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Quantum electrodynamics
with one degree of freedom

for the photon field

Klaus FREDENHAGEN

II. Institut fur Theoretische Physik
der Universitat Hamburg

Ann. Inst. Henri Poincaré,

Vol. XXVII, n° 3, 1977,

Section A :

Physique théorique.

ABSTRACT. - An electron-positron-field 03C8 interacts with one degree
of freedom of the photon field, which is characterized by a classical electro-
magnetic potential Au. For the Hamiltonian we make the ansatz

where Bo is the free Hamiltonian of electrons and positrons and p and q
are the canonical variables of a quantummechanical harmonic oscillator.

In the case of a purely electric potential the Hamiltonian is a densely
defined symmetric operator after an infinite oscillator frequency renorma-
lization, but unbounded from below, because the Coulomb-interaction
is neglected. To stabilize the system a photon selfinteraction of the form bq4
is added. For the so modified model several properties are established,
among them selfadjointness and positivity of the Hamiltonian, existence
of a groundstate and of asymptotic Fermi fields.
The case of a nonvanishing magnetic field is only partly solved. After

an infinite wavefunction renormalization the Hamiltonian is defined as
a quadratic form, less singular than the corresponding form in free Fock-
space. By reducing the number of space-time-dimensions from four to
three the Hamiltonian can be defined as a positive selfadjoint operator
in a Hilbert space, where the representation of the canonical anticommuta-
tion relations is inequivalent to the Fock representation and where the
canonical commutation relations are not realized as operator relations.
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320 K. FREDENHAGEN

1. INTRODUCTION

Quantum electrodynamics have made predictions which are in very good
agreement with experiment. Take for example the measurement of the
magnetic momentum of the electron or the Lamb-shift in the energy
spectrum of the hydrogen atom. But until now nobody has succeeded in
defining quantum electrodynamics beyond formal perturbation theory.
In general the construction of a nontrivial model of relativistic quantum
field theory is an unsolved problem.

For isolating the many difficulties, which arise at the construction of a
relativistic quantum field theory, one has studied simplified models, for
example the Lee-model, the Nelson-model, the P(cp)- and Yukawa-models
in two dimensions and the ~-model in three dimensions.
Another well known simplification of quantum field theory is the external

field model. In quantum electrodynamics one replaces the photon field
by a classical electromagnetic potential, which is not influenced by the
electron-positron-field. The external field model can be completely reduced
to a classical problem and is solved in principle.
The reason for the simplicity of this model is the absence of any retroac-

tion from the electron-positron-field to the external field. Obviously, this
fact restricts the utility of the model for the construction of an interacting
theory.

In the following a model shall be investigated, in which the external
field is affected by a very simple retroaction. It gets the degree of freedom
of a quantummechanical harmonic oscillator. The Hamiltonian shall have
the following form :

(Bo free Hamiltonian of electrons and positrons, p, q canonical variables
of the harmonic oscillator, ~ electron-positron-field, A~ time independent
classical electromagnetic potential).
As in the external field case [3] [4] [5] the interaction term is less singular

for a purely electric potential than in the general case. The divergences
arising in the electric case correspond to the divergences in the Y2-model
and can be removed by an infinite frequency renormalization. Contrary
to Y2 the renormalized Hamiltonian is not bounded from below. The

physical reason is the neglection of the Coulomb-interaction. To get a
lower bound for the energy a photon selfinteraction P(q) with a polynom P
can be added. A term bq4 is sufficient for this purpose and in a certain
sense also minimal. In this way one gets a positive selfadjoint Hamiltonian B
in free Fock-space. B has a groundstate and an absolut continuous spec-
trum over the electron mass. The asymptotic Fermi fields exist.
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321QUANTUM ELECTRODYNAMICS FOR THE PHOTON FIELD

The case of a nonvanishing magnetic part of A~ is essentially more
complicated. The degree of ultraviolett divergences is in general two degrees
higher. Also after an infinite wavefunction renormalization the Hamiltonian
can be defined only as a quadratic form. Probably one has to give up the
CAR after an infinite field strength renormalization (the CCR already
are not realized as operator relations). The involved problems seem to be
unsolvable by the used methods.

In three dimensions the problem is easier to handle. The degrees of diver-
gences correspond to Y~. The used methods allow a discussion of the model
in almost the same way as in the electric case in four dimensions. The field

algebra of the interacting fields differs from the free field algebra, because
the CCR are not fulfilled ; the representation of the CAR is inequivalent
to the Fock representation.
The used methods are a combination of the Hamiltonian method of

constructive quantum field theory as applied especially in the Y2-
model [6] [7] with the theory of quasifree representations of the CAR [8] [9],
which permits to solve elegantly the external field problem [3].
An unitary approximation U(q) to the waveoperator for the Dirac-

equation with external potential qAIJ generates an automorphism of the
Fermi field algebra. The interaction term is regularized by this transfor-
mation.

In the electric case this automorphism can be implemented in Fock-

space by an unitary operator u(q), so that also the kinetic term 1 2 p2 of
the photon energy can be transformed. One gets a decomposition of the
Hamiltonian

where Co is the free Hamiltonian plus the anharmonic term bq4 and V
is bounded relative to Co with a bound  1 in the sense of quadratic forms.

In the case of a nonvanishing magnetic field this automorphism is not
unitarily implementable. We show, how in spite of this the oscillator
momentum p and renormalized powers i can be transformed. But
in the arising decomposition (1) V is bounded relative to Co only if the
dimension of space-time is reduced from four to three.
The existence of a groundstate is proved by applying the methods of

Glimm and Jaffe [6] to the decomposition (1). For suitable values of the
parameters e, b, co, m we get uniqueness of the vacuum and existence and
uniqueness of the one-photon-state if eo  2m (stability of the photon)
with help of analytic perturbation theory. The problem of asymptotic Fermi
fields can be reduced to the Cook-criterion for the Dirac-equation with
external potential [10].

This work is a comprehended version of the authors thesis [1]. An exten-
sive use of the results of [2] is made.

Vol. XXVII, n° 3 - 1977.



322 K. FREDENHAGEN

2. NOTATION

Let H be the Hilbert space H = 22(1R3, (4) in which the Dirac-equation
for a particle of mass m and charge e in an electromagnetic potential A~
is given by

(~ : x - f(x, t) E H, = at E J~~~4~~ ~ OC~, = 2(SI~, I, j = 0, ... , 3, = /3).
Let ho be the free Dirac operator in H :

ho is essentially selfadjoint on C~) [11].
Let j be the potential term

j is bounded, if p = 0, .... 3, E 2oo(1R3):

Then the operator

is selfadjoint on D(ho~. The Dirac-equation is solved by

Let F : f -  be the Fourier transform, taken as an unitary operator
in H : ,.

F transforms ho into a multiplication operator :

with P~) = ~fl ± ~’~~ and = (~ + ~)~.
~ 2B /

The projectors P+ and P_ = 1 - P+ are the projectors on the positive,
respectively negative part of the spectrum of ~o.
The Dirac fields ~(/), / e H, formally defined by
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323QUANTUM ELECTRODYNAMICS FOR THE PHOTON FIELD

and therefore antilinear in f, fulfill the canonica’ anticommutation relations,
which can be described in the form

Therefore they span the Cliffordalgebra over H with an involution
and an unique C*-norm with

~(H) denotes the C*-completion of ~o(H). In the following we make an
extensive use of the notations and results of [2]. So Wp + denotes the gauge
invariant quasifree state with the two-point function

which is clearly the Fock vacuum. (~, n, Q) is the GNS-construction
to wp+ and therefore the Fock representation with vacuum Q. The one-
particle-space is $1 1 = P+H # P_H, where - denotes the conjugate
Hilbert space. Jf is the antisymmetric tensor space over 

Let I denote the identical mapping from H into ..1t1. Then we can define
the annihilation operators a(g), g E ..1t1, by

As usual, for p &#x3E; 1, Cp(H) denotes the trace ideal {A E I Tr  

Especially C2 is the Hilbert-Schmidt class and C1 the trace class.
To each operator A E there exists an unique bilinear form dro(A)

on x with the property

(in the sense of bilinear forms on x 

For an operator A in H which commutes with P + the corresponding
derivation of CCo(H) with ~(/)* -~ annihilates Therefore
dro(A) can be extended to a closed operator dr(A), and we have :

where dA denotes the operation

K==U

for a closed operator B in H.
Now the free Hamiltonian Bo in the Fermi-Fock-space ~f is defined as

Vol. XXVII, n° 3 - 1977.



324 K. FREDENHAGEN

The external field term is the bilinear form dro( j).
To include the degree of freedom of the photon field, we define as our

free Fock-space

The oscillator variables p and q are introduced as usual by

Now we can define the formal Hamiltonian for the investigated model
as the following bilinear form

1

3. THE ELECTRIC CASE

As is well known (compare [3]) the Hamiltonian for the Dirac field in
an external electromagnetic field can be defined as a selfadjoint operator
in free Fock space, if and only if the magnetic part of A~ vanishes (for the
only-if-part see [1] [2] [12] and compare with [13]). Therefore we analyse
the purely electric case separately.

Let = ho + Àj, À E R, be the Dirac Hamiltonian with external field
~,Ao, Ao E in H. Let B(Â) be a selfadjoint operator in ~f with

B(/L) exists, if Ao and ~kA0 E If 2’ k = 1, 2, 3, and different choices of B(A)
differ only by an additive constant. The Hamiltonian for the full problem
should have the form 

..

with a real function F. There arise the following questions :
(1) Is B densely defined?
(2) Is B bounded from below?

(3) What is the natural choice for the function F?

To answer these questions we construct B(A) explicitly by the methods
of [2].

First we decompose the interaction term into a creation term

dro(jc), jc = P + jP -, an annihilation term jA = P - jP +, and a

scattering term dro( jo), j o = P+ jP+ + P - jP - . For implementability only
jc is important, but for positivity also the properties of jo must be inves-

tigated.
Annales de l’Institut Henri Poincaré - Section A



325QUANTUM ELECTRODYNAMICS FOR THE PHOTON FIELD

Now let W be the unique operator from P_ H into P+ H with [ho, W] = jc.
According to [3], W is a Hilbert-Schmidt-operator. Therefore the unitary
operators

define unitarily implementable automorphisms

with

U(À) transforms to

with a Hilbert-Schmidt-operator A(~).
To complete the construction we show that jo I ho 1-1/2 is a compact

operator (i. e. ess spec jo I ho -1 1/2 = { 0 } ).
The (momentum space) integral kernel of jo |h01- 1/2 is

We see, that jo is a Hilbert-Schmidt-operator, where PK projects
on energies with modulus less than K &#x3E; 0. It follows, that jo 1-1/2 is

compact as norm-limes of Hilbert-Schmidt-operators.
According to [2], a natural choice for B(À) is

where u-lim means strong convergence of the unitary groups and
ð" = - Tr for an approximating net ~j~) of Hilbert-Schmidt-

operators. B(À) is bounded from below. lim Tr = ~, therefore the
renormalization ( - necessary. E~2~(~,) vanishes because of the
invariance of j under charge conjugation. For details see [7].

After completing the construction of B(À) we have to investigate, how
the greatest lower bound of B(/L) depends on /L

3 . 1 . LEMMA. 2014 0   const |03BB p

which is obviously positive. The upper bound

follows from the estimate 11(1 + Â,2WW*)-1Â,W II  1 .

Vol. XXVII, n° 3 - 1977.



326 K. FREDENHAGEN

3 . 2 . LEMMA. - A(2) = + A2(2) 1  const 
II A2(2)  const 1,1 i3.

Sketch of the proof: A(,1) contains Hilbert-Schmidt-operators ~ 22
and trace class operators ~ 23. By decomposing the Hilbert-Schmidt-
operators in a low energetic (ev(k)  c trace class operator and the
remaining term we derice the lemma.

3. 3. THEOREM . - The groundstate energy of Bo + /Ldr(jo) approa-
ches - oo as - ~,4, i. e. (a) g(,1) &#x3E; - const 24. (b) g(/L)  2014 const 24 for
2 sufficiently large and a positive constant.

Proof. - (a) We decompose ,1dr(jo) into a high energetic and a low
energetic term. The high energetic term is small compared with Bo, because jo
is bounded, and in the low energetic term the bounded character offermion
fields, i. e. the Pauli principle is used.

Let p;. be the Projector in ~1 on energies less than Let

Then
,... ’’w ,’-

Let 03C6 E D(03C91/2). It holds:

By £ completing the square the remaining term ill + A(Da + D*03BB) becomes
2

It follows

The term on the right hand side is a trace class operator whose trace
norm is bounded by a constant times À2. Therefore we get :

b) The grounds tate of Bo + is the state, in which all one-particle

Annales de l’Institut Henri Poincare - Section A



327QUANTUM ELECTRODYNAMICS FOR THE PHOTON FIELD

states with negative energy are occupied. The groundstate-energy is the
sum of the negative eigenvalues of the one-particle-Hamiltonian, that is

(X = X+ + X- decomposition of a selfadjoint operator in positive and
negative part)

Let qJ E with (1) supp ~p compact

Such qJ exist for Ao # 0. Let d be the diameter of the support of ~p.

For n E Z3 let rpn be the translated function (in momentum space) :

We have qJn L 03C6m for n ~ m. Let Pn be the projector on the subspace

Define

From (1) we get the following estimate :

Now

and therefore

On the other hand :

We have P-

for

Vol. XXVII, n° 3 - 1977.



328 K. FREDENHAGEN

Therefore

with const2 =1= 0.
Therefore we get the following estimate for the groundstate energy ~):

Using and -Tr P03BAP_h0=Tr PxP_h0=Tr PxP+h0,
Tr = Tr PKP + jo instead of (1), we get :

With K = c I À I, c &#x3E; 0, we have

If we choose c  , (b) follows. q. e. d.
const 1

After gaining a lot of information about the operators B(À) we want
to study the sum 

..

Because of (3 .1 )-(3 . 3) this sum is unbounded from below. Therefore we add
a photon selfinteraction bq4 with a certain b &#x3E; 0, such that

is bounded from below for some e &#x3E; 0. Instead of studying B, we study the
equivalent operator .

First we compute ~(q) -1 p~~q) _ : p

It follows :
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3 . 4 . LEMMA. - p2 - p2 is bounded relative to p2 + N with an infini-
tesimal bound.
The proof is a straightforward application of [2] Prop. 4.1 (see [1]).
Let Co be the operator

Co is selfadjoint and positive and has an unique groundstate [14]. B is
given by

3 . 5 . THEOREM . - B is essentially selfadjoint and bounded from below.

Proof - Co + qdr( jo) is essentially selfadjoint [1]. The other terms in B
are bounded relative to (N + p2 + q4) with an infinitesimal bound. On
the other side, from 3.3 we have

We show :

Let A = 2(Bo + qdr( jo)) + W2q2 + 2bq4, A’ = N + q4. Then the propo-
sition reads as follows :

We have

Now ( 1 ) follows. Therefore the remaining terms in B are bounded relative
to Co + qd0393(j0) with an infinitesimal bound. The theorem follows from [11],
V. Th. 4 . 3.

q. e. d.
Now the construction of an essentially selfadjoint semibounded Hamil-

tonian is completed with the definition

To justify this definition we show that

Vol. XXVII, n° 3 - 1977.



330 K. FREDENHAGEN

where the approximating net (BJ is constructed with a net of Hilbert-
Schmidt-operators in H with the properties :

An ultraviolett-cutoff would have these properties. We see, that the resol-
vants of the transformed operators

converge in norm to the resolvant of B for sufficiently negative arguments
(Re z « 0). This implies strong convergence of the unitary groups. With

the proposition follows.

3. 6. THEOREM. - B has a groundstate.

Proof - We apply the methods of Glimm and Jaffe [6] to B = Co + V
and get the result, that the spectrum of B-inf spec (B) in the intervall [0, m)
is discret (For details see [1]).

REMARK. - B(e) = Co + V(e) is a holomorphic family of selfadjoint
operators for eo, where eo depends on b. Therefore for sufficiently
small e there exists a holomorphic family Q(e) of unique (up to a phase)
groundstate vectors in the vacuum sector. There exists also a holomorphic
family of unique (up to a phase) one-photon-state-vectors, if Mo  2m,
where Mo is the gap between the second and the first eigenvalue of the anhar-

monic oscillator 1 (p~ + + 6~.

3 . 7 . THEOREM . - Let eitB implement the automorphism at and eitco
the automorphism e!° and let wr = t. Assume that the electric potential
Ao decreases at infinity as I x B- (1 + E) for some B &#x3E; 0. Then there exist the

asymptotic fields

Proof - Under our assumptions on Ao we have for f E C~) [10] :

which guarantees the existence of waveoperators for the Dirac-equation.
Now
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and because + 1)*~ !!  oo we have

Therefore converges strongly on and because of uniform

boundedness everywhere. An ~3-argument [15] gives the convergence for

all f e H.
q. e. d.

3 . 8 . PROPOSITION. - The asymptotic fields are free fields, i. e. they
have the following properties (ex = in, out) :

Proof - (1) is the well known property of wavemorphisms and (2)
follows from s-lim w~~( f )* _ l/1out(f)* and the continuity of multiplication

in

on bounded subsets of ~(~ ) in the strong topology. (3) follows from (1)
and (2) by using positivity of energy.

4. THE MAGNETIC CASE

If the spatial part of the electromagnetic potential does not vanish, the
Hamiltonian for the external field problem cannot be defined in free Fock
space as a selfadjoint operator. Moreover, if we choose for each real A
a Hilbert space ~ such that B(/L) is a positive selfadjoint operator in ~,
then the corresponding representations are pairwise inequivalent.
Therefore the oscillator momentum p is not definable as a selfadjoint
operator in the Hilbert space _ _

Now first order perturbation theory indicates, that p is not an operator
in the physical Hilbert space at sharp times. Therefore we try to define p
and renormalized powers : pn : as quadratic forms in ff with the properties

To find we use the same unitary U(Â) as in section 3 and define
as the GNS-construction to the state eva = 

In the first step we shall show, that B(Â) can be defined in ~~.
Vol. XXVII, n° 3 - 1977.
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4.1. PROPOSITION. - There exists a positive selfadjoint operator B(À)
in ff À with

Proof. - Choose the decomposition

According to [2] Th. 6.1, 6 . 4 we have to show : (v~~,) = M/L) - hn)

(2) follows from the fact that jo ho ~-~~2 and v(~,} - Àjo are compact (see
section 3).
To demonstrate (1) we prove the following lemma :

4 . 2 . PROPOSITION. - W E C4

Proof - W has the integral kernel (in momentum space)

It holds :

E 24 114 E 24/3 c 22 n 21 1 the pro-
position follows from [17], Lemma 2.1 and proof of lemma 2.3.
Now let us proceed in the proof of proposition 4.1 ! We have :

The second term is a Hilbert-Schmidt-operator, since W ~ C4 and jA is
bounded. The first term can be written in the form

Now and the operators A - 

in the Hilbert space C2(P - H, P + H) have norms smaller than one. With

the proposition follows. 
dq. e..

Annales de l’Institut Henri Poincaré - Section A
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In the second step we want to define : I - ; pn ; as a bilinear

form in Jf x should have the properties :

Let óJt(2) be the unitary operator from :Yf 0 to Yf l, which intertwines the
equivalent representations 03C003BB and 1to o U(03BB)-1. Then a possible choice
for : is

where f(u, /L) is the bilinear form, constructed in [2], Th. 5.1, which imple-
ments the automorphism ~(/)* -~ tjJ(V(u, A) f)* with

We modify the expression of [2], Th. 5.1, by the finite factor

Then, formally, : I differs from the unrenormalized expression etup

by the infinite factor ). For : i we get

where X(q) = (1 + q2(W*W + and the double dots on the right
hand side denote normal ordering with respect to the fermion fields.
Now we can define the following quadratic form as our Hamiltonian :

B is densely defined and symmetric, but perhaps not bounded from below,
since formally : p2 : = p2 - II 

In four dimensions there seems to be no simple method to improve
this situation. Therefore we analyze the model in three dimensions. Also
in three dimensions the operator W = (ad is not of Hilbert-Schmidt-
type. But contrary to the four dimensional case, B differs from

only by a small perturbation (in the form sense). This follows from the
Nt-estimates in [2], Prop. 4.1, with help of the following lemma and the
fact, that 
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and

(compare Lemma 3.2)

4 . 3 . THEOREM. - The form sum

defines an unique selfadjoint operator, bounded from below.
Using this theorem, we can derive the existence of a groundstate and of

asymptotic Fermi fields with almost the same methods as in section 3.

(For a more detailed discussion see [7].)
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