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Generators for quasi-free
completely positive semi-groups

by

P. VANHEUVERZWIJIN (*)

Instituut voor Theoretische Fysica.
Universiteit Leuven. B-3030 Leuven. Belgium

ABSTRACT. — We construct quasi-free completely positive (CP) semi-
groups on the CCR-C*-algebra, show that they can be extended, in cer-
tain representations, to a dynamical semi-group on the associated von
Neumann algebra and determine the infinitesimal generator.

RESUME. — Nous construisons les semi-groupes complétement positifs
et quasi-libres sur la C*-algébre de relations de commutation.

Ces sémi-groupes pouvant étre étendus a I'algébre de von Neumann
associée a certaines représentations, on détermine le générateur infinité-
simal.

1. INTRODUCTION

In the algebraic approach to non-equilibrium statistical mechanics,
it is generally assumed that the dynamics of an open system, idealized as
a C*- or a von Neumann algebra, is given by means of a one parameter
semi-group of completely positive maps on the algebra [/] [/0]. In case
this semi-group extends to a group of x-automorphisms, the system is
called conservative, if not the system is called dissipative.

In this paper we study a particular class of dynamical systems, namely
quasi-free boson systems. Our algebra will be the CCR-C* algebra A(H, o)

(*) Aspirant NFWO, Belgium.
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124 P. VANHEUVERZWUN

build over a symplectic space (H, o). [2] [3], while the CP maps will be of
« quasi-free » type.

These CP maps where introduced in [4] [5]. The full class of these maps
was characterized in [6]. Some further results, concerning extremality,
dilation, implementation and relaxation, were obtained in [7].

It is clear that semi-groups of quasi-free CP maps cannot be strongly
continuous, as they map Weyl-operators into Weyl-operators. We show
however (theorem 4.4 below) that in certain representations, determined
by quasi-free states [8], the semi-group may be extended to a so-called
dynamical semi-group [9] [/0] on the von Neumann algebra generated
by the representation.

As an ultraweakly continuous semi-group of normal maps on a von
Neumann algebra, there exists a densely defined and closed generator.
We obtain this generator explicitly in theorems 4.7, 9 below. Formally
it is of the Lindblad type [/0].

The characterization of unbounded generators of dynamical semi-
groups being far from complete, the results obtained here should contain
some information on the structure of these generators.

The paper is organized as follows:

In § 2 we gather some results on symplectic spaces, operators and semi-
groups on it. We briefly recall the definition of the CCR-C* algebra A(H, o).
In §3 we construct the class of quasi-free CP semi-groups. §4 shows,
the extension of the semi-group to certain associated von Neumann alge-
bras, is possible. Finally the explicit form of the generator is obtained. If
moreover we ask for the existence of a separating vector in the represen-
tation space, the domain of the generator is fully determined.

For the general theory of semi-groups and their generators we refer to
[13] [14] [15]. For a treatment of quasi-free semi-groups on the CAR alge-
bra, see [21].

2. SYMPLECTIC SPACES AND THE CCR ALGEBRA

The one particle space (H, o) is a real symplectic space, i. €.

i) H is a real linear, possibly infinite dimensional, space.

ii) o is a real, bilinear antisymmetric and non degenerated form, defined
on H.

On H, we define the topology, induced by the family of seminorms { p, },

ps(¥) = ol ¥)|.

The resulting locally convex space is Hausdorff. We call this topology
the s-topology. '
Given any continuous operator T: H — H, a unique operator T* is

Annales de IInstitut Henri Poincaré - Section A



GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS 125

defined through the formula o(Tx, y) = o(x, T*y). A complex structure
is an operator J: H — H, such that J* = —J, and J? = — 1.

A symplectic base of H, is a set of vectors { f;, g; };-,.. such that

i) { f;, g} generate H (we suppose H separable).

ii) o(f, g;) = 0y i, j

iil) o(fi ) = o(g g) =0 Vi, j

We suppose { fi, g;} is ordered as follows: { fi, g1, f2, &2 f3 - - }
and denoted as { e, e,, €3, ... }. Then defining

J:H > H
by
J92k+1=62k+2 k=0, 1,
J82k+2= — €x+1 k=0, 1, .o

it is easily checked that J extends to a complex structure.
The following formulas hold

VoeH: ¢ = Za(dh Jeyey (1)
3

VY, ¢eH: (¢, ) = zo(d% Jea(e ¥) @

k

DEerINITION 2.1. [8]. — 2 is the set of all operators Q: H — H s.t.

i) sq, ) = — a(Qy, ¢) defines a real scalar product on H.

ii) Q*Q > 1 where * and > are taken with respect to sq.

It follows then that Q* = — Q = Q™, hence Q is bounded for the
so-norm topology on H; moreover Q is invertible.

Let H? denote the completion of H for the s, norm topology. The follow-
ing properties are well known. Suppose H is sequentially s-complete,
then VQ € 2, H is so-norm complete. [§] Conversely if H is not sequentially
s-complete, then HQ is sequentially s-complete [/2], II cor. 29. Hence-
forth we will suppose H is sequentially s-complete.

DEFINITION 2.2, — A continuous semi-group on H is a l-parameter
family of s-continuous, everywhere defined, operators A, te R* s.t.
i) Ay =1

i) AA; = Ay

iii) the map t — A, is s-continuous.

As H is sequentially s-complete, by the closed graph theorem, { A, }
is a strongly continuous semi-group on H, equipped with the sq-norm
topology, whenever Q € 2.

The infinitesimal generator Z of A, is defined by

1
Zy = 11513 ;(Tt — 1w for any Yy eH
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126 P. VANHEUVERZWIN

such that the limit exists (in any of the topologies). When H is sequentially
s-complete, Z is s & sq-norm densely defined. Moreover Z is sp-norm
closed.
In the sequel we make use of the following properties ((+), (+ +)).
i) Let A, be a continuous semi-group in H, Z its generator, then for all
Y e D(Z) the map t — ZAy is s-continuous. Hence t — o(ZAy, AY)
is continuous for all Y € 2(Z) [13] [14]. '
ii) Let A, be continuous, then for fixed ¥, and finite s, the set
{Ay|tel0,s]} is contained in a finite dimensional subspace of H.
The CCR C*-algebra A(H, o) ([2] [3]) is the C*-algebra obtained by

completing the -algebra A(H, o) generated by the Weyl elements 9,
Y € H, satisfying

840y = €™ "VD5,
We refer to [3] for the exact definition of the norm with respect to which

the completion is to be taken.

We recall that ([8]) any Q € 2 determines a quasi-free state on A(H, o)
through the formula

wo(8,) = e'27@)

3. QUASI-FREE CP SEMIGROUPS

Let A be any operator on H.
Denoting a,(V, ¢) = o, ¢) — o(Ay, Ag). It was shown in [6], that
the map
7 :AH, ) » A(H, o)

"-'(5./,) = 5Awf W)

f being a functional on H, such that f(0) =1, extends to a CP map on
A(H, o) iff o, defined by

©)

w(8y) = f(¥)

extends to a state on the C algebra A(H, g,).

Imposing some regularity conditions, the general form of semi-groups,
consisting of CP maps of type (3), was exhibited in [7]. In the following
we suppose f(i) to be the generating functional of a quasi-free state on
AH, c,).

THEOREM 3.1. — Let 1, : A(H, 6) = A(H, o) be a one parameter semi-
group of quasi-free CP maps, i e. :

T:((S./,) = 5Atwf () 4)

such that A, is continuous and for all i the map t — f() is differentiable.
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GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS 127

Suppose f() is the generating functional of a quasi-free state on A(H, Oa)
then it is of the form

f{¥) = exp [o(By, ¥)] &)

where
t
B, = J A} YA dx ©6)
0

Here Y satisfies :
i) Y is uniquely and everywhere defined
ii) Y* = — Y is bounded for all so-norm topologies.

i) oYy, ) <0 V¢
iv) Y, ¢ € D(Z)

1
|o(Zy. ¢) + oy, ZP)| < — EIG(Yl//, ¥) + o(Yo, ¢)] (™)
Conversely, any continuous semi-group { A,} and operator Y with the
above properties, define a CP semi-group through the formulas (4) (5) (6).

Proof. — As t — f() is differentiable for all ¥ and as B} = — B,
" we obtain that the map ¢t — (B, ¢) is differentiable for all 1// ¢ in H
On the other hand, as Q is invertible when Qe 2

vt 3B%.t. B, = QBR

then B2 = B2* where the adjoint is taken w. 1. t. so. As BY is everywhere
defined, B is bounded for the sy-norm topology. We have that

1
tim  [o(QBRY: 6)  o(QU, 9] = — lim = [so(B: ¢) — solt, §)]

exists for all yy and ¢ in H Thus there is an sQ—bounded operator Y2 such
that

d .
= 5Q( 2, ) - = 5o(Y¥, ¢)

Defining Y = QY2 we obtain i) and ii). Using Prop. 4.2 in [7] we obtain

= t Ax
wmeo [ o s

= exp [J dx o(YA Y, Axlll)].
0

To show iii) we note that f(i) is the generating functional of a state on
a C*-algebra and that as such | f(y)| = |w(dy)| <1 hence, for all ¢,
(B, ) < 0. On the other hand, 1, = 1, and we have o(Bo, ) =0
thus

<0,
t=0

d
7 (B, ¥)
which is by definition a(Yy, ) <0

Vol. XXIX, n° 1-1978. 5



128 P. VANHEUVERZWIIN

Finally we express that
t
fd) = exp U dx o(YAY, Ax'//)]
0

defines a state on A(H, o,,). That f(}) generates a state, implies ([8])

1
loalys D)1 < — S [oB, ¥) + o(B.¢, 9);

"Noting once more that the equality is reached for t = 0, we derive for

¥, e D7)
|o(Zy, ) + o, Zd)| < — %[G(Y ¥, ¥) + o(Yo, ¢)]

Conversely, suppose { A,} is a continuous semi-group on H, and Y is
an operator on H enjoying properties i), ii), iii) and iv).
Taking ¥, ¢ in 2(Z), by iv) we obtain for all x >0

- O-(ZAx'I” Ax¢) - G(Axlp’ ZAx¢)
1
< - 5 [G(YAx‘pa Axl/l) + G(YAx¢a Ax¢)] (8)

The left and right hand sides of the inequality are integrable on any bounded
interval by property (+); integrating (8) yields

- r[a(ZAxw, A d)ix + o(A, ZA,$)ldx
0 s
<-3 j (YA, Ad)) + o(YA b, Ad)ldx
0

Hence .
oy, ¢) — o(AY, Ad) < — 3 [oB, ¥) + o(B,o, ¢)]
using the other inequality we arrive at (7). This together with i) i) and iii)

imply that f(}) defines a state on A(H, 0,,). That 7, defines a semi-group
on A(H, o) follows now from [7] prop. 4.2. [ |

EXAMPLE 3.2. — [4] [16]. — Let H = R?
1
a((x, y), (', y)) = E(xy’ — yx')

I _' 0 —1

1 o
Az=e%z A>0 t>0 zeR?
0
fiz) = exp [—2(1 —e—m)llzﬂz], 0=>1
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GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS 129

then f(z) is of the form (6) with

Y=-203
2

At the risk of being confusing we now introduce

DEFINITION 3.3. — Any semi-group {z,} as in theorem 3.1 will be
called a quasi-free CP semi-group.

4. GENERATORS OF QUASI-FREE CP SEMIGROUPS

DEFINITION 4.1 [10]. — A one parameter semi-group {7,} on a von
Neumann algebra .# is called a dynamical semi-group whenever
i)Vtt,is a CP map 4 — M
ii) (1) =1 for any ¢
iii) 1o =1
iv) Vt 1, is an ultraweakly continuous map
v) t — 71,(x) is ultraweakly continuous.
It follows that {7,} is a contraction semi-group.
If {7,} is a dynamical semi-group, there exists an ultraweakly dense
set in ., called 2(%) such that for all x € (&) the

lim

T(x) — x L
lim ~‘(—)t— exists in ultraweak (u. w.)-sense.

The limit is called #(x); it is again an element of /#.% is called the
generator of {7, }. It can be shown that % is uw-closed [13] [15].

Using the methods of [/1] [13] [15] the following can be shown.

THEOREM 4.2. — Let 7, be a dynamical semi-group on .#. Then

7,(x)dt is well defined and x, e 9(¥)

0

1. Vxe 4, Vs, the element x, =

Moreover 7(x) — x = Z(x,)
2. Let % be an u.w. dense set, ¥ < D(L), s.t.

(€)= ¥, then € is a core for . |

Let wq be any quasi-free state on A(H, o), and 7, a quasi-free CP semi-
group, then V¢, 1¥(wg) is again quasi-free and

* . J—
Ty - g = WAy QA,+B,

Vol. XXIX, n° 1-1978.



130 P. VANHEUVERZWIN

We now introduce our main hypothesis in order to ensure condition iv)
of definition 4.1 is satisfied when 7, is considered in a quasi-free represen-
tation of the CCR.

DEFINITION 4.3. — A quasi-free state g is said to be approximately
T,-invariant, iff V¢ = 0

Q- At+ QAt - B, ©)
is an sQ-tracé class operator.

THEOREM 4.4. — Let wq a quasi-free state, 7, a quasi-free semi-group on
A(H, o). If H is sequentially s-complete, and w, is approximately t, inva-
riant then 7, extends uniquely to a dynamical semi-group on

I,,(A(H, 0))" = A .

Proof (For convenience we denote IT, (x) as x. — wq and tf(wq) are
quasi equivalent. Indeed, as

H = H? = HAS QA:+B.

both wq and tf(wg) are factor states [§] and the condition ensures that
they are quasi-equivalent [/7].

We now show that for any we .#}, the positive part in the predual
of M, tHw) is again in .

Denote by 7, the gauge automorphism A(H, 6) — A(H, o) defined by
1x) = 6,x6_,, x€H and, given we ./, define the state w*

X —
o* = wgt,

then t*(wd) = (cF(w))™ *.

Hence, Vy € H, the state 7}f(w}) is quasi-equivalent to wq.

For a general state we ./}, there is a sequence p,, where p, is a finite
linear combination of states of the form w} such that p, — ® in norm [18].

On the other hand, Vt, the map t*: A(H, 0)* — A(H, o)* as the dual of
a normalized positive map on a C*-algebra, is norm continuous (in fact

¥il=1)

” Tl‘llus we obtain t¥(p,) —» () in norm and as .#, is norm closed
t*(w)e A} . This is nothing but saying that for any ¢, the map
7,: ,(A(H, 0)) - I, (A(H, 0)) is ultraweakly continuous.

This implies that Vt, 7, can be extended to an uw-continuous map
%,: M — M. Using a Kaplansky-type approximation, we show that 7,
is positive.

In the same way we have 7, ® 1,: #/ ® M, — M @ M, are positive,
such that 7, is CP.

Remains to show v) of definition 4.1, i.e. for all @ in .#, and for all x

Annales de IInstitut Henri Poincaré - Section A



GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS 131

in ./ the map t — w(t,(x))is continuous. This is clearly true for w = WQ'T, -
and

x = Zlﬁ!//i
i=1
Using once more the norm density of the linear combinations of the states
wq'T, in M, we obtain the continuity of

t = oft(x)

forall we #,, and x = Zli&//,-
i=1
Finally, for general x € II(A(H, o)), there is a sequence x,, x, € [1(A(H, 7))

X, — X in norm
hence

| o(t(x)) — o(t(x)) | = | (@oT )X — x,)|
<llx—x,ll<e for n large enough.

By the uniform convergence ¢ — w(z,(x)) is continuous.
Then, using the method of [/9], we obtain the continuity for all x in .. |
Let wq be any quasi-free state on A(H, 0); for all  and ¢ in H, the map

AER = g6, +4)

is infinitely differentiable. Hence, Yy, there exists a selfadjoint operator
Bo(¥) on 5, the GNS space for q such that

H(DQ(ébﬁ) = eMBQw,) s

(Remark that H oo 18 separable).
Moreover Yy, ¢, ne H we have

i) Hu0(04)Q0, € 2(Bo(¢))
here Q,, denotes the cyclic vector in the GNS space.
i) Bo(¥)11,(64)2,, € (Bo(1)) -

If { ¢ } is a symplectic base for H, we will denote By(e;) by B,. From now
on we drop all indices refering to Wq.
The following equalities are easily verified :
<TI(6,)Q, B,[B,, TI(6,)]T1(5,)Q >
=2[o(en ¥ + ¢ + 1) + i6(Qe,, — ¢ + Y + 1)]
" a(e, ) S (04 Q m(dy)n(5,)Q > (10)
CT1(34)€, [By, TI(3,)1B,I1(5,)2 >
=2[-oale, ¥ + ¢+ 1) +io(Qe, — ¢ + Y + 1)]
- ale ¥) < m(04)Q, 7(d,)m(5,)Q (11)

Vol. XXIX, n° 1-1978.



132 P. VANHEUVERZWDIN

LEMMA 4.5. — Let 7, and wg as in theorem 4.4 IT as above. Then Vk, le N
and Yy, ¢ € H, and for all finite s the elements

L T1(z,(8, T3, )0t (12)

Ls T(z,(6,))B,I1(5 ,)Qdt (13)
are well defined and belong to respectively 2(B,B,) and 2(B,).
Proof (for (12)). — It is easily checked that the maps
t = |[THzY)IL(GP)Q ||
t = || BILz(oy)IL(6¢)Q2 ||

are continuous ; thus the elements

and

rnm(éw»n(w)ndt

0

and
j B I1(z,(0y)I1(6 )2t
0

exist in Bochner sense.

s
By the continuity of t — 1, J II(z,(d,))dt exists as an operator (in
ultraweak sense). 0

Let £ € 2(B)), then

(B, r H(z (6,6 ,)t > = _[) B, T (0,))T1(64)Q2 ) dt
0

. J (& BTG )IG,)Q Y dt
0
—(¢ f " BUII(r/3,)T1(3 )t >

Thus, since B, = Bf, j I(7,(0,)[1(0,)Qdt € Z(B,)). In the same way we
prove that 0

j sB,H(T,(é,,,))H(5¢)th isin 2B). MW

0

PROPOSITION 4.6. — Let H be finite dimensional, 7, a CP quasi-free semi-
group; wq, a quasi-free state on A(H, o).
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GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS 133

Then there exist real sequences

{ap} kil=1..,2N
(by} ki1=1,...,2N

such that Vxe 2(%) and all &, 5 in a dense set &, one has

<& Ly = — iZdw[( BBy, xn > — (B, xBin ) |
Kl

+ ay[ < By, xBiy > — (¢, xB,Bmn > 1
1
- Zzbm[ (BB, xn ) — (B, xBpm > 1]

k.1

= bul (B, xBip > — (¢, xB:Bin > ] (12)

Moreover there is a core € for &, such that Yxe% and Yne 9

i
L = =~ ) (auBuBy, xIn + ay[B,, x]Bp)
4
PR

. ,
- (biuBy[By, x]n — by[By, x]By). (13)
: 4
Tl

Proof. — Let 9 be the linear span of {I1(6,)Q |y e H} in #. Denote
by € the linear span of { f I(z,(6y))dt | s < o0, yeH } in A.
(V]
Then, by theorem 4.2, % is a core for .Z.
Then define (e, being a symplectic base)

aq = o(Je, Z¥1,)
by = o(Je, YJ,)
By theorem 4.2 weknow

< ( j H(rt(fs.,,))dt) = II(z(6,)) — T1(d,)
0
on the other hand, the function

d
t o (TR TG0 )

being continuous,
CII(84)Q, T(ry(0y) — 3,)(6,)Q ) = J %[( T1(3,)2 T(x(8,)TI(3,)2 > 1dt .
0

Vol. XXIX, n° 1-1978.



134 P. VANHEUVERZWIIN

For notational convenience, we put ¢ = = 0.

< Q, ,sf[ j s H(r,(é,,,))dt]Q >
0

= sfltcoq(f,(é.,,))[— a(ZAyY, QAY) + o(YAY, Ay)]
0
which by (1) equals

J dtwq(ft(%))Z[a(At'// Jeo(Zey, Je)o(Qey, AY)

— oA, Je)ale, Yleo(e,, Ay))
substituting (Je;) for (e;) and (— ¢) for (Je;)

f dth(T,(éw))Z[a(At\// e)o(Ze,, Je)o(Qey, Ah)
— (A, eJoJe, Yleo(e,, AY)]

-3, dth(r,(aw))Ea,k[a(eb Avoten, A)
+ i6(Qey, AY)ole, AY)]
+ ayl— oler, Ap)ole, Ay)
s + ioler, AY)o(Qer, AY)l]
-5 J dtwq(T:(%))Zbkz[a (e, Ap)ole, A)
0 ol + i0(Qey, A)ale, Ay)]
+ l.7lk[+ 0'(ek’ A,{/I)O’(el, At'/’)
by (10) (11) this equals -~ tolep Ap)o(Qey A)]
= - .rdt[‘_i‘ E[alk <Q, ByfBy, 1(0,)IQ > + au {Q [By, 7(6,)IBL )]
0

k.l

- %zwzk (Q, BB, T:(5¢)]Q> — by <Q, [By, Tt((sw)]Bzg > ]:l (14)

kl
as all terms in the sum are integrable, we obtain by making use of lemma 4.5.

-3l ne [nfe)
"' a0 [mn [[onalsa)]

S IRCULARTRD
’ — by <Q [B,,, L r,(éw)dt:lB,Q >J (15)

Annales de I Institut Henri Poincaré - Section A
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GENERATORS FOR QUASI-FREE COMPLETELY POSITIVE SEMIGROUPS 135

For general x in 2(¥), we proceed as follows Ix,€% such that
X, = xu.w. and Z(x,) - L(x)u.w. thus, for (&, y)e D :

& Ll > = lim [ & Lxan ]

= h:n [——Tl zalk[ < BlBkéa xan > - < Bké) xaBlr, > + .. ']]

kl

since there isn’t but a finite number of terms, this equals

i
-7 Zzalk (BB, xn ) — (B, xBy > + ...
]

which is (12). [ |

NoOTATION 4.7. — For fixed x in 2(%), the right hand side in (12) defines
a bilinear form on 2. We will denote it as

ON(S)]

Let (H,),y be an increasing and absorbing net of finite dimensional
regular symplectic subspaces of H. Then we define 4y = 4 as

My =\_ A, o))"

neN

ProrosiTION 4.8. — Let H be infinite dimensional and sequentially
s-complete, wq and 7, as in theorem 4.4.

Then there exist real infinite sequences {ay }, {b, } such that
Vxe P(¥) N Mg and all & in a dense set & one has

& ZLxm) = i [aul < BBy, xn > — (B, xBiy ) ]
ol + ayl (B, xByp ) — (& xB By > ]
1
- ZZ[bzk[< BBy, xn > — (B, xBpy > ]

— byl < B, By > — (& xBBy S]] (16)
= $.(& 1)

Moreover there is a core ¥ for %, such that Vxe %, a formula similar
to (13) holds.

Proof. — Define 9 as in proportion 4.7, and € as the linear span of
{ J I(z,(,))dt | s < o, we@(z)}. Again by theorem 4.2 % is a core
V]
for &£.
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136 P. VANHEUVERZWIIN

Choose a symplectic base in { ¢} in 9(Z*) and define
ay = o(Je, Z*Je)
by = o(Je, Yle)

If € 2(Z), then by property (+) stated in § 2, the map

d
b 2 0g(tldy)) = wo(tlo )l — o(ZAY, QAY) + o(YAY, AY)]

is continuous.
The proof is then a mere extension of the method in 4.7. Indeed, by the

continuity, we arrive at a formula similar to (14). The elements j I(z(5,))dt
belong to ./, by property (+ +) stated in § 2. 0

Hence we obtain (15), and thus (13).

For general x € 2(%), there is a net { x,} €% such that x, - x and
L(x,) > L(x) u.w.

Thus for & ne 2

<& LHm > = lim (& Llxn >
= lim ¢,,(¢, 1) (17)
If moreover x € .4 g, then for [ sufficiently large we obtain e. g.,
(BB, xn ) — (B, xBm ) =0.

Since any term in (17) is convergent to a term which eventually vanishes,
we obtain (16). [
Formula (16) is of the form

<& L

lim Z - i[alk (BB, xn > — (B, xBn > ]

N-ow
k=1

+ay ... + ...
= lim ¢3¢ )

We remark however that in general the bilinear forms @Y are not asso-
ciated to a generator of a quasi-free CP semi-group on II(A(Hy, 0))”,
the reason being that when Z generates a semi-group in H, and Py is the
projection onto Hy, PyZPy need not generate a semi-group on Hy, except
when Hy is a reducing subspace.

Remark also that if Z(a,k + a,)B,B; can be given a sense as a self-

k,l
adjoint operator, then by re-summing the series, we recover the Lindblad
form of the generator [10] [22].

If we impose the condition that .# has a separating vector, then we
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can determine 2(%), in the same way as was done in [//] for spatial deri-
vations.

THEOREM 4.9. — Let H, wq, 7, Z as above. Suppose moreover that wq
extends faithfully to Z.
An element x in .4 belongs to P(&) iff the bilinear form

, o, ) D2x 9D - C
has a bounded extension to # X .

Proof. — If xe D(F) N My, then by proposition 4.7 and 4.9, there is
an element £(x) in 4 such that ¢ (& n) = <& L(x)n ). Hence ¢, has a
bounded extension.

Let ¢.(:, -) have a bounded extension, then there is a bounded opera-
tor B, such that for all &, ne P

<& By = oS )

As Y(&L) N My is u. w. dense in #, there is a net x, in this set such that
X, = X WW.

then ¢, (¢ 1) — @& n) for all {,neP or (& LxJn )y — & By ).
As both #(x,) and B, are bounded we have that #(x,) — B, weakly,

hence B, e /.
In case .# has a separating vector, then the weak and ultraweak topo-
logies coincide [20]. Thus we constructed a net x, in 2(%¥)

X, & X WW.

and
L(x,) - B, u.w.

as & is u.w. closed, we obtain xe P(¥) and Z(x) = B,. [ |
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