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A model of atomic radiation
by

E. B. DAVIES
Mathematical Institute, Oxford, England

ABSTRACT. — We consider a non-relativistic quantum mechanical
particle in an external potential well, coupled to an infinite free quantum
field. We prove rigorously that with certain cut-offs and in the weak
coupling limit, the particle decays exponentially between its bound states
as predicted by perturbation theory. We also prove the existence of a « dyna-
mical phase transition » for a particle attracted to two widely separated
potential wells and also weakly coupled to an infinite reservoir.

RESUME. — Nous considérons une particule quantique non-relativiste
dans un potentiel, couplée a un champ libre infini. Avec certaines régula-
risations et dans une limite faible, nous montrons que la particule passe
exponentiellement entre ses états liés selon les prédictions de la théorie
des perturbations. Nous montrons I’existence d’une « transition de phase
dynamique » pour une particule attractée par deux potentiels trés éloignés
et aussi couplée faiblement a un réservoir infini.

§ 1. DESCRIPTION OF THE MODEL
We consider a single quantum mechanical particle with Hilbert space
# = L*(R?) and Hamiltonian

H,=—-A2M + V
where
VeL%R3) + L*(R%)
so that H; may be easily defined as a self-adjoint operator on # as described
in [11] [18].
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92 E. B. DAVIES

We also consider an infinite free spinless boson quantum field, in a
quasi-free state as described in [/]. The single-particle space is ¥~ = L?(R3)
with single-particle Hamiltonian

S=—A2m.

One has a representation of the CCRs on a Hilbert space % (not necessarily
Fock space) with a cyclic vector Q satisfying

1 1
CW)Q, Q) = exp [— lefll2 —§<Df, f>]
where
(Df) (k) = d(k)f ~(k)

in the momentum space picture, and we assume for definiteness that d
is a non-negative polynomially bounded C* function on R3. For the Fock
representation d = 0 and more generally d determines the particle density
for different momenta k. If the reservoir is in a Gibbs state (which is by
no means the only interesting case) then according to [/]

k2 -1
dy (k) = (2n)-3[exp (/;—m - By) - 1] .

The parameters f, p determine the temperature and density, and we
need u < 0 to avoid having to consider the phenomenon of Bose-Einstein
condensation [/4].

The Weyl operator W(f) is related to the field @(x) defined as an operator-
valued distribution by

W(f) = exp { i LJ f(X)¢(X)d3X} = exp {i®(f) }.

The free Hamiltonian H, on & satisfies

HQ =0
and
W f)e” " = W(ef)

for all fe? and teR.
The Hamiltonian for the interaction between the particle and quantum
field is formally

H, + H, + lj S(x)D(x)d>x
R3

where d(x) is the (singular) operator on # given as a quadratic form by
Cox)f, g7 = f(x)g(x).
For technical reasons we introduce space and ultraviolet cut-offs in the
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A MODEL OF ATOMIC RADIATION 93

interaction term and consider the self-adjoint operator H on # ® #
defined by

H=HS®1+1®Hb+AJ A, ® O(f)d>x 1.1)

|x|<a
where f is a function in Schwartz space and

Ky =fly —x
Ay = g.<{¥, &>

for another function g in Schwartz space. The original Hamiltonian is
then obtained by letting f and g tend to the delta function at the origin
and letting a — oo, but we shall deal only with the regularised Hamil-
tonian H from now on.

Given that at time ¢t = O the particle and field are uncorrelated and in
a (mixed) state p and the (pure) vacuum state v respectively, the state of
the particle at time ¢ > 0 is

pit) = trg [e”™(p @ v)e™]. (1.2)

One expects that for small 4 the particle evolution will contain dissipative
terms of order A2 and that as A gets smaller the dissipation will become
more nearly exponential. The precise result is

and

THEOREM 1.1. — For all states p on # and all 7, >0

lim sup |lpy(6) = exp {(Z + 2K)t} pll = 0 (1.3)
where the operator Z on the Banach space V of trace-class operators
on # is defined by

Z(p) = — i[Hy, p] (1.4)

with the natural domain [6], and the bounded operator K on V is given
by Egs. (1.6-1.11).

Proof. — The problem is of exactly the type solved in [2] [3] [17], the fact
that J# is infinite-dimensional being of no importance. The crucial esti-
mate needed is that on the field two-point function

hix, 1) = (OeSLID()Q Q)
1 . 1 .
= 5<De's'fx, fo+5<0+ D), i

1 2 .
I J ezk t/2m+ix.k I f/\(k) |2d(k)d3k
2 R3

1

N E f e—ik2t/2m—ix~k | f/\(k) |2 { 1+ d(k) } k.
RS
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94 E. B. DAVIES

One may show by Fourier analysis that h satisfies
Ih(x, )| < c {1+ t]} 732 1.5

for all xe R? and t e R. The uniformity of this estimate with respect to x
deals with the space integrations arising from the interaction term because
of the space cut-off. According to [2] [3] Eq. (1.3) holds with

K = Kl + K2 + K3 + K4 (1.6)
where
K,(p) = —j f j ALA ph(x — y, )d®xd3ydt  (1.7)
t=0 J|x|<a J|y|<a
K,(p) =J j J ApAth(x — y, Od®xdydt (1.8)
t=0 J|x|<a J|y|<a
K;(p) = j j AlpA h(y — x, — )d®xdydt  (1.9)
t=0 |x|<a y|<a
Ka(p) = —J J J pA ALKy — x, — )Pxdydt (1.10)
t=0 J|x|<a J|y|<a
and

Al = eMsA o~ Hst (1.11)

The influence of the field on the time evolution of the system is therefore
entirely determined by the two-point function h.

§2. ANALYSIS OF THE PARTICLE EVOLUTION

Although unambiguous the interpretation of Theorem 1.1 is somewhat
obscure because Z and 42K do not have the same order of magnitude as
J — 0. There are several methods of dealing with this problem [3] [4] [5] [12]
but none of them is directly applicable. If H; had pure point spectrum
then by [4] the strong operator limit in Z(V)

1 a
K' = lim — j e K e dt
a— o a 0

would exist and we could replace Eq. (1.3) by

lim su 1) — 2t A =0

is0 ()S).thsm ” p}.( ) P ”tl’

which has the advantage that Z and K* commute. We have, however,
to take account of the fact that our H will generally have both continuous
and discrete spectrum. The following example shows that we cannot
expect K” to exist in this situation.
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A MODEL OF ATOMIC RADIATION 95

ExaMPLE 2.1. — Let # = C @ L*R) and define the operators H

and A by
H{a® f(x)} =0® xf(x)
A{a® f(x)} =0 ag(x)
where )
Hlx)=e*
for all xe R. Then
A=y <ol

where y = 1 @ 0. We define the operators Z and K on the space V of trace-
class operators on J# by

Z(p) = — i[H, p]
1 1
K(p) = — 5A*Ap + ApA* — 3 pA*A

1 1
i L PAS AV VL PAC A AU DA AN A DF

A direct calculation shows that

1 (e 1 1
‘je‘Z'KeZ'Pdf=‘—IIP)(lﬁIP—-PIl/O(l//l
“ e 2 2 1 (e, -

w vt [ gy e

The last term converges weakly to zero, but its trace remains constant.
Therefore it does not converge in trace norm and K* does not exist as a
strong operator limit.

Notice that K happens to be a bounded operator on the Hilbert space ¢
of Hilbert Schmidt operators on # and that e” is a unitary group on J%".

PROPOSITION 2.2.

1 a
K*(p) = lim — J e~ BK e pdt

a—w a 0
exists as a limit in Hilbert-Schmidt norm for all p e #".
Proof. — We first note from Eq. (1.7) that
Ki(p) = Xp
where X is a compact operator on J#. Hence

1 ([ 1 [ .
ffe_Z'Klez'pdt = {~f e‘HS’Xe_‘HS‘dt}p.
aJo aJo

The term inside { } converges in operator norm as a — 0 by [/2], so
K} exists. Similarly K} exists. Finally K, and K; are compact operators
on & so K3 and K exist again by [/2].

Vol. XXVIII, n° 1-1978. 7



96 E. B. DAVIES

The disparity between this Hilbert-Schmidt result and that for the more
physically relevant trace norm means that we have to proceed with some
caution.

We let P be the orthogonal projection on # whose range is the discrete
spectral subspace of H, and let P, be the projection
Po(p) = PpP

onV.WeputP, =1 - Pyandlet V; = P,V fori = 0, 1. Since P commutes
with H,, P, commutes with Z and we put Z, = P/Z for i = 0, 1. For any
bounded operator L on V we put

L, = PLP;.

Lemma 2.3. — Both K! and K} exist as operators on V and

lim sup |lexp{(Z+ A*K)t}p

=0 0<A21<1g

—exp {(Z + A’K§ + 22K, + A%K3 + 2Kt fpll, =0 (2.1)
for all peV and 74 = 0.
Proof. — We can write
Ki(p) = Xp, Kulp) = pX*
where X is a compact operator on #. The operator norm limit

1 (. .
Xh — 11m J\ eszrXe—tHsrdt

a=>s 0

exists by [12] so K% and K}, exist as strong operator limits on V with

Ki(p) = X°p,  Ki(p) = pX*. 2.2)
By [12] we also have

X: = PX* = X*P 2.3)
which implies that
POK? = K?PO

for i = 1, 4. We define

K1+K4=A, K2+K3:B (2.4)
and observe from Egs. (1.8) and (1.9) that B is a compact operator on V.

To prove Eq. (2.1) we use the infinite Dyson expansion

t
A 52 ;2 -5 y 2 9
e(Z+ i2A+ A2B% — e(Z+A At + )LZ J e(Z+/. ANt A)Be(1+l A]sds

s=0

t s
74 — T2AN(s — 2
+ )\,4 j‘ J e(L+/.ZA)(t siBe(Z+A A)(s u\Be(Z+l A\ududs N
s=0 u
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A MODEL OF ATOMIC RADIATION 97

Subtracting from this the similar expansion with A replaced by A* and

putting
D(/{ t) — e(Z+}.2Air _ e(Z+12A")t
we obtain ?

2 2 2A4 2
e(Z+l A+ A2Bn __ e(Z+l At + 2B _ D(A, t)

t

t
¥ A2 f D(J, t — s)BeZ*#Ass 4 32 f (ZHRAN=IBD() )ds
s=0

s=0

t s
+ A4 f f D(4, t — s)Be@t ¥*M—wBZ+ 2Augy g 4 (2.5)
s=0 u=0

Now if peV and
p) = sup IID( 0pll
then f(4) —» Oas A — 0 by [4] [12]. If

*4) = | D(Z, OB

sup |
0<A2t<1

then it follows from the compactness of B that (1) - Oas A — 0.
By Eq. (2.5) the left-hand side of Eq. (2.1) is bounded by

BA) + cA? {a(A) + B(A) }/1! + c2A* { 2a(2) + B(A) 20+ ...

which converges to zero as 1 — 0.
The value of the above reduction resides in the fact that by Egs. (1.4)
and (2.2)

240 —i 2x4h i 24
e(Z+}. A )rp — e( iHs+ A2X \:pe(:Hs+}. X4 (26)

where X" satisfies Eq. (2.3). We now restrict attention to the time evolution
within the subspace V,, of bound states. The assumption of absolute conti-
nuity in the following lemma is known to be satisfied very generally [13].

LEMMA 2.4. — If 0 < 7, < 00 and peV, then

: (Z+ A2A8 + A2B%t (Z+ A2A% + A2Bgo)t —_—
igr(l)mslgp(mIIPoe p—e ||, =0

provided H; has no singular continuous spectrum.

Proof. — We use the finite expansion

o2+ ATAT + 22B) _ e(Z+/‘.1A" + A2Boo)t
t
2 Z+ 22A% + A2B, - 2A8 + 42
+ /1 f e( 00) (¢ S)(B01,+ B11 + Blo)e(z+1 A + 4 Boo)sds
s=0

t s
’ A4f 0 f QETENTEDIB, 1B, + B,)
s= u=0

A2AR 2 - 274 4 22
. e(Z+A A% + A2BooX(s u)(BO1 + B11 + Blo)e(l+l A+ A4 Boo)ududs.
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98 E. B. DAVIES

Multiplying on the left and right by P, and using the fact that Z, A", B,
all commute with P, we obtain the crude estimate

Z+A2A% + A2Byt Z+ A2A" + A2Bgolt
|| Poe! Py — Py *"Po ||

t s
< ert J f || (Boy + Byy)e®*#A% #%Bools=uB, || duds
s=0 u=0

t S
2,k
< c/l“f f || BetZ+# ANs—wp | duds .
s=0 u=0

t s
<c J f || Bel* "2 +ANG=wR | duds .
s=0 u=0

By the dominated convergence theorem it is therefore sufficient to show
that for all 7 > 0 ) .

lim || Be* "2*AB, || = 0

i=0

and by the compactness of B even enough to show that for all p in some
dense subset of V, and all * > 0

: (A~2Z+ A%t —
lim || Be pll=0.
The space V,; is generated by vectors p = |¢ ) (Y| where at least

one of ¢, Y (we henceforth assume it is ¢) lies in (1 — P)s#. By Eqgs. (1.8),
(1.9) and (2.4) B has the abstract form

B(p) = j CopCidaw
Q

where C, and C;, are compact operators on # and

f HCLINNCylldow < 0.
Q

Hence for all p of the above form
” Be().—22+A“)rp H

sJ‘ “ C;)e(-i).—ZHs+x"n¢” llcme(—iA-ZHs+X“)r¢|ldw

Q

Sf || Coel =7 st X0y || || C,, || &1 g || deo
Q .

= Cf || Che™ ™ ™Msg || || C,, || dew
Q
by Eq. (2.3) and the fact that ¢ €(1 — P)#.

By the Lebesgue dominated convergence theorem we are finally left
with proving that .
proving lim || CLe™ ™ || = 0.
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A MODEL OF ATOMIC RADIATION 99

This is a consequence of the compactness of C,, and the fact that ¢ lies
in (1 — P)s#, which is the absolutely continuous spectral subspace of H;
since that operator is assumed to have no singular continuous spectrum.

THEOREM 2.5. — If pe V,, 0 < 7 < o and H, has no singular conti-
nuous spectrum then
lim sup || Pye®¥#Krp — (Z+20, ) = 0 (2.7

A=0 0<A2<1o

where the bounded operator C = (K,)" commutes with Z and P,,.
Proof. — Putting Lemmas 2.3 and 2.4 together yields

lim sup ||Pye®t#Krp — (@FA2Ct, || = (2.9)

10 0SA2<1o
where C, = A" + Byo.
Since peV, and Z, A" and B, all commute with P, we can replace C,
in Eq. (2.8) by .

C, = (A% + Boo -

The restriction of Z to V, has pure point spectrum so C = C}, exists by [4]
and we can replace C; in Eq. (2.8) by C. Moreover

C=Cj = {(A%0 }" + (Boo)" = (Ago)" + (Boo)*
={(A+B)oo} ={Koo}'- (2.9

Eq. (2.7) may be rewritten in the interaction picture using the fact
that C commutes with Z. The result is that if pe Vy and 0 < © < oo then

lim || Pe™* *27e 24Ky — oCop|| = 0, (2.10)

The operator C, which describes both the second order energy level
shifts and the decay of the bound states of the system, may be explicitly
computed from Egs. (2.9) and (1.6) in the same manner as in [2].

§3. LIMITATIONS OF THE THEORY

We have given a rigorous treatment of the decay of a quantum particle
which corresponds to the usual calculations of second order perturbation
theory. It is very difficult to obtain rigorous higher order results, although
some progress is made in [5] [Z5].

The model we have described can be modified by using a relativistic
quantum field of arbitrarily small positive mass m. The single particle
Hamiltonian S of the field is given in the momentum space picture by

&N (k) = (m* + k)2 (k)

and estimates similar to Eq. (1. 5) can be proved by the method of stationary
phase [8] [9].

Vol. XXVIII, n° 1-1978.



100 E. B. DAVIES

The removal of the space cut-off in the interaction term of the Hamil-
tonian H is, however, more difficult.

ProposITION 3.1. — If the space cut-off is omitted by putting a = oo,
then the integrals defining K are generally not norm absolutely convergent.

Proof. — We take the Fock representation by putting d = 0 so that

1 .
h(x i) t)=§<fy’elStfx>'

Weputm=M =1, f = gand p = |y > (¥ |. Then according to Eq. (1.7)

1 : . .
Kl(p) = - '2_ J j s J < w’ gy > < gys eIStgx> < gy’ elS’gx>
t=0 JxeR eR3 .
’ | €5ig. > (Y | dxdyde.
The integral whose finiteness is at stake is therefore

I =f J j <V, g, 11< &, €5g, > 1> d*xd®ydt .
t=0 JxeR3 JyeR3
Since
J lg.> (g ld*x =G
R3

is a bounded operator which commutes with space translations and there-
fore with S

I=J j i [V, g,> 1< Ge g, e~ Sg > d3ydt
t yeR

=0

=J J | <y, g,>1< Gg,, g, > d’ydt = 0
t=0 JyeR3
because the integrand is independent of ¢.

The above Proposition does not prove the non-existence of a suitable
operator K but does suggest that considerably different techniques are
needed to deal with the problem without the space cut-off.

We finally comment that one may solve certain problems similar to
those of this paper with a reservoir of self-interacting particles provided
again that the self-interaction has a space cut-off [7].

§4. COUPLING
BETWEEN DISTANT POTENTIAL WELLS

One can study the evolution of a particle attracted by two widely sepa-
rated potential wells and simultaneously coupled to an infinite reservoir
by choosing the system Hamiltonian H; to be

H=—-A+V,

Annales de I’Institut Henri Poincaré - Section A



A MODEL OF ATOMIC RADIATION 101

on # = L?(R?), where V is a suitably regular potential, ||a|| =1 and
Vx) =V 'a—x)+ V@ 'a+x).
As ¢ — 0 the point spectrum of H; becomes doubly degenerate and the

eigenvectors of H, which are either symmetric or antisymmetric with
respect to the operator
(Sy)x) = Y(— x)

become less and less localised in space.

The time evolution with respect to the Hamiltonian H of Eq. (1.1)
when A and y are both very small, should be studied by letting them con-
verge to zero simultaneously but one could not hope to obtain a physically
relevant answer without first removing the space cut-off. For this reason
we consider a modified model which retains many of the features of H
and H;, at least as far as the discrete spectrum of the latter is concerned.

We take the system space to be

% = % 0 @ f 0

where the spaces #, represent the separate potential wells. # is provided
with a Hamiltonian H, with discrete spectrum. Its eigenvalues { 4, };> ;
are supposed to have multiplicity two and to be strictly increasing with n,
and to be associated with eigenvectors e, @ 0 and 0 @ e, forming an ortho-
normal basis of #. The two wells are coupled by a Hamiltonian H, defined

b
g Hy(e, ® 0) = — (0 ® e,
H,(0 @) = — e, ® 0)

where 0 < f, < f for all n so that H, is a bounded operator. The system

Hamiltonian
H, = Ho, + pH, 4.1)

is then symmetric with respect to S where
Se@Y)=v D¢

and the eigenvectors of H; fall into symmetric and antisymmetric pairs

Hs(eri @ en) = (An - :uﬁn)(en @ en)
Hs(en @ - en) = (An + :u')Bn)(en ® - en) .

We shall also use the symmetry T on # defined by
To@y)=0@(—¥)
and the induced symmetry T on V defined by
T(p) = Tp T*
although T does not commute with Hj.

Vol. XXVIII, n° 1-1978.



102 E. B. DAVIES

The system is coupled to an infinite free reservoir of the type already
described, the Hamiltonian on # ® & being

H=H®1+1®Hp + A{A_, @(f, ) + A, ®V(f})} 4.2

where A is a bounded self-adjoint operator on #,, f lies in Schwartz

space, ||al| =1
A 0 0 0
A_, = A, =
' [0 0} ' [0 A]

L) = fx—pta),  flx) = fx+ pta)

for all xe R3 We study the system in the limit as 4 — 0 and g — 0
simultaneously. As ¢ — 0 the two system subspaces #, become more
weakly coupled to each other via H,, and also are coupled to more remote
parts of the quantum field. We show that the asymptotic evolution of the
system depends on the relative speed at which A and u converge to zero.
If we put 4 = A# where 0 < B < oo then the time evolution of the system
changes discontinuously at § = 2. The significance of this « dynamical
phase transition » is explained at the end of the section.

We start by showing that the results of [2] are uniform with respect
to u.

and

LemMMA 4.1. — If peV and 0 < 75 < 0 and
pi(t) = trg [e" M (p ® v)e™]

lim sup sup ||p,(t) —exp {(Z, + PP’K)t}pll, =0 (4.3)

A-0 |p|S1 0<A2 <

then

where the operators Z, and K, on V are defined by
Zu(p) = - i[Hs’ p]
and Eqgs. (4.5-4.10) respectively.

Proof. — We show that the estimates of [2] are uniform with respect
to u by examining the two ways in which u enters the calculations. The
first is via H, for which we use only the estimate

el =1
which is valid for all u and t. The second is via the field two-point functions
hi(r) = < D(SHD(£,)Q Q.

By an analysis identical to that used for Eq. (1.5) one may obtain the
estimate

| BRI | < (L +1t])732 4.4

forall u,te Rand i, j = + 1. The analysis of [2] [3] now establishes Eq. (4.3)
with

KF=K1ﬂ+K2u+K3ﬂ+ K4I‘» (4.5)

Annales de I’Institut Henri Poincaré - Section A



A MODEL OF ATOMIC RADIATION 103

and
K, lp) = — z f . Al A phi(t)dt 4.6)
i,j=+1 =0
Kazu(p) = z j ApALRodr @.7
ij=%1 -
Kiulp) = Z f Al pAhli(— tydt
i,j=%1
Ka,(p) = Z‘ J_ ijAﬁ,‘h,{"(— t)dt 4.9)
i,j=+1 =
and

Al = eMstp o7t 4.10)
u

Note that K, depends on p both through h and through H;. For the
rest of the section we suppose that y = A% where 0 < 8 < .

LemMa 4.2. — If peV and 0 < 75 < oo then
lim sup || pyt) —exp {(Zo + #*Z, + A*K)t}pll,, =0 (4.11)

A=0 0<A%t<to

where .
Zjp) = — i[H;, p]

for j = 0, 1, the operator K, which is independent of y, is given by Egs. (4.13-
4.17) and commutes with T

Proof. — By using the infinite Dyson expansion with the estimate
||e(Zo+).ﬂZnt|| =1

valid for all 4, t we find that in order to replace K, by K in Eq. (4.3) it is

sufficient to prove that
‘lliir(l)HKu—KH:O. 4.12)

We examine each of the terms K, separately. By Eq. (4.4) and pointwise
convergence

im [ 1o -
w0 J_ o
if i & j, while if i = j
Bi(t) = h(t) = { DESD(N)Q, Q).

Since H, is bounded
lim || &Mt — Mot || = 0
u—-0

f
orall teR so lim || A%, — A¥|| =0
u—=0

Vol. XXVIII, n°® 1-1978.



104 E. B. DAVIES

where
t __ LiHot —iHot
Al = gMorp o~ iHor

It follows by the Lebesgue dominated convergence theorem that

lim [|K;, — Ki]l =0

where ©
Ki(p)= — £=0 (AL, A p + ALA p)h(t)dt (4.13)
K,(p) = J::) (A_;pAL ;| + A pAl)h(t)de “4.14)
Ki(p) = j:o (AL pA_; + Al pA (- t)dt (4.15)
K4lp) = — f:o (PA_, A + pA,AY)h(— t)dt . 4.16)

Eq (4.12) is therefore valid with
K=K,; +K; +K; +K,. “4.17)
Finally since A; commute with T and H, also commutes with T, it may

be seen that K commutes with T.

THEOREM 4.3. —If2 < B < o0 and 0 < 15 < o0 and peV then

lim  sup || p;(t) — exp {(Zo + K"t }pll, =0

1~0 0<i%<1o
where the bounded operator
K' = lim ! Jae_z"'Kez"‘dt
a0 g Jo
on V commutes with Z,. Moreover both Z, and K* commute with T.
Proof. — Since

pZo+ ABZy+ 22N _ (Zo+ 42K _ B J e(Zo+)J’Z1+).2K)(!—s\ZI eZo+ 12Ks g
s=0
and
” e(zg+;.ﬁzl+xllos” < e;.2|||(|||s|
” e(Zo+ﬂ.2K)s” < e12||K|||s|
for all 4, seR

“ e(Zo+lﬁ21+12K\r _ e(Zo+2.2K\t || < Clﬂt < Clﬂ_zTO
which converges to zero as A — 0. We may therefore drop the term )#Z,
in Eq. (4.11). Since Z, has pure point spectrum, K exists by [4] and we
may replace K by K in Eq. (4.11).
The case 0 < f < 2 is more difficult because the term 1#Z, is no longer
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negligible. We shall rely mainly on the following properties of Z, and Z,.
They commute and exp {(Z, + A*Z,)t} is an isometry for all 4, teR.
Also Z, and Z, have joint pure point spectrum in the sense that the linear
span of the set of simultaneous eigenvectors is dense in V.

LEMMA 4.4. — If 0 < B < 2 then for all xe R? the strong operator
limit s
P, = ,llin}) A2 J exp { (iag + iAPay — Zy — APZ)v}dv  (4.18)
- 0

exists and defines a projection P, with range
Vo={peV:Zyp =inep and Z,p = ia;p }.

If peV and 0 < 15 < oo then

lim sup ||oP,p

A=0 0<o<10

A~ 20
-2 J exp { (iag+illa; —Zo—A*Z v }plldv = 0. (4.19)
0

Proof. — Since its right-hand side is uniformly bounded in norm as a
function of A, we need only prove Eq. (4.18) when applied to a state p
lying in one of the subspaces V,. For such p

A-2
A2 J exp { (iag + itfa, — Zy — PZ,)v} pdv
0 p if a=y
= i2p exp i{(xo — yo)A ™% + (o, — YA 2 —1
iog — 7o) + (@ — y)A°
which converges to 8,,0 as 4 — 0. The formula
Pazp = 6a,yp
for all peV, is sufficient to show both that P, is a projection and that
its range is V,.
By uniform boundedness it is again sufficient to prove Eq. (4.19) when
peV,. If « =y then

A~ 2q
A2 J exp { (iag + iAoy — Zy — APZ,)v} pdv = op
0
while if o % y

A~ 2¢
|| A% f exp { (g + Moy — Zy — 2PZ,)v Jpav|l
o — 2ol exp io { (o — yo)A™ 2 + (a, — A2 1
i(otg — oy) + (yo — y1)A*
<222 Ip Il (@0 = 1) + (yo — y)A? |71
which converges to zero as A — 0 uniformly with respect to .
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LemMA 4.5. — If K is a bounded operator on V then the strong operator
limit

A—2
K* = lim 4* I e~ @0t MLV p(Zo+ A0Ziv gy, 4.20)
A—0 0
exists and is given formally by
K* =Z PKP,. 4.21)
Moreover K* commutes with Z, and Z,. If 4.22)

A~ 20
J(4, 0) = A2 j o~ ot BZIVK o(Zo+ APZowv g,
0
then i I oK* ” 0
P ogggro | oK% — J(2, o)p || =

for all peV and 0 < 74 < 0.

Proof. — In order to prove the existence of K* it is sufficient by the uni-
form boundedness in norm of the right-hand side of Eq. (4.20) to consider
the case peV,. If peV, then

A2
- B
12 j e (Zo+ A leer(Zo+).ﬁvapdv

0 a-2
= lzj exp { (iog + ilfo; — Zoy — APZ, v } (Kp)dv
0

which converges to P, Kp as A — 0 by Lemma 4.3.

The formula
K*p = PKp

for all p e V,establishes the validity of Eq. (4.21) when applied to any p
in the dense subspace
2 =lin{V,.aeR*}

of V. By Eq. (4.21) we obtain
eZotK#p — K#elotp, ZlK#p — K#ZIP

for all pe % and hence all peV by the boundedness of the operators
involved. Hence K* commutes with Z, and Z,. Eq. (4.22) is deduced
from Eq. (4.19).

THEOREM 4.6. — If 0 < § < 2,0 < 7ty < o0 and peV then

lim sup || pyt) —exp {(Zo + A*Z; + Kt} p ||, =0

A=0 0<A2%<1o

where the operators Z,, Z, and K* all commute.
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Proof. — We let € denote the Banach space of all norm-continuous
V-valued functions on [0, t,], with the sup-norm ||| |||.
Given peV we define f and f, in 4 by

f@) =&

—(A72Zo+ A" 24 BZ (A" 2Zp+ A2+ BZ e
filr) = e™¢ © e p-

Since Z,, Z, and K* commute our problem is to prove that

lim (|| f; = £l = 0.
The equation

t
e(Zo+1921+}.2K\t = e(Zo+lﬂZ1\t + AZJ' e(Zo+ ﬂ.ﬁlﬂ(t—s)Ke(Zo+A.ﬂzl+12K)sds

s=0

implies, upon substituting A%t = t and A%s = ¢, that

T

ﬂ(r) — p +f e—(ZO+lﬁzl)l'zd‘Ke(Zo'f'lﬁZl\}._zo‘f‘l(a)do.
a=0

which may be rewritten as an operator equation
fi=p+ Hif, (4.23)

on %. Similarly the equation

ﬂ0=p+f

T
o=

K*f(o)do
0

may be rewritten as an operator equation

f=p+Hf
on 4.
We show that #; converges in the strong operator topology on € to #.
Since &, are uniformly bounded in norm it is sufficient to show that

lim ||| #,¢ — #g ||| = 0

when g lies in the dense set of continuously differentiable functions from
[0, 7o] into V.
Integration by parts yields for such g

T

(#:8)(1) = [J(4, 0)g(a)]5 - J .

o=

J(4, 0)g’(0)do
0

which by Eq. (4.22) converges uniformly to

T

K¥g(1) — ‘[ oK*¢'(0)do = J: K*g(o)do = (# g)(7).

=0
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The strong convergence of #; to # as A — 0 implies that
lim ||| #5¢ — #7 ||| = 0 (4.29

for all ge € and integers n > 0. Since J# , are integral operators of Volterra
type the solution of Eq. (4.23) is

fi= Zv)f’}lp
n=0

|| #7%]] < c/n! (4.25)

where

for some constant ¢ independent of n. Eqs. (4.24) and (4.25) imply that

}11_1}(1) fi= z% p=1f
. n=0
as required.

We say that a state pe V is an asymptotic equilibrium state if for all
0< t9< 0 )
lim sup |[p,(t) — pl||=0.

A=0 0SAi2t<1o

THEOREM 4.7. — If 0 < f < 2 the asymptotic equilibrium states p are
precisely those for which

Zop =Z,p=K'p=0. (4.26)
If 2 < f < oo they are those for which

Zop =K'p=0. 4.27)

Proof.— Suppose 0 < < 2. By Theorem 4.6 every solution of Eq. (4.26)
is an asymptotic equilibrium state. Conversely if p is an asymptotic equi-
librium state then

lim sup ||eZet#Zir KN, _ 511 =0, (4.28)

A=0 0<A2t<1o
This implies the weaker result

: (Zo+ABZy+22K*y . =0
im o2, 11° ool

for all 0 < t, < oo, which can be reduced to

sup || e

p—pll=0.
0<t<tp
Therefore Zyp = 0, and Eq. (4.28) can be rewritten in the form

. (ABZy + A2K* ) _
su e — =0
Jim S9Nl p=rl
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which implies

lim su |[e@i+22 K, 511 =0,
A0 0<A2-Bt<g

Repeating the argument we obtain Z;p = 0 and then K*p = 0.

The case 2 < B < oo is derived similarly from Theorem 4.3.

Theorems 4.3, 4.6 and 4.7 show that the asymptotic evolution of the
system has different forms in the cases 0 < f <2 and 2 < f < oo the
special cases f = 0 and f = 2 can be solved by similar methods. Physically
the result may be summarised by the statement that if 2 < f < co the
interaction between the two potential wells has no effect for times of order
472, while if 0 < B < 2 it has a direct effect and also causes a modification
to the decay resulting from the system-reservoir interaction. The result
is that the equilibrium states in the two cases are quite distinct.

The symmetry T, which appears only when 2 < 8 < o0, may be regarded
as a superselection rule forbidding the appearance of superpositions bet-
ween the states of the two potential wells. Thus the calculations we have
presented are relevant to the Einstein-Podolski-Rosen and Schrodinger’s
cat « paradoxes » [/0] and to the problems associated with the existence of
stable isomers in quantum chemistry [/6] [19] in that they show that « unphy-
sical » superpositions of states of a complex closed system may be excluded
if the system is considered as open and the various couplings have appro-
priate relative magnitudes.
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