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1. INTRODUCTION

The study of hydrodynamics in special relativity has received consider-
able attention in recent years. Such a study and, in particular, that of wave
propagation indicates several applications in astrophysics [1, 2, 3]. Many
authors have used singular surface theory to study shock wave propagation
in relativistic fluids [4, 5, 6, 7]. In [8, 9] ray theory has also been used to
study the propagation of discontinuities and Alfven waves in a relativistic
gas.
In this paper, we have studied, using the singular surface theory and ray

theory, the propagation of a weak discontinuity in an arbitrarily moving
gas within the framework of special relativity. We have obtained a differ-
ential equation describing the variation of the strength of the disconti-
nuity along the rays and discussed its integration.

2. THE BASIC EQUATIONS,
COMPATIBILITY CONDITIONS AND RAY THEORY

Consider a coordinate system x~ with as time and xz as spatial
coordinates in the flat spacetime of special relativity with the fundamental
metric tensor hAB as hoo = - hAB = 0 (A # B), where c is
the velocity of light in vacuum. Latin capital indices range over 0, 1, 2, 3
and the lower case Latin indices assume the values 1, 2, 3 only. Usual
summation convention has been followed.
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368 A. V. GOPALAKRISHNA

The equations of motion of a perfect fluid in special relatively, described
by the stress-energy tensor [10]

can be written as

where p is the proper mass density, p is the pressure, UA is the unit, four-
dimensional, fluid-velocity vector,

and

is the proper specific internal energy of the fluid. Equation (2. 5) is referred
to as the caloric equation of state of the fluid. In the above equations comma
followed by a Latin index denotes partial differentiation.

Consider a propagating, time-like, singular hypersurface E represented by
either of the equations

where UlX (Greek indices assume the values 0, 1, 2) are the coordinates on E.
The latter set of equations in (2. 6) form a parametric representation of the
surface E. Let and be, respectively, the components of the first and
second fundamental covariant tensors of E. Let NA be the space-like unit
normal vector to E. Now let us note the following formulae [11].

In the above formulae, comma followed by a Greek index denotes covariant
derivative with respect to since x~ are scalar functions of ua, we have

The surface S, in our study, is interpreted as the wave front of a propa-
gating weak discontinuity by which we mean that all the field variables
describing the fluid motion are continuous across it but at least some of
their first partial derivatives are discontinuous across E. We now note the
compatibility conditions, derived by using Hadamard’s Lemma, which
must be satisfied across E by the partial derivatives of the field variables [9].
For the first and second partial derivatives, under the assumption that E is a
weak discontinuity, these are
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369DISCONTINUITIES IN AN ARBITRARILY MOVING GAS

where F is any field variable, the square bracket denotes the jump in the
quantity across E i. e., [F] = F2 - F 1; the subscript 1(2) on F denotes the
value of F just ahead of (behind) the surface E, and A and K denote the
discontinuities in the normal derivatives i. e.,

Finally, we note a few results from the ray theory. Let UA be the unit,
time-like velocity vector of the medium just ahead of E. Then the speed of
propagation u or the frequency (n = cju) of the wave E, in relativity, is
defined as

Let = fA (see eq. (2 . 6)) denote the gradient of 03A3 so that = 

/J2 = - Now rewrite (2.9) as

Regarding eq. (2.10) as a first order partial differential equation for the
determination of E, it can be solved by obtaining the solutions of the equa-
tions

where w is a curve parameter and xA and ø A are to be regarded as independent
in obtaining the right hand members of these equations. While the first
set of equations in (2.11) determine the curves known as rays, the second
set describes the variation of the normal, to the wave front, along the rays.

3. VELOCITY OF PROPAGATION

As noted earlier, let E be a weak discontinuity propagating into an arbi-
trarily moving perfect gas. Let us denote the jumps in the normal derivatives
of the mass density p and the fluid velocity vector UA by

It follows from eq. (2.2) that S,A UA = 0 where S is the specific entropy
of the fluid. We will, however, assume that the fluid motion is isentropic.
In that case we obtain p = p( p). Since UA is a unit vector, we have the
relation

Let prime denote differentiation with respect to p and let p’ = a2. Now
take jumps in (2.2), (2.3) and (3 . 2) by using the first set of equations in (2. 8)
and equ. (3.1) to obtain
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where L = and the field variables in these equations describe the
medium ahead of E. The suffix N in eq. (3 . 4) denotes the normal component ;
it is reserved to denote only normal component, it is not a tensor index. Now
multiplying (3 .3) by UA and NA and summing over A we obtain

where eq. (3.5) has been used in obtaining (3.6). Since ç and L are non-
vanishing, it follows from (3.6) that

By using (3.4) and (3 . 8) in (3.7), and noting that E is a weak discontinuity,
we obtain

where l2 - 1 + L2. We obtain the unit, ray velocity vector of propagation
of E, from the first of eq. (2.11) as

where s is the ray parameter defined by Lds = 4Jldw. The eq. (3.10) is the
same as obtained in [8]. Note that the ray velocity is tangent to E and the
ray derivative of any quantity F is given by

The second set of equations in (2.11) and eq. (3 .9) lead to

Now let us note that the eq. (3 . 3) can be written as

which suggests that the discontinuity vector ÀA is parallel to the vector
NA - Therefore, let us define the strength of the discontinuity, denoted

by the equation

where MA is the vector defined by

Then ç is given by
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4. GROWTH EQUATION

In this section we obtain a differential equation, along the rays, governing
the strength of the discontinuity ~. Let the discontinuities in the second
partial derivatives along the normal vector in the fluid velocity and mass

density be denoted as

Now differentiate the equations (2. 2) and (2.3) with respect to x~, multiply
by N~ and then take jumps by using (4.1) and the second set of equations
in (2.8) to obtain

where

Note that all the field variables which appear in the equations (4 . 2) and (4. 3)
describe the medium ahead of the surface E. Note the comparison of equa-
tions (4.2), (4.3) with the corresponding homogeneous equations (3.3),
(3.4). Multiplying (4.2) by NA and then eliminating 1ANA by using (4.3),
we obtain

I n view of eq. (3 . 9) the coefficient of ç in (4 . 4) vanishes and thus we obtain
the growth equation as

In order to simplify the growth equation we note the following result [12]
viz., the divergence of the ray velocity four-vector is the ray-derivative of the
logarithm of the expansion ratio E, i. e.,

By straight forward calculation from (3.10), we obtain
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The last term in the right hand member of (4.8) can be expressed as a ray
derivative as follows. Consider (cf. Sec. 2)

Differentiating (4.9) with respect to x~, we obtain

Since the right hand member of (4.10) is symmetric in A and B, we must
have

Multiplying (4 .11 ) by the unit vector N~, we get

where we have used a formula given in (2.7) in the above derivation. Now
multiplying (4.12) by UA, we get

By using (4.6) and (4.13) in (4. 8) we get

Now by using the various relations obtained so far, in particular eqns (2 . 7),
(3.8)-(3.14) and (4.6)-(4.14) the growth equation (4.5) becomes

where

The integration of eq. (4.15) subject to the initial condition # = t/Jo at

s = so yields the solution

where Xo denotes the initial value of X.
It is clear from (4.17) that the solution breaks down when
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373DISCONTINUITIES IN AN ARBITRARILY MOVING GAS

In otherwords, the weak discontinuity terminates in a shock. Given the
medium ahead of E, now one would like to enquire the time at which the
shock formation takes place. It can be calculated by evaluating the integral
in (4.18). However, the presence of cp = (- seems to

suggest that, in order to be able to find when the shock occurs, it is necessary
to integrate the equations (2.10) (i. e., (3.10) and (3.11)). When the medium
ahead of E is one of constant state, then § is a constant along the rays and
in that case it is enough if the medium ahead is known to evaluate the
integral in (4.18). But one may note an interesting case viz. that when the
normal trajectories to L are geodesics i. e., when

In this case again one can evaluate the integral in (4.18) when the medium
ahead, not necessarily one of constant state, is given.

In the linear problem, it is easy to see that 03C8X remains constant along
the rays.
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