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Section A :

Physique ’ théorique. ’

ABSTRACT. - We construct quasi-free completely positive (CP) semi-
groups on the CCR-C*-algebra, show that they can be extended, in cer-
tain representations, to a dynamical semi-group on the associated von
Neumann algebra and determine the infinitesimal generator.

RESUME. 2014 Nous construisons les semi-groupes completement positifs
et quasi-libres sur la C*-algebre de relations de commutation.
Ces semi-groupes pouvant etre etendus a l’algèbre de von Neumann

associee a certaines representations, on determine Ie generateur infinite-
simal.

1 INTRODUCTION

In the algebraic approach to non-equilibrium statistical mechanics,
it is generally assumed that the dynamics of an open system, idealized as
a C*- or a von Neumann algebra, is given by means of a one parameter
semi-group of completely positive maps on the algebra [1] [IO]. In case
this semi-group extends to a group of *-automorphisms, the system is
called conservative, if not the system is called dissipative.

In this paper we study a particular class of dynamical systems, namely
quasi-free boson systems. Our algebra will be the CCR-C* algebra (H, cr)

(*) Aspirant NFWO, Belgium.
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124 P. VANHEUVERZWIJN

build over a symplectic space (H, a). [2] [3], while the CP maps will be of
« quasi-free » type.

These CP maps where introduced in [4] [5]. The full class of these maps
was characterized in [6]. Some further results, concerning extremality,
dilation, implementation and relaxation, were obtained in [7].

It is clear that semi-groups of quasi-free CP maps cannot be strongly
continuous, as they map Weyl-operators into Weyl-operators. We show
however (theorem 4.4 below) that in certain representations, determined
by quasi-free states [8], the semi-group may be extended to a so-called
dynamical semi-group [9] [10] on the von Neumann algebra generated
by the representation.

As an ultraweakly continuous semi-group of normal maps on a von
Neumann algebra, there exists a densely defined and closed generator.
We obtain this generator explicitly in theorems 4.7, 9 below. Formally
it is of the Lindblad type [10].
The characterization of unbounded generators of dynamical semi-

groups being far from complete, the results obtained here should contain
some information on the structure of these generators.
The paper is organized as follows :

In § 2 we gather some results on symplectic spaces, operators and semi-
groups on it. We briefly recall the definition of the CCR-C* algebra A(H, 7).
In § 3 we construct the class of quasi-free CP semi-groups. § 4 shows,
the extension of the semi-group to certain associated von Neumann alge-
bras, is possible. Finally the explicit form of the generator is obtained. If
moreover we ask for the existence of a separating vector in the represen-
tation space, the domain of the generator is fully determined.
For the general theory of semi-groups and their generators we refer to

[13] [14] [15]. For a treatment of quasi-free semi-groups on the CAR alge-
bra, see [21].

2. SYMPLECTIC SPACES AND THE CCR ALGEBRA

The one particle space (H, 6) is a real symplectic space, i. e.

i) H is a real linear, possibly infinite dimensional, space.
ii) 6 is a real, bilinear antisymmetric and non degenerated form, defined

on H.
On H, we define the topology, induced by the family of seminorms { Pt&#x3E; },

The resulting locally convex space is Hausdorff. We call this topology
the s-topology.

Given any continuous operator T : H 2014~ H, a unique operator T+ is
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125GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS

defined through the formula y) = T + y). A complex structure
is an operator J : H ~ H, such that J~ == 2014 J, and J2 = - 1.
A symplectic base of H, is a set of vectors { i’ï, gi }i= 1,... such that

We suppose {fi, gi} is ordered as follows: {f1, gl, fi, g2, f3, ...}
and denoted as { el, e2, e3, ... }. Then defining

by

it is easily checked that J extends to a complex structure.
The following formulas hold

DEFINITION 2 .1. [8]. is the set of all operators Q : H ---+ H s. t.

i) ~) ~ 2014 ø) defines a real scalar product on H.
ii) Q*Q ~ 1 where * and &#x3E; are taken with respect to sQ.
It follows then that Q* = - Q = Q+, hence Q is bounded for the

sQ-norm topology on H ; moreover Q is invertible.
Let HQ denote the completion of H for the sQ norm topology. The follow-

ing properties are well known. Suppose H is sequentially s-complete,
then VQ H is sQ-norm complete. [8] Conversely if H is not sequentially
s-complete, then HQ is sequentially s-complete [12], II cor. 29. Hence-
forth we will suppose H is sequentially s-complete.

DEFINITION 2.2. A continuous semi-group on H is a 1-parameter
family of s-continuous, everywhere defined, operators At, t E R + s.1.

i ) Ao = 1
ii) = 

s

iii) the map t ---+ A~ is s-continuous.
As H is sequentially s-complete, by the closed graph theorem, {At}

is a strongly continuous semi-group on H, equipped with the sQ-norm
topology, whenever Q E ~.
The infinitesimal generator Z of A~ is defined by

Vol. XXIX, n° 1 - 1978.



126 P. VANHEUVERZWIJN

such that the limit exists (in any of the topologies). When H is sequentially
s-complete, Z is s &#x26; sQ-norm densely defined. Moreover Z is sQ-norm
closed.

In the sequel we make use of the following properties (( + ), ( + + )).
i) Let At be a continuous semi-group in H, Z its generator, then for all

V1 E !0(Z) the map t H ZAt03C8 is s-continuous. Hence t ~

is continuous for all t/! E !0(Z) [13] [14].
ii) Let At be continuous, then for fixed ~, and finite ~ the set

{ E [0, s] ~ is contained in a finite dimensional subspace of H.
The CCR C*-algebra A(H~)_([2] [3]) is the C*-algebra obtained by

completing the *-algebra 6) generated by the Weyl elements £51/1’
satisfying

We refer to [3] for the exact definition of the norm with respect to which
the completion is to be taken. ____

We recall that ([8]) any Q E ~ determines a quasi-free state on (H, 6)
through the formula

3. QUASI-FREE CP SEMIGROUPS

Let A be any operator on H.

Denoting 4» = 4» - A~). It was shown in [6], that

the map

f being a functional on H, such that /(0) = 1, extends to a CP map on

7) iff defined by

extends to a state on the C algebra 6A).
Imposing some regularity conditions, the general form of semi-groups,

consisting of CP maps of type (3), was exhibited in [7]. In the following
we suppose to be the generating functional of a quasi-free state on

6A).

THEOREM 3.1. Let Lt : 7) -+&#x3E; 6) be a one parameter semi-

group of quasi-free CP maps, i. e. 
’

such that Ar is continuous and 0 for all 03C8 the map t ft(03C8) is differentiable.

Annales de l’Institut Henri Poincaré - Section A



127GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS

Suppose is the generating functional of a quasi-free state on ð(H, 
then it is of the form

where

Here Y satisfies:

f) Y is uniquely and everywhere defined
ii) y+ = - Y is bounded for all sQ-norm topologies.

~(Y~, ~) ~ 0 Vt/1
fi;) E ~(Z)

Conversely, any continuous semi-group {At} and operator Y with the
above properties, define a CP semi-group through the formulas (4) (5) (6).

Proof. ~ ft(03C8) is differentiable for all 03C8 and as Bt - - Bt,
we obtain that the map t ~ 03C3(Bt03C8, 03C6) is differentiable for all t/!, 4&#x3E; in H.
On the other hand, as Q is invertible when 

then B~ = B~* where the adjoint is taken w. r. t. 6Q. As B~ is everywhere
defined, B~ is bounded for the sQ-norm topology. We have that

exists for all 03C8 and 4&#x3E; in H. Thus there is an sQ-bounded operator BrQ such
that 

-

Defining Y = QYQ we obtain i) and ii). Using Prop. 4. 2 in [7] we obtain

To show iii) we note that is the generating functional of a state on
a C*-algebra and that as such  ( = I ~t(~~) I ~ 1 hence, for all t,

~}  0. On the other hand, to = 1, and we have = 0

thus

which is by definition ~)  0.

Vol. XXIX, n° 1 - 1978.



128 P. VANHEUVERZWIJN

Finally we express that

defines a state on 6At). That f (~) generates a state, implies ( [8] )

Noting once more that the equality is reached for t = 0, we derive for

Conversely, suppose {At} is a continuous semi-group on H, and Y is
an operator on H enjoying properties i), ii), iii) and iv).

‘’ 

Taking 03C8, 03C6 in D(Z), by iv) we obtain for all x  0

The left and right hand sides of the inequality are integrable on any bounded
interval by property ( + ) ; integrating (8) yields

Hence

using the other inequality we arrive at (7). This together with i) ii) and iii)
imply that ft(03C8) defines a state on That 03C4t defines a semi-group
on A(H, 7) follows now from [7] prop. 4.2. II

Annales de l’Institut Henri Poincaré - Section A



129GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS

then ~(z) is of the form (6) with

At the risk of being confusing we now introduce

DEFINITION 3.3. - Any semi-group {03C4t} as in theorem 3.1 will be
called a quasi-free CP semi-group.

4. GENERATORS OF QUASI-FREE CP SEMIGROUPS

DEFINITION 4.1 [10]. - A one parameter semi-group {03C4t} on a von
Neumann algebra .~ is called a dynamical semi-group whenever

iv) W Lt is an ultraweakly continuous map
v) t -+ is ultraweakly continuous.

It follows that ~ ~~ ~ is a contraction semi-group.
If { is a dynamical semi-group, there exists an ultraweakly dense

set in A, called fØ(2) such that for all x E fØ(2) the

The limit is called ~(x) ; it is again an element of is called the
generator of { It can be shown that J~f is uw-closed [13] [15].

Using the methods of [11] ] [13] [15] the following can be shown.

THEOREM 4.2. Let Lt be a dynamical semi-group on Then

Let coQ be any quasi-free state on and Lt a quasi-free CP semi-
group, then is again quasi-free and

Vol. XXIX, n° 1 - 1978.



130 P. VANHEUVERZWIJN

We now introduce our main hypothesis in order to ensure condition iv)
of definition 4.1 is satisfied when zt is considered in a quasi-free represen-
tation of the CCR.

DEFINITION 4.3. A quasi-free state cvQ is said to be approximately
03C403C4-invariant, iff 0

is an sQ-trace class operator.

THEOREM 4 . 4. Let a quasi-free state, zt a quasi-free semi-group on
0(H, 7). If H is sequentially s-complete, and cvQ is approximately 03C4t inva-
riant then zt extends uniquely to a dynamical semi-group on

Proof (For convenience we denote as x. - 03C9Q and are

quasi equivalent. Indeed, as

both and are factor states [8] and the condition ensures that
they are quasi-equivalent [17].
We now show that for any the positive part in the predual

of ~, is again in 
___ ___

Denote by ~cx the gauge automorphism A(H, ~) -~ A(H, r) defined by
03C4~(x) = 03B4~x03B4-~, ~ ~ H and, given define the state 03C9~

then 

Hence, V/ E H, the state is quasi-equivalent to coQ.
For a general state there is a sequence p,~ where p" is a finite

linear combination of states of the form rob such that pn ~ co in norm [18].
On the other hand, Vf, the map T* : A(H, 7)* -~ (H, 6)* as the dual of

a normalized positive map on a C*-algebra, is norm continuous (in fact

~03C4*t~=1)( 
Thus we obtain z*(pn) ~ T*(co) in norm and as M* is norm closed

T*(D)e~. This is nothing but saying that for any t, the map
-~ njA(H, 6)) is ultraweakly continuous.

This implies that can be extended to an uw-continuous map
~ ~ ~. Using a Kaplansky-type approximation, we show that ~~

is positive.
In the same way we have T, O ’~ n : ~ (x) ~ -~ ~ are positive,

such that ~~ is CP.
Remains to show v) of definition 4 .1, i. e. for all c~ in ~ * and for all x

Annales de l’Institut Henri Poincaré - Section A



131GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS

in .A the map t H is continuous. This is clearly true for 03C9 = 
and

Using once more the norm density of the linear combinations of the states
in ~~, we obtain the continuity of

Finally, for general x E 7)), there is a sequence E n(A(H, 6))

hence

By the uniform convergence t t2014~ is continuous.
Then, using the method of [19], we obtain the continuity for all x II
Let be any quasi-free state on A(H, 7); for all 03C8 and 03C6 in H, the map

is infinitely differentiable. Hence, b’~, there exists a selfadjoint operator
on the GNS space for ccy such that

(Remark that is separable).
Moreover we have

here denotes the cyclic vector in the GNS space.

If { is a symplectic base for H, we will denote BQ(ek) by Bk. From now
on we drop all indices refering to cvQ.
The following equalities are easily verified :

Vol. XXIX, n° 1 - 1978.
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LEMMA 4 . 5. Let Lt and coQ as in theorem 4. 4 II as above. Then ~k, t E N
and VI./J, 4&#x3E; E H, and for all finite s the elements

are well defined and belong to respectively and ~(Bk).

Proof (for (12)). 2014 It is easily checked that the maps

and

are continuous ; thus the elements

and

exist in Bochner sense.

By the continuity of t it, exists as an operator (in
ultraweak sense). ° 

.

Let ~ E ~(B~), then

Thus, since B, = Bt, E ’@(B,). In the same way we
prove that 

~

PROPOSITION 4.6. 2014 Let H be finite dimensional, ~ a CP quasi-free semi-
group ; coQ a quasi-free state 

" 

on 6).

Annales de l’Institut Henri Poincaré - Section A
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Then there exist real sequences

such that and all ç, 17 in a dense set ~, one has

Moreover there is a core ~ for 2, such that b’x Ere and b’n E ~

Proof. - Let D be the linear span of { 03A0(03B403C8)03A9|03C8 E H } in Je. Denote
by  the linear span of {s0 03A0(03C4t(03B403C8))dt|s  E H } in .A.
Then, by theorem 4.2, ~ is a core for .P.
Then define (ek being a symplectic base)

By theorem 4.2 weknow

on the other hand, the function

being continuous,

Vol. XXIX, n° 1 - 1978.



134 P. VANHEUVERZWIJN

For notational convenience, we put ~ = r~ = 0.

which by (1) equals

substituting (Je~) for and ( - ei) for (Jet)

by (10) (11) this equals

as all terms in the sum are integrable, we obtain by making use of lemma 4 . 5.

which is (13).
Annales de l’Institut Henri Poincare - Section A



135GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS

For general x in ~(J~), we proceed as follows such that
xa ~ xu. w. and J~(~) ~ J~(~) u. w. thus, for (ç, 1]) E q) :

since there isn’t but a finite number of terms, this equals

which is (12). III

NOTATION 4. 7. For fixed x in ~(J~), the right hand side in (12) defines
a bilinear form on ~. We will denote it as

Let be an increasing and absorbing net of finite dimensional
regular symplectic subspaces of H. Then we define as

PROPOSITION 4.8. - Let H be infinite dimensional and sequentially
s-complete, (DQ and Lt as in theorem 4.4.
Then there exist real infinite sequences {alk}, {bek} such that

Vx E ~(2) n  F and all ~, in a dense set ~ one has

Moreover there is a core ~ for 2, such that a formula similar
to (13) holds.

Proof. - Define D as in proportion 4.7, and  as the linear span of

{  00, ~e~(z) ~. Again by theorem 4.2 ~ is a core
for .

Vol. XXIX, n° 1 - 1978.
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Choose a symplectic base in ~(Z+) and define

then by property ( + ) stated m §2, the map

is continuous.
The proof is then a mere extension of the method in 4 . 7. Indeed, by the

continuity, we arrive at a formula similar to ( 14). The elements 
belong to by property ( + + ) stated in § 2. 0
Hence we obtain (15), and thus (13).
For general x E ~(~), there is a such that xa ~ x and

~(JCa) ~ ~(x) u. w.
Thus for, 

If moreover x E ~p, then for sufficiently large we obtain e. g.,

Since any term in (17) is convergent to a term which eventually vanishes,
we obtain ( 16). II
Formula ( 16) is of the form

We remark however that in general the bilinear forms ~x are not asso-
ciated to a generator of a quasi-free CP semi-group on 6))",
the reason being that when Z generates a semi-group in H, and PN is the
projection onto HN, PNZPN need not generate a semi-group on HN, except
when HN is a reducing subspace.

Remark also that if (alk + can be given a sense as a self

adjoint operator, then by re-summing the series, we recover the Lindblad
form of the generator [22].

If we impose the condition that A has a separating vector, then we

Annales de l’Institut Henri Poincaré - Section A



137GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS

can determine ~(J~f), in the same way as was done in [11] for spatial deri-
vations.

THEOREM 4.9. Let H, cvQ, ~t, ~ as above. Suppose moreover that (DQ
extends faithfully to A.
An element x in belongs to ~(~f) iff the bilinear form

has a bounded extension to ;Ye x ~f.

Proof. 2014 If x E ~(~) n then by proposition 4 . 7 and 4 . 9, there is
an element ~f(x) in ~ such that c~x(~, 11) =  ç, ~(x)r~ ~ . Hence has a
bounded extension.

Let ~(’? ’) have a bounded extension, then there is a bounded opera-
tor Bx such that for E !Ø

As fØ(2) n is u. w. dense in there is a net xa in this set such that

then ~) ~ 03C6x(03BE, ~) for or  03BE, (x03B1)~&#x3E; ~ 03BE, Bx~ ).
As both ~(xa) and Bx are bounded we have that ~(xa) -~ Bx weakly,

hence BxE.
In case ~ has a separating vector, then the weak and ultraweak topo-

logies coincide [20]. Thus we constructed a net xa in ~(~f)

and
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