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Section A :

Physique ’ théorique. ’

RESUME. - Dans cet article on montre que la matrice ou

{ 1  i, j  n} est la base canonique de l’algèbre de Lie de GL(z),
possede de nombreuses proprietes des matrices a coefficient numerique.
On obtient des definitions appropriées de 1’inverse et du determinant de
cette matrice, et l’on montre que les elements de la matrice inverse 
engendrent une algebre de Lie. On donne aussi une definition pour l’espace
des « operateurs vectoriels » pour GL(n), et 1’on trouve des conditions sous
lesquelles les composantes d’un « operateur vectoriel » sont permutables.
Puisque la matrice satisfait une « identite caracteristique », on en déduit
une construction explicite des « operateurs de projection de Young ».

Cette construction entraine les invariants de GL(n).

ABSTRACT. - In this article one shows that the matrix where
1  ~’ ~ n ~ are the canonical generators of the group GL(n),

possesses many of the properties of matrices with numerical entries. One
obtains appropriate definitions for the inverse and determinant of this
matrix, and it is shown that the elements of the inverse matrix 

generate a Lie algebra. One gives also a definition for the space of « vec-
tor operators » for GL(n) and one finds some conditions under which the
components of a « vector operator » are commutable. Since the matrix 
satisfies a « characteristic identity » one thereby deduces an explicit cons-
truction of Young’s Projection operators. This construction involves only
the invariants of GL(n).
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52 M. D. GOULD

1. INTRODUCTION

The generators of the group GL(n) satisfy the commutation relations

The fundamental invariants ar of defined by

etc., are Casimir operators (i. e. commute with all the elements of the Lie

algebra). Therefore the centre of the universal enveloping algebra Un of
GL(n) is Zn = ..., where ..., xJ denotes the ring of poly-
nomials over the underlying field F (usually F = R or C) in determinates
~i? ’ - -? xn.

Associated with GL(n) is its fundamental matrix a whose (i, j) entry is
the generator ai; ;

VIZ.

Recently it has been shown by Carey, Cant and O’Brien [1] that the matrix
a of GL(n) satisfies a polynomial identity m(a) = 0, where m(x) is a unique
monic polynomial of degree n whose coefficients lie in the centre Z" of Un.
We call m(x) the GL(n) characteristic polynomial.

It is one of our aims to show that rrc(x) is the minimum polynomial of
GL(n) ; that is if a satisfies any other polynomial identity p(a) = 0 over Zn,
then m(x) divides p(x).
Green [2] has shown that on a finite dimensional representation of GL(n)

with highest weight (03BB1, ..., 03BBn) (where the 03BBi must be intergers satisfying
~i 1 5= ~2 ~ - - - ~ ~n &#x3E; 0) that the characteristic identity can be written
in split form n

where the br take the constant values br = .~r + n - r. The roots br are
related to the GL(n) invariants (7, by equations of the form

etc., (see Green [3] for a more general expression).
Annales de l’Institut Henri Poineare - Section A



53APPLICATIONS OF THE CHARACTERISTIC IDENTITY FOR GL(N)

In this paper we regard the operators br as solutions to the equations (2).
Therefore, in general, the explicit form of the br in terms of the invariants ~k
requires the solution of algebraic equations of degree less than or equal
to n. On an irreducible representation of GL(n) the invariants 03C3k reduce
to a possibly complex multiple of the identity and therefore the br may
be defined as a multiple of the identity within that representation. On such
representations a unique solution to the equations (2) may be chosen so
that the real part of the eigenvalues 03B2r of the br are in descending order ; i. e.

Thus on a finite dimensional irreducible representation of GL(n) with
highest weight (~,1, ..., ~,n) the unique solutions to the equations (2) are

’~ ~r ’+ ~ - r.

As an example let us consider GL(2). The explicit solutions to the equa-
tions

are

Since the invariants o-1 1 and a2 take constant complex values}’ 1 and y2
respectively on irreducible representations of GL(n) we may interpret the
operator (2c~2 - 612 + as that operator which takes the constant value
+ (2y2 - y12 + l)t (the positive square root in the right hand side of the
complex plane).
The split GL(2) identity is therefore

and the polynomial identity is

Since the operators br are solutions to polynomial equations involving
only the we see that they must commute with the GL(n) generators ;

It is convenient to extend the centre Zn of Un to include the operators bY.
Thus, instead of working in Um we work in the extended enveloping algebra

Vol. XXIX, n° 1 - 1978.



54 M. D. GOULD

where Zn = F(b 1, ... , bn) and F(xl, ... , xn) is the field of quotients for

F(x~...,xJ. .
From the equations (2) we see that Zn and we may write the GL(n)

characteristic identity in its split form (1). Hence, working in LTn, we may
write the characteristic polynomial as

This result is analogous to the classical Cayley-Hamilton theorem but
now the roots br are no longer scalars but are operators which commute
with the GL(n) generators and satisfy the equations (2).

2. VECTOR AND CONTRAGREDIENT
VECTOR OPERATORS

We define a GL(n) vector operator 03C8 as an operator with n components 03C8i
which satisfy

We define an rth rank tensor operator T as an operator with components
(r superscripts), 1 ~ p, q, ..., s ~ ~ which satisfy

In an analogous way we define a contragredient vector operator (~ as an
operator with n components ~i which satisfy

Similarly we define an rth rank contragredient tensor T with compo-
nents T pq...s ..

Since the most obvious examples of GL(n) vector operators lie in the

enveloping algebra Un+ 1 of GL(n + 1) (e. g. the vector operator 1/1 with

components 03C8i = ain+1) we shall now consider GL(n + 1) and its charac-
teristic identity.

According to Humphreys [4] U,+i is a free Un module with free basis

consisting of monomials

where

Annales de l’Institut Henri Poincaré - Section A



55APPLICATIONS OF THE CHARACTERISTIC IDENTITY FOR GL(N)

Let us denote the associative algebra generated by Un and the monomials
..., x-~ by Ün+ 1. Clearly 1 contains 1 as well as 

We denote the GL(n + 1) matrix by ~;

VIZ.

As for GL(n) the centre Zn + 1 of Un+ 1 is generated by the fundamental
invariants and a satisfies a polynomial identity over Zn+ 1
which can also be written in split form

The roots br of this identity are related to the + 1) invariants k by
equations analogous to the equations (2) for GL(n).

In most applications we shall regard GL(n) as embedded in GL(n + 1 ),
so it is convenient to extend Zn = ..., bn} to include the GL(n + 1 )
roots ..., bn+ 1. Since the br are GL(n + 1) invariants they must also
be GL(n) invariants. In particular [o~, bp] = 0, and since the br are well
defined functions of the invariants we must have Sj = O. So
we extend Zn to

Every element of Z is a GL(n) invariant and includes the + 1 )
invariants 6r. Thus Z contains the centre Zn+ 1 of the universal enveloping
algebra Un+ 1 of GL(n + 1 ). Since an + 1 n + 1 - ~ 1 - ~ 1, we see that an + 1 n + ~
is an element of Z, and it can be shown inductively that belongs
to Z for every p(x) in ZM. Moreover if p(x) and h(x) belong to Z[x], then

If we wish to work over Z it is not sufficient to work in Un+ 1 and we
must consider an extended enveloping algebra of Un+ 1. We now define

where

In the light of our previous remarks we see that U contains Un, 1

and also Z.
From now on we shall work in U so that we may write both the GL(n)

and GL(n + 1) identities in their split forms.

Vol. XXIX. n° 1 - 1978.



56 M. D. GOULD

3. SHIFT OPERATORS

There are two obvious properties of vector operators ~ :

Following Green [2] [3] a vector operator 03C8 can be decomposed into a
sum of component vector operators

where each 03C8r satisfies

or

From this we obtain

From equation (6) it is easy to see that if t/J is a vector operator then so
is each of its component operators ~r. Moreover equation (5) implies that

increases the eigenvalue 03B2r of br in an irreducible representation of
GL(n) by one unit, leaving the other eigenvalues 03B2k unchanged.
Hence the tensor 

..

increases the eigenvalue 03B2r of br by two units while the other 03B2k remain
unaltered. Since this is a well known property of symmetric tensors only
(see it follows that

From equation (4) it is easily verified (see [2]) that if 1/1 is a vector opera-
tor then

or

LEMMA 1. 2014 If p(x) E Z[x], then

Annales de l’Institut Henri Poincare - Section A



57APPLICATIONS OF THE CHARACTERISTIC IDENTITY FOR GL(N)

~’roo,f: 2014 The proof holds by induction, the result being obvious for
ptx) = x from equation (7).
By summing equation (8) over r we obtain

COROLLARY. is a vector operator and E ZM, then

Using lemma 1 we may now derive the explicit form of the components
of Substituting

into equation (9) gives

Since the roots br are all distinct (see [1]) we obtain

This equation agrees with the result given in Green [2]. Let us write

so that

LEMMA 2. - If E then

Proof. be an arbitrary vector operator. In view of equation (9)
we have

Vol. XXIX, n° 1 - 1978.



58 M. D. GOULD

or

Since ~ is an arbitrary vector operator this implies

as required. 
r -1

COROLLARY. 2014 If p(x) E Z[x], then

This last corollary together with equation (11) both appear in Green [2] [3]
but in our case we treat the br as operators rather than as scalars (which
can only apply when working in a particular irreducible representation
of GL(n)).
Some important properties of the operators are given in the follow-

ing lemma.

LEMMA 3. 2014 The operators satisfy the following two conditions :

Proof. 2014 Property ii) follows immediately from lemma 2 if we substitute
= 1. So it just remains to prove i).

Let 03C8 be an arbitrary vector operator. Then

Since 0/ is itself a vector operator we obtain

Thus = 0 and 0 since ~ was arbitrary, the result follows.

de 1’Institut Henri Poincaré - Section A



59APPLICATIONS OF THE CHARACTERISTIC IDENTITY FOR GL(N)

As for vector operators a contragredient vector operator (~ may be
decomposed into components ~, which satisfy

Similarly the components satisfy the equation = 0 or

03C6riaij = 
Using an argument analogous to that for vector operators we obtain

the following results :

LEMMA 4. - If p(x) E Z[x] and 03C6 is a contragredient vector operator,
then

COROLLARY. - If p and 03C6 satisfy the conditions of the lemma then

If we substitute

into (15) we obtain

’ Adjoint Equation
. Following £ Green [2] we define ’ the adjoint a of the GL(n) matrix a by
- - aij. From equation (7) we obtain

Hence + + 1)/ = 0 and a satisfies the polynomial equation

As for the matrix a we obtain the following results

LEMMA 5. Let p(x) E Z[x] and  c~ be arbitrary vector and contra-
gredient vector operators respectively. Then

and

Vol. XXIX. n° 1 - 1978.
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COROLLARY. 2014 With as above we have

If we substitute

into equation (17) we obtain

where

LEMMA 6. The gr satisfy the following two conditions :

Proof - Analogous to the proof of lemma 3.

Finally, combining equations (17) and (18) we obtain

4. INVERSES AND DETERMINANTS

In this section we show that several results which are well known to
hold for numerical matrices also hold for the GL(n) matrix a.
We have already remarked that a satisfies a polynomial identity m(a) = 0,

where

Annales de l’Institut Henri Poincaré - Section A



61APPLICATIONS OF THE CHARACTERISTIC IDENTITY FOR GL(N)

and the roots br are all distinct. When such a situation occurs in the clas-
sical theory of numerical matrices Yn(x) would be the minimum polyno-
mial. We shall now prove that this result also holds for the GL(n) matrix a.

Consider the vector operator with components = a‘n + 1; i = 1, ... , n.

Then each component is a well defined element of U. For each r it is

easily shown that there exists representations of GL(n + 1) (and GL(n))
on which does not vanish, so we say is a non zero element of U. To

say that X is a zero element of U means that X must vanish on all represen-
tations of GL(n + 1 ) and GL(n).
From these remarks we see that the component operators of the vec-

tor operator ~ considered above form a Z-linearly independent set ; that
is if

then

Since

implies

Since is non zero this implies 03B3k = 0.

THEOREM 8. The characteristic polynomial m(x) of GL(n) is its mini-
mum polynomial. That is if p(x) E Z[x] and = 0 then m(x) divides p(x).

Proof Suppose E Z[x] and p(a) = 0. Let 03C8 be the vector operator
with components 03C8i = ain+1. Then

Since the form a linearly independent set this implies = 0

(r = 1, ..., n). Hence x - br divides p(x) for each r and since the br are
all distinct m(x) must divide p(x).

Vol. XXIX. n° 1 - 1978.
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This theorem shows that m(x) is the minimum polynomial for GL(n)
in its universal enveloping algebra. However it need not be the minimum
polynomial when we consider certain irreducible representations of GL(n).
This is because although the ~/ are non zero elements of U there may
exist representations of GL(n) on which some of the ~r vanish. In such a
situation (see Green [2] ) we may drop a factor corresponding to each
zero 03C8r from the characteristic identity and obtain a reduced identity.
Since the remaining are non zero this reduced identity will be the mini-
mum polynomial of GL(n) on this particular representation.
We now show that the matrix a of GL(n) has a two sided inverse with

eigenvalues in agreement with the classical theory of numerical
matrices.

If p(x) E we may define an inverse for the matrix p(a) by

where [p(br)] -1 may be interpreted as that operator whose eigenvalue on
an irreducible representation of GL(n) is p(03B2r)-1 where 03B2r is the eigenvalue
of the operator br.

Clearly the inverse of the matrix p(a) will not exist if p(br) = 0 (i. e. if br
is a root of p(x)) ; e. g. (a - bY) and do not have inverses. (The fr may
be regarded as an orthogonal set of idempotent matrix operators. For
such operators it is well known that an inverse does not exist).

In the case where br is not a root of p(x) the inverse p-1 (a) of p(a) only
exists on irreducible representations of GL(n) where the eigenvalues 
of the operators p(br) are non zero. On representations where the eigen-
value of some p(br) is zero we may redefine our GL(n) generators
to be aij + (for a suitable choice of constant c) to ensure that the inverse
p-1(a) exists.

Equation (20) allows us to define the matrix h(a) for every h(x) E Z(x)
(the field of quotients for Z[x] ) by setting

In fact we may define any well defined function of a in this way. In parti-
cular we define the inverse of the GL(n) matrix a to be

Then a - 1 satisfies = {a -1 ’ = # and 0 we see that the matrix a ’
not only has an adjoint a but an inverse " a-1 as well.

Annales de Henri Poincare - Section A
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The inverse matrix a-1 will not be defined on representations of GL(n)
where the eigenvalue 03B2r of some br is zero. However on finite dimensional
irreducible representations of GL(n) with weights (~,1.... , ~,n) the eigen-
values of the br are 03BBr + n - r where the 03BBr are integers satisfying
~1 &#x3E; ~2 &#x3E; ~ . ~ &#x3E; ~n &#x3E; 0. Hence ~,r + n - r = 0 implies n - r ~ 0 which
can only occur when r = n and ~,n = 0. Thus is not defined on irre-
ducible representations where 03BBn = 0 but will be defined on all other finite
dimensional irreducible representations of GL(n).

In the classical theory of numerical matrices it is well known that the
determinant of a matrix is simply the product of its eigenvalues. Extend-
ing this idea we define the determinant of the GL(n) matrix a by

and if E ZM we define

In view of our previous remarks we see that the inverse of the matrix h(a)
exists if and only if its determinant is non zero. Also if h(x), g(x) E Z(x)
then equation (22) implies

and the product rule for determinants is satisfied.
The determinant of the matrix a is of particular interest since it is the

constant term (up to a factor ± 1) which appears in the characteristic
polynomial m(x). Since the coefficients of m(x) lie in the centre Zn of Un
we see that det a is a polynomial (over the underlying field F) in the GL(n)
invariants cri, ..., 6n’
For example the constant term in the GL(2) characteristic identity is

Although our definition of determinant is in agreement with the classical
case, it should be noted that unlike a numerical matrix the trace of the
matrix a (i. e. 6j) is not the sum of the eigenvalues br of a, but is the sum
of the operators br -+- r - n.

It has been suggested by Lehrer-ilamed (private communication) that
we may take the determinant of the GL(n) matrix a to be the symmetrized
expression obtained by evaluating the determinant of a as though it were
a numerical matrix and then symmetrizing the resultant expression.

vol. XXIX, n° 1 - 1978. 3



64 M. D. GOULD

For example we may define the determinant of the GL(2) matrix

by

But

which gives

Thus the determinant of a as defined by ilamed differs from our defi-

nition by a factor - for the case n = 2. In view of our definition of

inverse however, definition (22) for determinants is more applicable for
our purposes.

5. INVERSE CHARACTERISTIC IDENTITY

From equation (21) we have

Hence

Therefore a-1 satisfies the polynomial identity m(-)(a-1) = 0, where

Annales de l’Institut Henri Poincaré - Section A
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We call m~ ^ ~(x} the inverse polynomial of GL(n). As for the matrix a we
can show that m~-~(x) is the minimum polynomial for the matrix a! 1.
From equation (21) we obtain the following results

COROLLARY.

This last result allows us to calculate the inverse invariants

Substituting

into (23) gives

or

Inverse ’ of Adjoint
As for the GL(n) matrix a ’ we may define ’ for each p(x) in Z[x]

In particular we may define the inverse adjoint

LEMMA 10. 2014 If E ZM, then

Vol. XXIX, n° 1 - 1978.



66 M. D. GOULD

Proof. Analogous to lemma 10. Substituting

gives

6. INVERSE LIE ALGEBRA
AND ITS REPRESENTATIONS

We shall now show that the entries of the inverse GL(n) matrix
a-1 form a Lie algebra. Now

But

Hence

where

Multiplying by and summing over i gives

More generally we can show by induction that if p(x) E Z[x] then

From equation (25) we see that the (a -1 generate an infinite dimen-
sional Lie algebra, denoted GL~(N), which we call the inverse GL(N)
Lie algebra.
We may now define the inverse Lie algebra of GL(n) as the Lie algebra

with generators bt~ which satisfy the commutation relations (25) and the
condition

Annales de l’Institut Henri Poincare - Section A
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Since

where

we see that every representation of GL(n) is also a representation 
Conversely we have also shown that

and since

we see that every representation of GL~ - ~(n) is a representation of GL(n).
Thus the representations of GL(n) are representations of GL~ - ~(n) and

conversely. Hence we just need to investigate the representations of GL(n).
However we have already remarked that will not be defined on

irreducible representations of GL(n) with weights (~,1, ... , ~) where ~==0.
Henceforth we only consider finite dimensional irreducible representations
of GL(n) with weights (~,1, ..., ~,n) satisfying ~,1 &#x3E; ~,2 &#x3E; -’ - ~ ~n ~ 1.

Let vo be a maximal weight vector of such a GL(n) representation.
Since

we have

Putting i = k we get

Hence for i = 1, we obtain

Vol. XXIX, n° 1 - 1978.
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where 61 ~ - ~ is the inverse invariant

Therefore

which gives

By recursion it is easily verified that

Summing on r gives

Solving this equation for (J" 1 (-) we obtain

Therefore

where

We may label the representations of GL(-)(n) by the eigenvalues of the
inverse invariants ..., An. Formula (27) shows the relation between
the labelling operators for GL(n) and those for 

7. VECTOR OPERATORS

In this section we study vector operators in more detail and obtain
conditions under which the components of a vector operator ~ commute.

Firstly we note that if tf is a vector operator then each of its component

de l’Institut Henri Poincaré - Section A
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operators = [br, is also a vector operator. Hence it follows that

any Z-linear combination of the is also a vector operator. Thus if p(x)
belongs to Z[x] then is a vector operator since

and

Suppose now that ~ is a vector operator whose components commute.

Then

Thus [~/, is symmetric with respect to i and k and it follows that
if t ~ r then [~/, is symmetric with respect to i and k and if r = l
the commutator is zero.
Hence we have proved that if 03C8 is a vector operator with commuting

components then [~/, is symmetric with respect to i and j for

r, k = 1, ..., n. Conversely suppose ~ is a vector operator such that

[~/, is symmetric with respect to i and j for r, k = 1, ..., n. Then

is also symmetric with respect to i and j. However [~‘, 1/11 = 
is obviously antisymmetric with respect to i and j so it follows that

Hence we have proved the following result :

LEMMA 11. be a vector operator. Then the components of 03C8
commute if and only if [~/, is symmetric with respect to i and j for
r, k = 1, ...,n.
From now on we shall only consider vector operators with com-

ponents 03C8i which lie in U. Recall that Zn+1 = F(1, ..., bn+ 1) and every
element of Zn + 1 is a GL(n + 1) invariant and therefore commutes with
all the elements of U.

Let us define

Then if yY E Yr it follows that if 03C8 is a vector operator then = 0
for r ~ k.
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Now let 03C8 be a vector operator whose components commute and
let

be a Z-linear combination of the vector operators where the coefficient yr
belongs to Yr. Then ~ir = 03B3r03C8ir and

Since ~ is a vector operator, lemma (11) implies that and hence

[//, is symmetric with respect to and j. Therefore X is a vector ope-
rator with commuting components.

In particular if p(x) E Zn + 1 [x] then is a vector operator with commut-

ing components since

and

The most obvious example of a vector operator with components that
commute is the vector operator 03C8 with components 03C8i = ain+ 1. From our
previous remarks any Z-linear combination of the component operators

= fr03C8 is also a vector operator and if the coefficient of each 03C8k lies
in Yk then the vector operator has commuting components. We shall
now show that every vector operator in U must be a Z-linear combination
of the vector operators 

’

LEMMA 12. Let a be the matrix of GL(n). Then for every p(x) in Z[x]
there exists h(x) in Zj)c] such that = and 1 is a

vector operator.

Proof. first prove the result for p(x) = xm by induction on m, the
result being obvious for m  1.

By the induction hypothesis there exists h(x) in Z[x] such that

Annales de l’Institut Henri Poincare - Section A
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Therefore

where

Hence the result holds by induction for p(x) = xm. Since every polynomial
in is a Z-linear combination of the xr" the result follows.
We shall later derive the explicit form of h(x) in terms of p(x).
Now let 03C8 be an arbitrary vector operator with components which

lie in U. Since depends only on the index i, there must be no other free
indices (so all remaining indices are summed over). Hence, using the
GL(n + 1) commutation relations, we see that ~‘ must be of the form p(a)in+ 1
for some p(x) in Z[x]. Therefore there exists in Z[x] such that

and 03C8 is hence a Z-linear combination of the operators with compo-
nents jIr‘ - , 
We have therefore proved the following theorem :

THEOREM 13. 2014 Let 03C6 be a GL(n) vector operator with components
03C6i e U. Then 03C6 is a Z-linear combination of the vector operators
~/ = and there exists in ZM such that

If moreover

then the components ~i of ~~ commute.

DEFINITION. From now on by a GL(n) vector operator we mean a
vector operator whose components lie in U. In view of the previous theo-
rem we see that all of our vector operators must be expressible as a Z-linear
combination of the vector operators

Let us denote the space of GL(n) vector operators by W". Then Wn can
be regarded as an n dimensional vector space over Z with basis bectors 
Vol. XXIX. n° 1 - 1978.
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With this interpretation we see that the matrix a of GL(n) is a diagonal
matrix on Wn with the br’s appearing along the diagonal :

viz.

The br may be interpreted as distinct eigenvalues of a with corresponding
eigenvectors As in the classical theory we see that every vector in VVn
can be written as a Z-linear combination of the eigenvectors Also in
accordance with the classical theory the inverse a-1 of a is a diagonal
matrix with the appearing along the diagonal. Since

we may interpret fk as an idempotent matrix over Wn with 1 in the (k, k)
position and zeros elsewhere.

DEFINITION. Let J be the ideal in Z[x] consisting of all polynomials p(x)
in Z[x] such that p(a) = 0. In view of theorem (8), J consists of all polyno-
mials in Z[x] divisible by the GL(n) minimum polynomial m(x). Thus J
is the two sided ideal in Z[x] generated by m(x). 

’

If p(x) belongs to Z[x] then denote by p(x) the image of p(x) under the
canonical map

In view of lemma (2) we see that every element of ZM) J is a Z-linear
combination of the fr(x) ; i. e. if p(x) E Z[x] J then

The polynomials form an orthogonal set of idempotents in the
algebra J which add up to give the identity :

and

This gives a decomposition of Z[x] ~ J into a direct sum of irreducible
left ideals : 

-

Thus J is a semi simple " associative " algebra which is Z isomorphic
to Wn (under the mapping £ fr(x) -~ 
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8. DETERMINATION
OF THE GL(n + 1) PROJECTION OPERATORS

As an application of our previous results we shall determine the GL(n + 1)
operators

which are analogues to the GL(n + 1) operators 
Following Green [3] we introduce two sets of operators

where

From the +1) characteristic identity we have

so that

Therefore

Similarly we can show that

Using our inverse polynomials we may invert these formulae to give

where

The operator (b~ - is a mixed invariant and we may interpret
it as that operator whose eigenvalue is + 1 + r 2014 ~ 2014 on an

irreducible representation of GL(n) with highest weight (~,1, ...,,
contained in an irreducible representation of GL(n + 1) with highest
weight ... , ,un + 1 )-
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Using equation (28) we may now write

But

and using

we obtain

Hence we get

Substituting for uk and vk using equation (29) we obtain

As for GL(n) we have, for all in ZM,

Equation (32) is in agreement with the result obtained by Green [3], and,
as Green points out, can be regarded as analogous to a well known result
for numerical matrices.
However we now have a little more information. From equation (28)

we see that uki is a Z-linear combination of the vector operators
t/1/ == and the coefficient of is (bk - which lies in Yr.
Therefore uk‘ is a vector operator with commuting components ; i. e.

~ukt, ?,ck’’ = o .
Now from equation (28) we can write

This last result implies that although the components uki are well defined
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elements of U they may not always be defined on certain representations
of GL(n) and GL(n + 1 ).

Indeed suppose + 1) is a finite dimensional irreducible represen-
tation of GL(n + 1 ) with highest weight (~c 1, ... , ,un + 1 ). Then + 1 )
can be decomposed into irreducible representations V~(n) of GL(n) with
highest weights (~,1, ...,~) which satisfy

Hence on the space V~(n~ ~ + takes the form

Thus uk‘ will not be defined on subspaces where k - 03BBr + r - k = 0 for
some r. In particular the irreducible GL(n) representation Vu(n) with
highest weight ..., occurs in + 1). Hence, on this space we
have

and uk‘ is not defined. An analogous statement also holds for the v~..
Using equation (29) we have 

’

Hence

which gives

Therefore, if E Z[x] then
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Hence we have proved that

where

This result offers an alternative proof of lemma 12.
If we substitute p(x) = 1 into equation (35) we obtain

Since the form a Z-linearly independent set this implies

Equation (36) together with the condition

may in fact be used to define the GL(n) invariants ck. We may write these
equations in matrix form

where

Since the c~, br and bk commute these equations are easily solved using
matrix methods and yield the solution

Therefore if then from equation (37) and the relation
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we see that we may express p(a)n + 1 n + 1 as a rational function of the br
and bk.
We have already shown that every vector operator of the form 1

where p(x) E Z[x] can be expressed in the form 1 for some h{x)
in Z[x]. We shall now show that every vector operator of the form 1

where can be expressed in the form 1 for in ZM.
Let us introduce a set of polynomials

where

and

Then it can be shown that

and

In fact the may be regarded as solutions to these equations. Using
equation (35) it follows that

and hence if p(x) E Z[x] then

Therefore we have proved that
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where

From equation (31) it may be of interest to compute the commutation
relations between the uk, vr and cm, since then it would be possible to

compute the commutation relations between the 

i ) Since [M/, 
1 
we may substitute for 1 using

equation (34) and obtain

Similarly one can show

ii) From the GL(n + 1) characteristic identity we can write

Now

Using the fact that = 1 (easily verified using the GL(n + 1)
identity) and substituting for an + 1 n + 1 we get

iii) It is easily shown that

from which it follows that

Also

Therefore

Thus

which gives

In a similar way we may evaluate the commutator between 
two r, and

thus compute the commutation relations of the F~.
The evaluation of the above commutators illustrates how inverse poly-

nomials in a may be used to derive commutation relations 
which would

otherwise be difficult to obtain.
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9. YOUNG PROJECTION OPERATORS

We conclude by showing how the characteristic identity can be applied
to obtain an explicit expression for the Young projection operators in
terms of the GL(n) invariants ..., 6n.
We apply the characteristic identity in its trace form

where

the sum being taken over all sets of r integers i, j, ... , k such that

1 i j ... kn and

We call equation (40) the GL(n) scalar identity. In its split form the GL(n)
characteristic polynomial is

and this can be written

Since the coefficients of m(x) belong to Zn = F[6z, ..., crj we see that
each of the coefficients Sr appearing in equation (40) are polynomial func-
tions (over F) of the On an irreducible finite dimensional representation
of with highest weight (~,1, ...,~) the br take constant values
br = ~,r + n - r. However, as we have already mentioned, on some irre-
ducible representations certain factors from the characteristic identity
may be omitted and we obtain a reduced equation. Hence the scalar iden-
tity must also reduce on such representations.
We write the scalar identity on the irreducible representation with

highest weight (~,1, ... , ~n} in the form
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where it is understood that the ..., ~n) take the values corresponding
to the trace of the reduced identity on this particular irreducible repre-
sentation.
For example the reduced identity on the (1, 0, ..., 0) representation is

= 0 (see [2] ). Therefore we have

and the reduced scalar identity is 62 - n61 - 0.
Now let us consider an n-dimensional vector space V over F and denote

by Vr the tensor product space V Q3 V EÐ ... EÐ Y (r times). Every rth
rank tensor in Vr can be written as a sum of tensors corresponding to each
partition [/!.] of the rth order Young diagram.
We represent each such partition by a tuple (03BB1, ..., 03BBn) where 03BBk denotes

the number of boxes in the kth row of the Young diagram. The 03BBi must be
integers which satisfy ~, ~ &#x3E; ~,2 &#x3E; ... ~~~0 and ~.1 + ~,2 + ... +~=r. Thus,
in the case where r  n, we see that ~,k = 0 for k &#x3E; r.

Hence we have a decomposition

where the sum is taken over all tuples (~,1, ...,~) satisfying

and 03BB1 + ... + 03BBn = r and where V(03BB1, ..., 03BBn) denotes the space of rth
rank tensors of symmetry type corresponding to the partition (~ 1, ..., ~,n)
of the Young diagram.

It is well known that an n dimensional vector space V affords the irre-
ducible (1, 0, ... , 0) representation of GL(n) and each of the spaces

..., ~,n) will give the irreducible representation of GL(n) with highest
weight (~,1, ... , AJ. Hence on the space V(À1, ... , ~,n) we obtain the reduced
scalar identity

From the decomposition (41) we see that the generalized scalar identity

must be satisfied 0 on the entire ’ space 
’ VB
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Corresponding to each partition ..., mn) of the rth order Young
diagram let us define an operator

where the product is over all partitions of the rth order Young diagram
excluding the partition (ml, ..., mn) and is the eigenvalue of the
invariant on the irreducible ..., mn) representation of GL(n);

where

The operator P(m) corresponds to the left hand side of equation (42)
(up to a normalization factor) with the term corresponding to the partition
(mi, ...,~J omitted. Hence P(m) will vanish on each of the spaces

Y(À1, ..., ~,n) except the space ..., mn) on which it takes the value 1.
Therefore will project the space Vr onto the subspace of rth rank
tensors of symmetry type ... , mn).

Suppose T is an arbitrary tensor in vr, and let

be the decomposition of T into tensors of the various symmetries. Then
application of the operator P(m) gives

Hence

and we have a resolution of the identity on the space VB

Therefore the operators P(m) correspond to the Young projection opera-
tors of order r.

As an example consider the case r = 2. Then V2 is the direct sum of
the (2, 0, ..., 0) (symmetric) and (1, 1, 0, ..., 0) (antisymmetric) repre-
sentations of GL(n). The GL(n) invariant ~1 takes the constant value 2
on the space V 2.
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The characteristic identity of GL(n) on the (2, 0, ..., 0) representation
is (a - n - 1)a = 0, and the scalar identity is therefore (12 - 2(n + 1) = 0
(which therefore shows that 62(2, 0, ..., 0) = 2(n +1)). On the (1,1, 0, ... , 0)
representation the GL(n) identity is (a - n + = 0 and the scalar
identity is 0-2 - 2(n - 1) = 0 (and hence

Therefore the generalized scalar identity on V2 is

and the Young projection operators are :

and

This method for the construction of Young projection operators can
also be applied to various other situations. For instance it is well known

(see [6]) that a finite dimensional irreducible representation + 1) of
GL(n + 1) can be decomposed into a direct sum of irreducible represen-
tations V;.(n) of GL(n) with weights (~,1, ..., ~,n) satisfying ~ ~ ~ ~ 
Since the characteristic identity of the GL(n) matrix a on each of the spaces
V;.(n) is known (see Green [2]) we may multiply all of these identities toge-
ther to obtain a generalized characteristic identity satisfied on the entire
space + 1). By taking the trace of this identity and omitting the factor
corresponding to the space V;.(n) we obtain projection operators P À which
project Vu(n + 1) onto V~).
Although in this paper we have restricted ourselves to GL(n) many of

our previous results also hold in an analogous way for the subgroups
Sp(n) and O(n). Green [2] has determined the characteristic identities of
Sp(n) and O(n) on finite dimensional irreducible representations. Hence
we may apply the methods just described to the decomposition of a finite
dimensional irreducible representation of GL(n) into irreducible repre-
sentations of SO(n).
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