressed
in terms of Clifford-operations as

Obviously this can also be done for the general current of (8..3).
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interacting many-particle configurations. In spite of all basic differences,
for flat spacetime the usual Dirac equation with electromagnetic coupling
can be obtained by selecting appropriate spin structures. Departures are
to be expected only for strong gravitational fields. Therefore we propose
our notion of spinor field as a viable alternative to the usual spinor concept
(which is geometrically and conceptually more complicated than ours).
The generalized Kahler-Dirac equation = will be studied in more

detail in a subsequent paper.
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