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Dynamics of relative motion of test particles
in general relativity (1)

Stanislaw L. BA017BA0143SKI
Institute of the Theoretical Physics, University of Warsaw, Poland

Ann. Inst. Henri Poincaré,

Vol. XXVII, n° 2, 1977,

Section A :

Physique théorique.

ABSTRACT. - This paper presents several variational principles which
lead to the first and the second geodesic deviation equations, recently
formulated by the author and used for the description of the relative motion
of test particles in general relativity. Relations between these principles
have been investigated and exhibited here. The paper contains also a study
of the Hamilton-Jacobi equation for these generalized deviations and a
discussion of the conservations laws appearing here.

RESUME. - L’article présente plusieurs principes de variation menant aux
premières et deuxièmes equations de la deviation des géodésiques. Ces
equations ont ete recemment formulées par l’auteur et utilisées pour la
description du mouvement des particules d’essai en relativité générale.
Les relations entre ces principes sont étudiées et démontrées.

L’article contient également une etude de 1’equation de Hamilton-Jacobi
pour ces deviations généralisées, ainsi qu’une discussion des lois de conser-
vation qu’on obtient dans le cas présenté.

INTRODUCTION

As it has been shown in a previous article [1] the relative motion of test
bodies in general relativity can be described by means of an infinite sequence
of suitably defined general geodesic deviation vectors forming fields along

(1) Research supported in part by the U. S. National Science Foundation, contract
GF-36217, and by the Polish Research Program MR-1-7.
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146 S. L. BAZANSKI

a chosen geodesic r. Truncating this sequence gives one an approximate
description with a desired order of accuracy.

This paper, in turn, is devoted to a study of variational principles which
lead to the equations describing the evolution of the generalized deviation
vectors along r.

There are two types of such variational principles. Existence of the first
type, called the « accessoric » variational principles, is a consequence of a
theorem in variational calculus, ascribed to Carathéodory [2]. In the case
of the geodesic deviation in general relativity this approach has been also
used by Plebanski [3]. According to the accessoric point of view one formu-
lates the variational principle for a deviation vector field along a given r
(and for fixed values of deviation of the lower order but this second fact
will not, in this introductory comment, always be explicitly mentioned)
and one considers this principle as being independent from the geodesic
variational principle for r (and for the lower deviations as well). Thus, in
this approach one has two independent dynamics :

i) of the motion of a test body in a gravitational field;
ii) of the relative motion of two of such bodies in the same field. The form

of the second action functional, although postulated, is suggested by the
second variation of the first action.

The second type of variational principles is based on a theorem about
generalized Jacobi fields in variational calculus [5]. It permits one to formu-
late action principles which unify both dynamics (or n dynamics when
generalized deviations up to the n-th order are discussed) in a single varia-
tional principle based on a single action functional. This action, when varied,
leads to both the geodesic and the geodesic deviation equations simulta-
neously.
Some of the main properties of the Hamiltonian formalisms correspond-

ing to the discussed action functionals are briefly reviewed. In the general
case they constitute singular cannonical formalisms with constraints of the
Dirac type [6]. Therefore, the Hamilton-Jacobi equations which appear here
form, in general, a set of partial differential equations in involution. In this
connection, it is interesting to observe that at least one of the equations in
such a set is usually linear in the first partial derivatives of the Hamilton-
Jacobi principal function. It thus has a form which one would expect for the
eikonal equation derived from field equations of the type of the Dirac
relativistic wave equation for the electron. The process of integration of the
Hamilton-Jacobi equations for the first and the second geodesic deviation
vectors can always be reduced to the integration of the geodesic Hamilton-
Jacobi equations and of these linear equations.

This paper contains also a discussion of conservation laws which follow,
due to the Noether theorem (cf. [4]), from all the variational principles
considered. In the case of so-called dynamic variational principles [9],

Annales de l’Institut Henri Poincaré - Section A



147DYNAMICS OF RELATIVE MOTION OF TEST PARTICLES

this discussion enables one to interpret the constraints which select the natural
deviations (cf. [1]) as describing the relative energy of falling particles. This
energy is necessarily equal to zero. Thus, the constraints have gained a
dynamical interpretation : two observers, freely falling in a given gravita-
tional field, when using to determine their proper times two respectively
comoving ideal clocks, must find that their relative total energy is equal to
zero.

The study has been completed here in some detail, because of the compu-
tational reasons, only for the first and the second geodesic deviation. There
are, however, no obstacles in principle to continue it up to the geodesic
deviations of any higher order.
The previous paper [1] is referred to as I; similarly, references like, for

instance, (1.2.7), etc., apply to corresponding formulae in [1].

1. GEODESIC PRINCIPLE

As is known, the geodesic equations in an arbitrary parametrization
(I.1.2), can be derived from a variational principle characterized by the
action

where T is an arbitrary parameter, u - --2014 and is, together with eva-

luated along a curve from a one-parametric family of curves

such that all curves of it intersect each other in two points corresponding
to the values To and Ll of the parameter. The procedure leading from the
above variational principle to its Euler-Lagrange equations is described in
every standard text-book. Here we shall outline a somewhat simpler proce-
dure, equivalent to the standard one, based on the concept of covariant
variation of geometric objects, used by Plebanski [3]. This second approach
would not be worth mentioning, if one were considering the formalism with
first variations only. Later we shall, however, be also discussing the varia-
tions of higher order for which the covariant approach is considerably
simpler.
Along a chosen curve of the family, e. g. along the curve x03B1 = ça.( L, 0),

one defines in the standard way the variations

which are components of a vector tangent to the curve: ~ = ~"(~, 8),
T = const, at 8 = 0; 8 in (1.2) is arbitrary. To evaluate the variation of

Vol. XXVII, nO 2 - 1977. 10



148 S. L. BAZANSKI

geometric objects it is convenient to complete (1.2) by the definition of
covariant variation which e. g. for a tensor field t°‘1"’°‘n is given by

i. e. is proportional to the absolute derivative of evaluated along the
curve: x03B1 = ç0152(t, B), r = const; at B = 0.

Thus, if calculating

we replace the ordinary derivative of the scalar Lagrange function in (1.1)
by the absolute one and take into account that = 0. Thence

Due to the rule of commutation of derivatives (cf. (1.2.3)) the covariant
variation of u~ can be expressed by means of as

and therefore

From this and from the stationary action principle : 5W = 0 for satisfy-
ing the conditions = 0 and otherwise arbitrary, we get
the geodesic equations 

--

equivalent to (1.1.2). 
’

The action ( 1.1 ) is invariant with respect to arbitrary transformations
of the parameter i. This invariance, due to the second Noether theorem
(cf. e. g. [4]), leads to a strong identity fulfilled by the 1. h. side of (1.6), i. e.

for any function x« _ ç0152(r).

2. THE GEODESIC DEVIATION

a) Second variation approach

To calculate the second variation of W, defined as

Annales de l’Institut Henri Poincaré - Section A



149DYNAMICS OF RELATIVE MOTION OF TEST PARTICLES

the concept of the second covariant variation is needed. It is defined as

Then

where ua : = gcxpup. Because of the Ricci identity

(This identity can be considered as a counterpart of (1.4) for the second
variation in a curved manifold). Thus

From (1.5) and (2.3) it follows that ç(J.( -r) satisfies the geodesic
equations (1.6) and the first variation 6x~ fulfils the general geodesic devia-
tion equations

(cf. (1.2.7)) then the variation 6W -I- 1 2 a2W vanishes for 6x" and ~2 °
vanishing at ro This is a particular case of a general property fulfilled
by the Jacobi equations of any variational principle, cf. [5].

b) The accessoric variational principle

According to the general procedure, discussed e. g. in [5], the form of the
integrand of 03B42W in (2. 3) implies the following form of the so-called « acces-
soric » Lagrange function

Vol. XXVII, nO 2 - 1977.



150 S. L. BAZANSKI

in which all the functions u", g"~, are evaluated along a given geodesic r,
with a fixed parametrization, described in the local coordinate system { x" ~
by given functions ç0152. The accessoric Lagrangian (2. 5) defines the accessoric,
or the Caratheodory action functional

which is a functional depending on vector fields defined along r. The
stationary action principle : ~~’ = 0 for variations (2) fulfilling

and otherwise arbitrary, implies the general geodesic deviation equation (2 . 4)
along r. In this sense the geodesic deviation equations are independent
dynamical equations and several of their properties could be deduced as a
result of application of appropriate general theorems of analytical dynamics
to (2.6). Let us illustrate this feature by two examples.
As one can immediately verify, is invariant under the transforma-

tion : r" + K(r)Ua, generated by an arbitrary, differentiable function K.
This invariance implies, due to the second Noether theorem applied to (2. 6),
the strong identity

satisfied by the 1. h. side of the general geodesic deviation equations (2.4).
This identity was crucial for Proposition 2.2 in I.
As the second example let us consider the canonical formalism correspond-

ing to the Lagrangian (2.5). According to a general remark about the
accessoric Hamiltonian made in [5], it should be a singular canonical for-
malism with constraints. And indeed, when one defines the canonical momen-
tum 7~ in a standard way as

(here ;/1- = 2014) we get at once the following constraint relation

(2) Here the variation is equal to the linear part of the difference E) - 0)
ot two vectors defined at the same point of the manifold Vn. We have, of course,

Annales de l’Institut Henri Poincaré - Section A



151DYNAMICS OF RELATIVE MOTION OF TEST PARTICLES

The « accessoric » Hamiltonian which, due to the Legendre transformation,
corresponds to the Lagrangian 2 is given by

In all of the above expressions quantities like u", etc., are taken
along a fixed r and are given functions of T. In Dirac’s terminology, cf. [6],
(2.8) describes primary constraints. One can easily verify that there are
no secondary constraints in this theory. Dirac’s canonical equations of
motion with the Hamiltonian (2.9) contain one Lagrange multiplier. They
are equivalent to the equations (1.2.13) from Proposition 2.2 in I. The

arbitrary function J1(r) in (1.2.13) is now seen to be the first derivative
with respect to r of this Lagrange multiplier.

In a fairly standard way one can derive the Hamilton-Jacobi equation
corresponding to (2.9). It reads as

where S = r) is the principal function which now besides (2.10)
must also satisfy the equation

being a consequence of (2.8). Thus S should now be the complete integral
of partial differential equations (2 .10) and (2 .11 ). Since these equations
form an involutive system, such an S exists, cf. [7]. This could be checked
by showing that their Poisson bracket vanishes (which in Dirac’s termino-
logy means that ~f is a first class quantity).
The consistency of the system (2.10)-(2.11) of the Hamilton-Jacobi

equations can be also demonstrated directly. If we namely change the
variables, replacing rll by r1 and K :

(only three among the r f are independent) and put

Vol. XXVII, nO 2 - 1977.



152 S. L. BAZANSKI

The equation (2.11) implies then 2014 = 0 and this together with the geodesic
equation (1.6) means that ~S ~03C4 = ~S0 ~03C4. We are thus left with only one Hamil-
ton-Jacobi equation

for the principal function So depending solely on rl and T (the skew symme-
try of in (2.10) allowed the replacement r" by Thus the over-

determination of the system (2.10)-(2.11) physically means that the true

dynamical variables are not the r~"s, but rather the r f’s.

c) The simultaneous variational principle

As it has been shown in a previous paper by the author [5], there is always
a unified variational principle simultaneously leading to both the Lagrange
and the Jacobi equations. In particular, for the geodesic problem, the
unified action W( 1) is given by the functional

with

?}:X

where u03B1 : = d03BE03B1 d03C4, u03C1 = is a given metric tensor of Vn taken at the
given point x on a line r described = and -y- is the absolute
derivative of a vector field ~ in the direction of r. Computing the variation
of (2.13) caused by independent variations and r" we obtain

Making then use of ( 1. 4) and of

we find

Annales de l’Institut Henri Poincaré - Section A



153DYNAMICS OF RELATIVE MOTION OF TEST PARTICLES

Taking now into account that due to ( 1. 2) and ( 1. 3)

we arrive at the following.

THEOREM 2.1. - The variation of the functional (2.13) 6W~~~ = 0, for
and vanishing at To and 03C41 and being otherwise arbitrary, if and only

if x°‘ = ç0152( ’t") and r°‘ = r°‘(~c) fulfil the system of geodesic (1.6) and geodesic
deviation equations (2.4).
Now within the framework based on instead of on ~’, the « dyna-

mical » properties of the geodesic deviation are not considered as separate
from those of the geodesic motion. The generalized momenta associated
to (2.13) are defined as

They fulfil the following constraint conditions :

The Hamiltonian corresponding by means of the Legendre transformation
to is identically equal to zero. When one defines the principal Hamilton
function as being the value of (2.13) at the end point on a true trajectory
of ( 1. 6) and (2 . 4), one gets in the standard way (3) that

From here, due to vanishing of the Hamiltonian and to (2.16), one obtains
the following set of Hamilton-Jacobi equations

which form a system of partial differential equations for the function S(1)

(3) Comp. [8], chap. II, § 9.

Vol. XXVII, no 2 - 1977.
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depending, because of the first of Eqs. (2.18), in general on eight variables x",
r". The knowledge of the complete integral of Eqs. (2.18) allows one to
determine in the standard way in a given Riemannian manifold a geodesic
line and a geodesic deviation field along it. Let us observe that no compo-
nents of the curvature tensor of the manifold enter into the equations (2.18),
in contrast to the set (2 , .10)-(2 11). The equations (2 , 1 8) form an involutive
system. That can be checked directly, since Eqs. (2.18) admit the separation
of the variables xu and rJt by representing in the form

in which U, V are functions of x" only. Then Eqs. (2.18) imply (cf. Appen-
dix A)

d) The « dynamic » variational principles

The above considerations can be repeated for the so-called (in the termi-
nology of Misner, Thorne and Wheeler [9]) dynamic variational principle
which leads to the equations

T _ ~X

of a geodesic line parametrized by an affine parameter r. Its action

is invariant under a one-parametric group of translations of the para-
meter const. This invariance leads, by means of the
first Noether theorem, to the first integral = const which in general
relativity could therefore be interpreted as the energy integral of a test
particle freely falling in a gravitational field. As we know, the constant here
must be taken to be equal to one,

if the world line is to be parametrized by the proper time (what, of course,
means that the energy of a freely falling particle equals its rest mass).
The accessoric action corresponding to (2.22) is now defined as

Annales de l’Institut Henri Poincaré - Section A



155DYNAMICS OF RELATIVE MOTION OF TEST PARTICLES

where all the quantities : and ua should be evaluated along a
given geodesic r parametrized by an afline parameter r. Varing (2.24) with
respect to r03B1 we get the geodesic deviation equations :

The action (2.24) is invariant (due to the assumption that along r: Du03B1 d03C4 = 0 )
under the group of transformations: r  ~ r  = r  + where 03BB = const.

This invariance implies the existence of the first integral ~ -,2014 = const. ;
its special form

must be accepted when Eqs. (2.25) and (2.26) determine the natural geo-
desic deviation, i. e. in the case, when both « neighbouring» geodesics are
parametrized by the Riemannian proper time s, as it is usually done in
general relativity. The action (2.24) is not any more invariant under the
translations of the parameter r. Therefore there is no first integral of the
« energy» type. Instead one has the following equation

which could be interpreted as determining the rate of change of the « energy »,
cf. [10].
Also on the level of the « dynamic » approach one can formulate the

simultaneous action principle, similar to (2.13). Its action (4) is given by

It is invariant both under the translations of the parameter r and under
the « gauge )) transformations: ~ )-~ ~ = ~ + ~ (~ = const.) (These
last transformations do not leave the integrand in (2.28) invariant, but add
to it a complete differential). The first Noether theorem applied to trans-
lations Of T (03B403C4 = 8= const. ; 03BE03B1(03C4)~03BE03B1(03C4+~)=03BE03B1(03C4); r03B1(03C4)~r03B1(03C4+~)=r03B1(03C4))
results now in the first integral 2014 = const. and the other invariance leadsMT 

to = const. Thus, the quantity 2014 could now be interpreted
as being the energy2014the kinetic energy of the relative motion described

(4) An action of this form has also been discussed by Mitskevich [77].

Vol. XXVII, no 2 -1977.
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by r°‘(z). For reasons already mentioned before, one has to replace these
constants correspondingly by such as in (2.26) and (2.23).

For all three actions (2 . 22), (2 . 24) and (2 . 28) the corresponding canonical
formalism will be of the standard type with no constraints. The single
Hamilton-Jacobi equations appearing in both approaches, based corres-
pondingly on (2.24) and (2.28), will as a result of separation of variables
lead again either to (2.12) or to (2.20) provided the choice of the cons-
tants of integration appearing in the first integrals will be such as exhibited
in (2.23) and (2.26).
To be more explicit we shall illustrate this last point for the case based

on (2.28). Here the Hamilton-Jacobi equation is of the form

Taking

where U, V are functions of x°‘ only and h is a constant, we get from (2. 29)

Since this equation should be satisfied for any and the g(1.fJ depends solety
on x(1., we must have

with c being a new constant of integration. If we choose the constants here
in agreement with (2.23) and (2.26) (h = 0, c = 1) this turns out to be

equivalent to (2.20).

3. THE SECOND GEODESIC DEVIATION

The third variation of the action W is defined as

To calculate it one introduces the concept of the third covariant variation as

Annales de l’Institut Henri Poincaré - Section A



157DYNAMICS OF RELATIVE MOTION OF TEST PARTICLES

Then differentiating the integrand in ð2W one obtains

where

The relations (1.4) and (2.2) must now be completed by the following

which results from (1.4) and (2.2) by means of the Ricci identity.
From ( 1. 4), (2 . 2) and (3 . 2) one obtains

where

From here now follows that if x03B1 = 03BE03B1(03C4) satisfies the geodesic equations (1. 6),
the first geodesic equation (2.4) and A2xrJ. the second geodesic equa-

tions (1.3.2), then ~3W is equal to the « boundary » terms which vanish
when A2xrJ., vanish at To and 1-1.

Vol. XXVII, n° 2 - 1977.
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The accessoric Lagrangian J~ w°‘, r) is then according to theg g B ~ /
general rule (cf. [J]) given by the expression

In the expressions (3.4) and (3. 5) all functions ut1., Rt1.P)’th etc., are eva-
luated along a given geodesic 0393 and r03B1 is a fixed solution of the general first

geodesic deviation equations. The accessoric action is defined as

and is a functional depending on vector fields w°‘ defined along r. The sta-

tionary action principle : ~~~2~ = 0 for variations 5~ fulfilling

leads to the second geodesic deviation equations

which are equivalent to (1.3.2). While performing the variations one must
take into account that url and r" in !R 2 fulfil correspondingly (1. 6) and (2.4).
Thus, in this approach the second geodesic deviation equations can be
considered as independent dynamical equations.
The Lagrangian is form-invariant under the transformations:

w" H w" + in which # is an arbitrary function. This invariance,

implies due to the second Noether theorem, a strong identity of the form

iaua = 0, where i03B1 is the 1. h. side of Eqs. (3.7).

Annales de l’Institut Henri Poincaré - Section A



159DYNAMICS OF RELATIVE MOTION OF TEST PARTICLES

The discussion of the corresponding cannonical formalism goes along
the same lines as in section 2. The cannonical momentum

fulfils one primary constraint relation

There are again no secondary constraints. Thus, the cannonical equations
contain one Lagrange multiplier. It can be show that these cannonical
equations are equivalent to Eqs. (I. 3.7) in which vCr) is the first derivative
with respect to r of the Lagrange multiplier.
The Hamilton-Jacobi equations again form a set of equations in invo-

lution :

where ye(2) is the accessoric Hamiltonian defined by means of the Legendre
transformation from (3.4) and (3.8). Introducing new variables

one can show, as in section 2, that the system (3.10) reduces to one single
equation.

Let us pass now to the unified variational principle which simultaneously
leads to the equations of geodesics, of the first geodesic deviation and of the
second geodesic deviation, in the case of an arbitrary parametrization.
According to Proposition 3.3 from [5] the corresponding action is of the
form

where

If one makes use of ( 1. 4), (2 . 2), (2 .15’), (3 . 2) and of

Vol. XXVII, nO 2 - 1977.
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one obtains the following expression for the complete variation of W(2):

where ha is the 1. h. side of (2.4),~ is an expression which differs from the
1. h. side of (3 . 7) by terms vanishing modulo the geodesic and first geodesic
deviation equations, and

Taking into account the equality (2 .15) and similar equality for we obtain

THEOREM 3.1. - The variation of the functional (3.11) ðW(2) = 0, for
~x", 5~ and ~w" vanishing at To and il and being otherwise arbitrary, if
and only if x°‘ = çCl( 1’) fulfil the equations of geodesics (1.6), ~ = 
those of the first geodesic deviation (2.4) and w03B1 = w03B1(03C4) of the second

geodesic deviation (3.7).
In the approach based on the unified action principle with the action (3 .11)

the dynamical properties of the first and of the second geodesic deviation
vectors are, therefore, not being separated from those of the geodesic motion.
To pass to the cannonical formalism we calculate in the standard way

the generalized momenta

where T~ is given by (3.13). The following primary constraint conditions
are satisfied by them :
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161DYNAMICS OF RELATIVE MOTION OF TEST PARTICLES

The Hamiltonian is again equal to zero. If one defines the principal func-
tion S(2) as the value of the action (3 .11) at the end point on a true trajectory,
one gets

Thus, the Hamilton-Jacobi equations are given by the system

The easiest way to verify the consistency of the system (3.15) consists
in showing that it admits the separation of variables. Assuming S(2) to be
of the form

where U, V, Ware functions of x°‘ only, one can verify (cf. Appendix B)
that Eqs. (3.15) are satisfied, provided

After the first of these equations, the usual geodesic Hamilton-Jacobi
equation, is solved, there is no difficulty in integrating successively the next
two of them.

In the case of the natural geodesic deviation all these considerations can
be performed on the level of the « dynamic » variational principle. To (2 . 22)
and (2.24) corresponds then the following accessoric action

Vol. XXVII, nO 2 - 1977.
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(cf. (3.5)). It leads to the second natural geodesic deviation equations

The action (3.18) is invariant under the transformation wu + 

with ~ being an arbitrary constant. This invariance is connected with the
existence of the first integral of (3.19):

As has been indicated in [5], in the case of the natural geodesic deviation
the constant here must be taken to be equal to zero. The relation (3.20)
then (i. e. for const. = 0) plays the role of the constraint condition selecting
the natural geodesic deviation. The action (3.18), as in (2.24), is not any
more invariant under the translation of the parameter T.
The cannonical formalism connected with (3.18) is a nondegenerate

one and its Hamilton-Jacobi equation can be brought into the same form
to which one can reduce the system (3.10) after the elimination of the « non-
dynamical» variables.

Also within the framework of the « dynamic » approach the most com-
plete description of the problem is yielded by the unified action principle.
The corresponding action has the form

and it leads, when varied with respect to w", r" and ~", simultaneously
to (2.21), (2.25) and (3.19).
The action (3 . 21 ) is invariant under the following transformations

The first of them implies the conservation law (3.20) and the quantity ~
equal to the 1. h. side of (3.20) can be interpreted as the relative energy
of two neighbouring freely falling test bodies (in the approximation consi-
dered when higher deviations are neglected) (Another motivation of such an
interpretation follows from the fact that (2.27) can be, due to introducing

of new degrees of freedom represented by w~, brought into the form -- = 0;
cf. [10]). In the case, however, when the proper times along the world
lines of both particles are measured by two identical standard ideal clocks
comoving with them, the total energy 8 must, for reasons already pointed
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out in I, be equal to zero. The formula (3 . 20) can then be written in the form

(p is characterizing the initial distance; cf. I) and still can be interpreted
as the equality of the relative kinetic and the relative potential energy of
two neighbouring particles (in the approximation considered).

It is not diflicult to verify that the second transformation in (3 . 22) implies :

u03B1 Dr03B1 d03C4 = const.; and the third : gapu U = const.
The Hamiltonian formalism corresponding to (3.21) is a nondegenerate

one. Its single Hamilton-Jacobi equation can be reduced (in the case of the
natural parametrization) to Eqs. (3.17) in a way similar to that shown at
the end of section 2.

Vol. XXVII, nO 2 - 1977.
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APPENDIX A

From (2.19) one gets

where B7x stands for covariant differentiation.
Because of (A. 1) the first of Eqs. (2.18) turns over into the first of Eqs. (2 . 20). Making

in (A. 2) use of

one can bring the second of Eqs. (2.18) to the form

which, for U being a solution of the geodesic Hamilton-Jacobi equation, is equivalent
to the second equation in (2.20).

Annales de l’Institut Henri Poincaré - Section A
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APPENDIX B

Eq. (3 .16) can also be written as

From here

The second of Eqs. (3.15), due to (B. 2), implies for U the first of Eqs. (3 .17). By means
of (B . 3), after taking into account (A. 3), one can show, similarly as in Appendix A,
that the third of Eqs. (3.15) turns over into the second of (3.17).
For the third term in (B. 4), due to the Ricci identity and to (A. 3), we can write

Inserting then (B. 2), (B. 3) and (B. 4) into the I. h. side of the fourth of Eqs. (3.15) one
can bring it to the form

Substituting next (B. 2) and (B. 3) into the r. h. side of the fourth of Eqs. (3 . 1 5) we obtain
the following equation

which due to the first two of Eqs. (3 .17) implies the last of them.
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