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On quantizing A-bundles
over Hamilton G-spaces
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Section A :

Physique théorique.

ABSTRACT. - It is shown that a natural generalization of Kostant’s
results concerning prequantization yields a characterization of quantizing
A-bundles over (A, À)-quantizable symplectic manifolds. Furthermore,
proof is given for the statement that any quantizing bundle over a Hamilton
G-space can be considered as a G-quantizing bundle.

1. INTRODUCTION

Geometric quantization ( [2] [5]) gives a procedure for the construction
of representations of the Poisson algebra 3*(M). The basic step consists
of a quantizing bundle over a symplectic manifold (M, (D). Generalizing
the prequantization technique of Kostant, we introduced a more general
definition of a quantizing bundle [7] which includes (up to association)
Kostant’s Hermitian line bundle and Souriau’s espace fibré quantifiant.

In the following a mathematical description of these generalized quantiz-
ing bundles over (A, À)-quantizable symplectic manifolds is given. A
theorem of Milnor [3] determines a bijection between the group 7r~(M, mo)
of group homomorphisms mo) - A and the group F(A, M) of
equivalence classes of flat principal bundles over M with abelian structure
group A. It then follows that the set Q(A, ~ M, w) of equivalence classes
of quantizing bundles over (A, A)-quantizable (M, (0) is characterized by
a free and transitive action
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166 J.-E. WERTH

The infinitesimal action of the Poisson algebra ~(M) on M can be
lifted to the total space P of a quantizing bundle over (M, This is most
useful when applied to representations by complete vector fields. Especially,
Theorem 3 says that any quantizing bundle over a Hamilton G-space
(G/K, cu, C) appears (up to equivalence) as a G-quantizing bundle.

Moreover, Theorem 3 establishes a natural one-one correspondence
between G/K, and a set of Lie group homomorphisms K -~ A.
This is used to generalize a theorem of Kostant [2] characterizing Her-
mitian line bundles over Hamilton G-spaces.

2. QUANTIZING BUNDLES

Throughout (P, A, M) will denote a smooth principal bundle over a
connected manifold M with abelian structure group A. n will denote the

projection P ~ M. Let a be a connection form on P and let OJ be a sym-
plectic structure on M. Given a linear map /h R - a from the real numbers
into the Lie algebra of A, we say that

is an (A, 03BB, M, 03C9)-bundle if

It is called a quantizing A-bundle (or simply quantizing bundle) if A is injec-
tive. In this case, we will say that (M, OJ) is (A, 03BB)-quantizable. Otherwise,
if ~, = 0, then an (A, A, M, ~-bundle is said to be a flat principal bundle.

be a simple covering of M. If we suppose { 
to be the transition functions of (P, A, M) corresponding to a trivializa-

tion { Ui, i E I}, a formal computation shows that an (A, 03BB, M, OJ)-
bundle is characterized by a system { ai ; i, j E I } of (A, 03BB, U, 
tions ; that is, there exist E F03B1(Ui n Uj) with

Here exp denotes the exponential map a -~ A.
Furthermore, two {A, ~,, M, ~-bundles (P, a, A, ~,, M, w) and

(P’, a’, A, ~, M, c.~) are equivalent iff the associated systems { fij, ai ; i, j E I }
and { i, j E I} of (A, ~,, U, ~-functions are equivalent, i. e. iff there

are f3i E tja(U i) such that

For the special case where is injective, the proof can be found in [7];
exactly the same proof gives the corresponding result for the general
case.

Denote by P(A, ~ U, OJ) the set of equivalence classes of systems of
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(A, ~,, U, ~-functions. The equivalence class of { a; ; i, j E I} is denoted
by ai ; i, j E I]. If ~, is injective we put

otherwise

It is not hard to conclude that we may define a map

by

The proof of the following result is a straightforward calculation.

PROPOSITION 1. - (1) cpg makes F(A, U) into an abelian group.
(2) Suppose that Q(A, ~ U, w) is not empty. Then

is a free and transitive action of F(A, U) on Q(A, À, U, 
Now consider a refinement ~3 = ~ VJ ; j E J ~ of the open covering

U = {Ui ; i E I}. Choose a J - I such that V~ c U(1j for j E J.
This defines a map

by the equation

Let T : J -~ I be another map with V~ c UTr Suppose n U~)
such that Then the /~k = E a(Vk), k E J,
define an equivalence between { k, l E J } and { fik,zj, oczk ; k, 
Therefore rM does not depend on the choice of refinement J - I.
Notice that r~ is the identity, and if 9B is a refinement of 93 then r~ = 
Hence {P(A, /, U, r~ ~ forms a direct system over the directed set of
open coverings of M. We call the direct limit

The elements of M, w) will be denoted by [P, a, A, À, M, 
Since the equivalence classes of principal bundles over M with abelian
structure group A are in a natural one-one correspondence with the ele-
ments of the cohomology group H1(M, A), the above discussion gives the
following theorem.

THEOREM 1. - There is a natural one-one correspondence between the
elements of P(A, h, M, OJ) and the equivalence classes of (A, 03BB, M, w)-
bundles..

If ~ is injective then we write

Vol. XXV, n° 2 - 1976.
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otherwise

It is easy to check that the (~ define a map

in a natural way. By Proposition 1 we have

PROPOSITION 2. - ( 1 ) ~po makes F(A, M) into an abelian group.
(2) Assume that (M, w) is (A, ~)-quantizable. Then

is a free and transitive action of F(A, M) on Q(A, ~ M, w). In other words,
the group of equivalence classes of flat principal bundles over M with
structure group A acts freely and transitively on the set of equivalence
classes of quantizing bundles over (A, A)-quantizable (M, ~).

Suppose that (P, G, M) is a principal bundle with structure group G.
Let p : G ~ A be a group homomorphism. Then the p-bundle associated
with (P, G, M) is the principal bundle

where P x P A is the orbit space of the right G-action on P x A given by
letting geG take ( p, a) to ( pg, ap(g)). The equivalence class of ( p, a) is

denoted by [p, a]. Note that the structure group A acts on P x p A by
[p, [p, for a’ E A.
Now let M be the universal covering manifold of the connected mani-

fold M and let (M, mo), M) stand for the principal bundle with
structure group mo) and covering projection p : M - M. Next,
consider the trivial principal bundle (M x A, A, M) with the canonical
flat connection. Since p is a local diffeomorphism, the A-equivariant
principal bundle homomorphism

given by a) = a] induces a flat connection form on M x p A.
Here p is an element in the group 03C0A1(M, mo) of group homomorphisms
7ii(M, mo) - A.

In the case when A is abelian, the following fact can be derived from
a result of Milnor [3].

PROPOSITION 3. - The association

induces a group isomorphism
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An immediate application of Propositions 2 and 3 is the generalization
of theorems of Kostant ([2], p. 135 and 142) to (A, 03BB)-quantizable manifolds.

THEOREM 2. - Assume that (M, is (A, 03BB)-quantizable. Then there
is a canonical free and transitive action of mo) on Q(A, ~ M, 

COROLLARY. - Assume that (M, M) is simply connected and (A, À)-quan-
tizable. Then Q(A, 03BB, M, w) has exactly one element.

3. LIE GRQUP ACTIONS

Given a symplectic manifold (M, be the Lie algebra
structure on S(M) defined by

Here j~ is the Hamiltonian vector field corresponding to q E b(M). For
any quantizing bundle (P, a, A, A, M, m) over (M, m) the Lie algebra
homomorphism 

_a In _ ~ -- -,

can be lifted to an injective homomorphism

by setting

peP ([2] [7]). Here is the horizontal lift and x+ is the vector field
on P induced by x E a. The map ~ is called prequantization.
We shall need the following fact.

LEMMA 1. - a is an invariant 1-form of 6Q for ~p E ~(M) ; that is,

Proof - We have

i. e.

On the other hand

Consequently

Next suppose G is a connected and simply connected Lie group. Let
I&#x3E; : 9 ~ ~(M) be a Lie algebra homomorphism from the algebra 9 of
left invariant vector fields on G into the Poisson algebra ~(M). We assume
that 

y "" a --

Vol. XXV, n° 2 - 1976.
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is an infinitesimal action by complete vector fields. Then it is not hard to
see that each (3m)(x)e ~(P) generates a global flow

by

Hence, in view of a result of Palais [4], we have

PROPOSITION 4. - In the above situation, there exists a G-action

written (p, g) - pg, such that

(i ) p Exp x = 1 ) for x E g ;
(ii ) oc is G-invariant.

Here Exp means the exponential map g - G.
We come now to Hamilton G-spaces. Let (G/K, w) be a homogeneous

symplectic manifold and let

written ([g], g’) - [g]g’, be the natural right G-action given by
[g] g’ - for [g] E G/K, g’ E G. The infinitesimal action g - 33(G/K)
associated to 0 will be denoted by 0, too.

Given a Lie algebra homomorphism 03A6 : g - we call

a Hamilton G-space if 
’ ’ ’

(i) G is connected and simply connected ;
(ii) 8(x) _ çl&#x3E;(X) for x E g.

LEMMA 2. - With the notation above,

Since w is G-irivariant, it follows that

Thus

Let p : K -~ A be a Lie group homomorphism. The p-bundle
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171ON QUANTIZING A-BUNDLES OVER HAMILTON G-SPACES

(G x p A, A, G/K) associated with (G, K, G/K) can be regarded as a

right G-bundle by [g, a]g’ = [g’-lg, a]. Observe that the actions of G
and A on G x ~ A commute.
A quantizing bundle (G x P A, a, A, A, G/K, OJ) over a Hamilton G-space

(G/K, 1» is called a G-quantizing bundle if

for x E g. Here x+ denotes the vector field on G x p A induced by x E g.
We shall prove that each quantizing bundle over a Hamilton G-space is
equivalent to a G-quantizing bundle. First, we need some material concern-
ing invariant connections 

PROPOSITION 5. - There is a one-one correspondence between the set
of G-invariant connections on (G x p A, A, G/K) and the set of linear

maps A : g - a with

where f denotes the Lie algebra of K ; the correspondence is given by

for x E g.
For the proof of Proposition 5 see also [1].
Now let K~ be the set of Lie group homomorphisms p : K --~ A such

that 
A , - _ _

for y E ~. As a consequence of Lemma 2 and Proposition 5 we get

PROPOSITION 6. - Let (G/K, 1» be a Hamilton G-space. Then, for
any p e K1&#x3E;, there is exactly one G-invariant connection (say aP) on

(G x p A, A, G/K) such that

for x E g. 
’ ’ ’

The following result generalizes a theorem of Kostant ([2], p. 203).

THEOREM 3. - Suppose that 1» is a Hamilton G-space. Then,
for any p E KT,

is a G-quantizing bundle. Moreover, this association induces a natural
one-one correspondence between K~ and G/K, 
Thus each element in Q(A, ~,, G/K, cv) is represented by exactly one

G-quantizing bundle. Observe that (G/K, 0) is (A, 03BB)-quantizable
iff K~ is not empty.
Vol. XXV, n° 2 - 1976.
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4. PROOF OF THEOREM 3

We first prove that each p E K~ induces a G-quantizing bundle

(G x PA, aP, A, ~,, G/K, It is sufficient to show that

(a) Choose

with xi E g, yi e a, i = 1, 2. Then

for çi = xt + y/ . By the very definition of 03B103C1 (compare [7], p. 107) we have

Next, observe that

for x E g, g, g’ E G. Hence, by Proposition 6,

Differentiation yields

Since the actions of G and A on G x p A commute, we get

(1), (4) and (5) imply

On the other hand

If we combine (6), (7) and Lemma 2, the assertion (a) follows easily.
(b) To prove (b) we use the G-invariance of Given x E g, we can write

(see [1], p. 104) _ , ..

It follows from (3) and Lemma 2 that

This proves (b). ~.
Thus, given p E we have shown how to construct a G-quantizing

bundle. Conversely, any quantizing bundle (P, a, A, ~,, G/K, over a
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Hamilton G-space 0) generates an element p E K~. To prove
this, observe that

defines an infinitesimal action of G on G/K by complete vector fields.
Hence, by Proposition 4, there exists a right G-action of P such that

for t E R, x E g. Now define p : K -~ A by

for k E K. Then p E K~ since

and

for Y E 1. Observe that for a G-quantizing bundle (G x P A, (XP, A, ~,, G/K, OJ)
one obtains

Thus we have reduced the proof of Theorem 3 to the following proposition.

PROPOSITION 7. - Let (P, a, A, A, G/K, w) be a quantizing bundle over
the Hamilton G-space (G/K, cv, 0). Define p E K~ by (*). Then (P, a, A,
a~, G/K, w) and (G x p A, ap, A, h, G/K, OJ) are equivalent.

Proof - It is easy to check that the assignment

defines a G, A-equivariant principal bundle isomorphism

We show that = ap. Clearly

for x E g. By Lemma 1 and an argument used above we obtain

x E g. Since is a G-invariant connection form, Proposition 6 gives

The result now follows.

5. CHARACTERIZATION OF K~

In conclusion, we compute the action

Vol. XXV, n° 2 - 1976.
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given by Theorems 2 and 3 more explicitly. For this purpose, consider
the principal bundle (G, K, G/K) with structure group K. Let Ko c K
be the identity component of K. Define an action

of K/Ko on G/Ko by setting ([g]o, [k]o) - [gk]o. Since G is simply connec-
ted, (G/Ko, K/Ko, G/K) is a principal bundle with structure group
K/Ko ~ [e] ). Therefore, for 6 E [e] ), the associa-
tion

= p(k)6([k]o), defines an action of [e]) on The following
result proves that, in view of Theorem 3, this action can be identified with
the action of [e]) on Q(A, ~ G/K, co).

PROPOSITION 8. - Let C) be an (A, /L)-quantizable Hamilton
G-space. Then the bijection

is [e] )-equivariant map.

Proof - If (G, K, G/K) is characterized by transition functions

i, j E I}, then the system { i, j E I} defined by ~.(x) = 
x E Ui n U, c G/K, represents (G/Ko, K/Ko, G/K). Now

are transition functions associated with [G A, A, A, G/K, 
whereas [G x p A, aP, A, /., G/K, is described by

Since, for 

we conclude that

This proves the assertion.
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