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Maximizing Properties of Extremal Surfaces
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Section A :

Physique theorique.

ABSTRACT. - In earlier work we have discussed the uniqueness and
local maximizing properties of maximal surfaces. We continue this study
in the present paper, including surfaces of constant mean curvature in
spaces of non-vanishing matter content and with arbitrary cosmological
constant. The nature of the extremum is characterized by means of the
eigenvalues of an elliptic differential operator defined on the surface.
To illustrate the different possibilities, a universe of the Taub type with
cosmological constant is constructed, and this example suggests a conjec-
ture that the index of these surfaces is less than 2.

0 INTRODUCTION

Spacelike surfaces of prescribed mean curvature, especially maximal
surfaces, have important physical as well as mathematical properties in
spacetime. They can be helpful in solving the Einstein equations and
under certain conditions they indicate the presence of singularities [1].

In a previous paper [2] we have discussed the uniqueness of surfaces of
constant mean curvature and the local maximizing properties of maximal
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(**) Permanent address : Department of Physics and Astronomy, University of Mary-
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336 D. BRILL AND F. FLAHERTY

surfaces. In the present work we shall generalize the earlier investigations
in two respects : (a) We study the second derivative or variation of a weighted
volume functional, whose extremals are surfaces of constant mean curva-
ture (k-surfaces for short). (b) We consider spacetimes with non-vanishing
matter content.

The k-surfaces extremize a function W(T), closely related to the volume
functional V(T) (extremized by maximal surfaces T). The weighted volume
W(T) of a spacelike surface T with respect to the fixed compact spacelike
surface S is defined to be

with H(S, T) the 4-dimensional measure of the set between Sand T. Since
we are only interested in local properties of W we can restrict our attention
to those T contained in a fixed (compact) tubular neighbourhood of S.
The constant k can be considered a Lagrange multiplier. For T a variation
of S it is easy to see [3] [4] that the variational principle

yields the Euler-Lagrange equation :
mean curvature (S) = k .

Thus the variational principle characterizes k-surfaces.
The second variation of the weighted volume gives rise to a differential

operator N, necessarily elliptic, the eigenvalues of which are related to
the character of the extremum at a k-surface. If Einstein’s equations hold,
it is natural to compare these eigenvalues to the cosmological constant.
We therefore consider spacetimes with both matter and cosmological
constant.

In Section 2 we discuss differential operators on spacelike surfaces, and
show some general properties of the operator N. In Section 3 we apply
these results to see the extent that k-surfaces imply incompleteness. Of

particular interest is the extension to spaces with matter content of the

situation already treated in [2] for empty spacetime where it is possible
to conclude incompleteness both to the future and to the past of a maximal
surface. The final section contains an example, the Taub universe with

cosmological constant, where all quantities can be computed explicitly
to illustrate the general theorems derived earlier. This section also contains
a conjecture based on a surprising feature of the Taub universe.

Detailed discussions of the weighted volume functional presented in
this introduction can be found in slightly different settings in the Oxford
thesis of A. J. Goddard or in the article of M. Miranda cited in the refe-

rences [3] [4].
de l’Institut Henri Poincaré - Section A



337MAXIMIZING PROPERTIES OF EXTREMAL SURFACES

1. DIFFERENTIAL OPERATORS
ON SPACELIKE HYPERSURFACES

Let S be a compact spacelike hypersurface in a Lorentz manifold M
(signature 2014,+,+,+). The inner product ( , ) induced on the bundle
of normal vectors to S from the bundle of tangent vectors of M is then
negative definite. Recall [5] that if Ax represents the second fundamental
form on S in direction X, normal to S, the operator A2 is defined by

for a local frame field on S, and n the unit normal.
The Laplace operator in the bundle of normal vectors to S is defined

with the aid of the covariant derivative D :

with tangent to S.

Using Stokes’ theorem and assuming that ~S is empty or that X vanishes
on the boundary of S we find

where the are again a local frame field. If we define the first order ope-
rator VX bv

we can write (1.2) as

In previous work [2] we pointed out the properties of the differential
operator

Here we consider the generalization appropriate to the case where matter
is present. If the energy density is interpreted as a type (1, 1) tensor on the
normal bundle

we can define

Explicitly

Vol. XXVIII, n° 3 - 1978. 22



338 D. BRILL AND F. FLAHERTY

The differential operator N is a strongly elliptic operator on a compact
manifold, that is, its characteristic polynomial [6] is a positive definite
quadratic form, hence N can be diagonalized with eigenvalues

In case S is a compact manifold with boundary as, we confine attention
to normal vector fields which vanish on as. More precisely :
THEOREM 1. 2014 The symmetric differential operator N on the space of

normal vector fields to S, vanishing on the boundary of S, can be diago-

nalized with respect to the inner product Js ( X, X ~ dV ; has distinct
eigenvalues (vk) ; and the dimension of each eigenspace is finite.
The operator N differs from the Morse index form of Riemannian

geometry in that the curvature terms are replaced by the more physically
meaningful energy-momentum tensor. Moreover, if Einstein’s equations
with vanishing cosmological constant hold, N is identical with the index
form [7]. The eigenvalues of N allow us to formulate a condition that a
k-surface represents a true maximum for the weighted volume, as opposed
to other types of extremal point ; thus in the sequel S will always denote
a k-surface.

THEOREM 2. - Suppose that M satisfies the Einstein equations with
cosmological constant ~, coupled to a source satisfying the strong energy
condition. If S is a k-surface and A is smaller than the least eigenvalue V1 1
of N then S locally maximizes the weighted volume.

Proof. - From the strong energy condition it follows that

is non-negative. Thus N is positive semi-definite, and hence the lowest
eigenvalue v1 of the equation

is non-negative. Furthermore, for all non-zero X,

The usual second variation formula [2] [4] holds unchanged for the weighted
volume W if S is a k-surface :

Into this expression we substitute " the Einstein equations
Annales de Henri Poincare - Section A



339MAXIMIZING PROPERTIES OF EXTREMAL SURFACES

and find

This proof was based on the positivity of N. To characterize these and
more general cases we study the kernel of, first for manifolds with bound-
ary, and then for closed S.

PROPOSITION 3. 2014 If S is a k-surface with boundary and T(X, X) satisfies
the strong energy condition then the kernel of N is trivial.

Proof - Suppose that N(X) = 0 and X vanishes on the boundary
of S. Then

which is a sum of three non-negative terms, so that VX must vanish. Thus, X
has constant length on S, hence X vanishes on S.

Remark. - Theorem 2 and proposition 3 combine to show that no
conjugate boundaries can exist on a maximal or k-surface with boundary,
when ~. and strong energy holds. See Simons [8] for a thorough
explanation of conjugate boundaries. The modifications necessary for
maximal and k-surfaces are easily interpolated.

PROPOSITION 4. 2014 If T(X) satisfies the strong energy condition and S
is a closed manifold (aS = 0) then kernel N is non-trivial iff S is totally

geodesic (time symmetric) and T ~ X - ) 1 ~~ (trace T ) X.
P~oof 2014 If the conditions on Sand T are satisfied then N(X) = V2X,

and kernel N consists of all real multiples of a fixed unit normal to S.

Conservely, suppose that X is a nowhere zero vector field in kernel N,
then we have ,.

and from equation (1) of proposition 3

so S is time symmetric as well as T X - 1 (trace T)X.
Vol. XXVIII, n° 3 -1978.



340 D. BRILL AND F. FLAHERTY

Remark. - Negative pressure (p = - (1/3)p in the isotropic case) is

necessary to satisfy this last condition on the energy tensor, however

none of the familiar energy conditions need be violated.
Recall that the Morse index form of a variational problem is the qua-

dratic form arising from the second variation (second derivative test).
In our case the form is Wx(O) of Equation (1. 7 a). The index (or extended
index) of S is defined to be the dimension of a maximal subspace on which
Wx(0) is positive definite (or positive semi-definite).

PROPOSITION 5. 2014 Suppose that M satisfies the Einstein equations (1.6)
and S is a maximal or k-surface. If A = vk then the extended index of S
is at least k, and if vk  ~,  the index of S is at least k.

Proof 2014 Let X be a normalized eigenfunction of, then N(X) + vX = 0,

Hence if A then is positive semi-definite for X 1, ..., Xk. Simi-
larly if ~, &#x3E; Vb is positive for ... , Xk. Roughly the index tells
us in how many directions the weighted volume functional is increasing.

2. APPLICATIONS :
INDEX AND INCOMPLETENESS

In this section we apply the theorems and techniques of the first section
together with results from [2] to identify the nature of the extremum of
the weighted volume functional. An extremum is called stable if the weighted
volume functional is a local maximum, more precisely, if the second varia-
tion is negative semi-definite. It will be seen here that under certain condi-
tions the extremum will be unstable. Later in the section we prove a singu-
larity theorem using the Raychaudhuri equation.

First we summarize Section 1 in the following :

THEOREM 6. 2014 Suppose that S is a compact spacelike hyper surface of
constant mean curvature in a spacetime satisfying the Einstein equations
with cosmological constant ~, coupled to a strong energy source. Then
either S is a strong local maximum for the volume or weighted volume
functional, or S has flat Cauchy development, or the extended index of S
is at least one.

Proof. This theorem is proved using theorem 2, propositions 4 and 5,

l’Institut Henri Poincaré - Section A



341MAXIMIZING PROPERTIES OF EXTREMAL SURFACES

and theorem 4.3 of [2]. To see the various possibilities we outline the
theorem with a table :

THEOREM 7. 2014 Suppose that M satisfies the above conditions on the
Einstein equations with strong energy condition and with ~. strictly less
than the smallest positive eigenvalue v+ of N. Then if M contains a closed
k-surface with k = - (k = the future (past) of S contains an
incomplete timelike geodesic ray.

P~oof 2014 From the « Raychaudhuri » equation, A. 6 in [2] [14] for an
eigenfunction X with eigenvalue v+, we have

hence S can be deformed slightly so that the convergence 9 is strictly
smaller than - Now using the standard Raychaudhuri equation
along a geodesic orthogonal to S we obtain

and if  ~U we can analyze the Raychaudhuri equation in the same
manner as Hawking and Ellis [9]. Namely choose t &#x3E; so that 303BB
coth 3 (so - t) &#x3E; Then (2.1) implies 8(5)  303BB coth V 3 (s - t)
for all s and hence 6(.s) ~ - 00 as s ~ t. Without repeating the argu-
ment we now follow Theorem 4 of Chapter 8 in [9] to obtain geodesic
incompleteness to the future of S.
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If the cosmological constant is non-positive it is necessarily less than v + .
We then can conclude :

THEOREM 8. 2014 Suppose that M satisfies the above conditions on the
Einstein equations with ~ ~ 0. If M contains a closed maximal surface
then M is geodesically incomplete in the past of S as well as the future of S.

Proof. 2014 The case of empty spacetime, A = 0, requires analysis of the
fourth variation of the volume, see [2]. If either ~,  0 or matter is present,
the theorem follows from an analysis as above of Equation (2 .1 ). For
this case, as well as for the other properties of spacetimes with singularities
in past and future, see F. Tipler [10].

2014 1. The idea of a focal point is weaker than that of a conju-
gate point in the sense that a space may have no conjugate points (Min-
kowski flat space) but can contain submanifolds with focal points (the
spacelike hyperboloids in Minkowski space).

2. The example of the de Sitter space shows that the bounds in Theo-
rem 7 are the best possible, because for the equator we have v 1 = 0 and

~,=v2=v+.
3. In the next section we show that Theorem 8 is false when the cosmo-

logical constant is allowed to be positive. Thus Theorem 4.4 of [2] is false
when ~, &#x3E; 0.

3. EXAMPLE : THE TAUB UNIVERSE

The simplest cosmological solutions have too much symmetry to allow
significant application of the theorems derived above. For example, in
Friedmann-Robertson-W alker universes the global spacelike k-surfaces
are totally umbillic == By contrast, spacelike homogeneous
but non-isotropic universes can illustrate the general case.
We consider a spacetime of the type first introduced by Taub [11] [12]

and write the spacelike homogeneous metric

in terms of the orthonormal 1-forms

where oj are the orthonormal pfaffians in the bi-invariant metric on the
unit 3-sphere which satisfy the Maurer-Cartan equations [7~]:

Annales de l’Institut Henri Poincare - Section A



343MAXIMIZING PROPERTIES OF EXTREMAL SURFACES

The independent Einstein equations for empty spacetime with cosmological
constant follow immediately from equation ( 19) of [12],

Due to spacelike homogeneity the surfaces S given by setting t = cons-
tant are maximal or k-surfaces. then by the uniqueness theorem 3 . 3
of [2], these are the only k-surfaces of the Taub universe. The second funda-
mental form of any such surface has the components, in the orthonormal
coframe field cco.

The two invariants that are of interest here are

On some initial surface S these quantities cannot be chosen independently
of the 3-geometry of S and the cosmological constant 03BB, due to the « Hamil-
tonian » constraint (3.2 a),

For the hypersurface S in this empty universe (T(X) = 0), the eigenvalues
of N = V2 - acting on the (one-dimensional) normal bundle are
the same as the eigenvalues of this operator acting on scalars in S, with O2
the ordinary 3-dimensional Laplace operator on S. The first few eigenvalues
of V2 are

The lowest non-zero eigenvalue is the lower of l2 or t3. To show that no
other eigenvalue is lower, let lx be the lowest eigenvalue other than those
of (3.3). Then tx can be estimated from the Ritz principle,

Here V is the gradent on S, ~p is a scalar function on S, and the infimum
is taken over all functions cp orthogonal to the eigenfunctions correspond-
Vol. XXVIII, n° 3 - 1978.
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ing to (3.3). Let si be the dual vector basis to the 1-forms 6I, viewed as
differential operators on functions. Then we have

where C2 - max (A2, B2) and the subscript 0 denotes operators on the
round sphere with A = B = 1 (which, because of Equation (3 .1 ), has
radius 2). Since the lowest eigenvalue of Võ orthogonal to those of (3.3)
is at least 2 we have

Hence the lowest eigenvalues of N are

Annales de l’Institut Henri Poincare - Section A



345MAXIMIZING PROPERTIES OF EXTREMAL SURFACES

We note that the constraint (3.2~) implies

The first term is 03A3 (ki - kj)2/4, where ki are the eigenvalues of Thus

i~J

we have ~, - v2 for all S, and ~, = V2 only if S is totally umbillic 
and a round sphere (A2 = B2).
To illustrate our theorems about the behavior of the volume at a k-sur-

face we distinguish several cases, depending on the value of 03BB:

(1) ~,  0. Since then ~,  Vi’ Wx and hence Vx is always negative and
bounded away from zero (for 0). Since k is essentially the logarithmic
derivative of V, it is easily seen that k-surfaces exist for all values of k.
One of them (k = 0) is maximal ; hence by Theorem 8 the spacetime is
incomplete in the past and in the future (singularity symmetric in the sense
of Tipler [ 10] ).

FIG. 1. - Time development of total volume V and mean curvature k of t = constant
surfaces in the Taub universe. The curves show the square of V (normalized to unity
at ’t = 0) as functions of the time parameter ’t of Equation (3.6). Except for curves 1 of

figure A, where Co = 2, the constant Co of Equation (3.7) is set to zero, making ’t = 0
a moment of time symmetry, V an even function of ’t, and k an odd function of ’to Only
T &#x3E; 0 is shown in figures B-D. The cosmological constant ÀB has the value 0 in figure A,
. 225 in figure B, . 275 in figure C, and. 3 in figure D. For  . 25 there is incompleteness
and collapse in future and past, and k ranges in ( - oo, oo). is close to .25 (Fig. B),
k stays below 303BB for most of the universe’s life, during which time Theorem 7 cannot
predict the incompleteness. For Bo &#x3E; .25 spacetime is complete and k ranges in

( - .~3~,, .J3~,) ; or, if C differs sufficiently from 0 (not shown) it is incomplete in only
one time direction. In the direction of infinite expansion the model approaches the
de Sitter universe. For ÀB = . 75 it is exactly the de Sitter universe. The volume extrema
correspond to maximal surfaces and illustrate the different cases discussed in the text :

In addition, the maximal surfaces at T = 0 in figures B-D have VI = 0 and /!. &#x3E; 0, illustrat-
ing case 5.

Vol. XXVIII, n° 3 - 1978.
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(2) A = 0, the standard Taub universe. Generically, we have v 1 &#x3E; 0
on all t = constant surfaces, so the same conclusions hold as in case (1).
If vl - 0, Equation (3.4) implies that S is a surface of time-symmetry,
but then Theorem 8 shows that the universe must still be singularity-
symmetric.

(3) 0  ~,  Here Wx is still negative in a neighbourhood of S, but
not necessarily for all other S, since v 1 can vary in time. If S is maximal,
it is a true volume maximum (Theorem 2), but the spacetime may or may
not be incomplete. (The complete case as in figure C is a counterexample
to a part of Theorem 4 . 4 in [2] ). If it is complete the k-surfaces are limited to

the range 2014  k  and there are at least two other surfaces
of type (5) below.

(4) 0 1 == ~ WX vanishes for the parallel normal deformation

(X = unit normal), and is negative for all orthogonal deformations (Pro-
position 5).

(5) 0  v 1  A  V 2’ W x is positive for the parallel deformation, and
negative for all orthogonal deformations (Proposition 5).

(6) ~, = V2’ From Equation (3 . 5) we find that S is a round totally umbil-
lic 3-sphere. Then the initial data are isotropic as well as homogeneous,
hence lead to the unique solution of the de Sitter universe. For the defor-
mations described by the eigenfunctions of v2, W x vanishes ; for the parallel
deformation Wx is negative (eigenfunction corresponding to vl) ; and
Wx is positive for all deformations orthogonal to these two. For a maximal,
hence time-symmetric, surface the parallel deformation corresponds to
the expansion of the de Sitter universe away from the time-symmetric
moment, and the deformations in the neutral directions correspond to
the rotations which transform the surfaces of time symmetry (equators)
in the de Sitter universe into each other.
We note that, according to Equation (3.5), ~, &#x3E; v2 is not possible in

the Taub universe. That is, there can be at most one independent deforma-
tion of a maximal (or k - ) surface which corresponds to a (weighted)
volume increase. This suggests that even when ~, 7~ 0, all gravitational
wave and matter degrees of freedom in a closed universe still contribute
to contraction. We formulate this idea as a

CONJECTURE. 2014 If a closed universe with positive cosmological constant
contains a k-surface S, then either ~, at S, that is the index of the weighted
volume extremum is at most one ; or the universe is the de Sitter universe.

The general exact solution of Equations (3 . 2 b, c) (except for time-

translation) can be most conveniently expressed in terms of a new time
variable T, and the values of Ao and Bo of A and B at T = 0, where

Annales de l’Institut Henri Poincare - Section A



347MAXIMIZING PROPERTIES OF EXTREMAL SURFACES

The solution is

where the constants Ao, Bo, Co have to satisfy the constraint (3.2~) which
takes the simple form at T = 0

The total 3-volume of the spacelike surface is V = (47r)~AB~. If we norma-
lize V to unity at T = 0, the set of solutions can be parametrized by ~, and
Co. In figure 1 we show plots of V2 and k vs T for several values of 03BB and Co,
which illustrate the cases discussed above.
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