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Physique théorique.

ABSTRACT. - Quantization in terms of representations of structures
called local Heisenberg systems is considered. These structures are defined
by triplets 5) where ~ is a topological *-algebra, g a Lie-algebra
and 03B4 a map from g into Der By considering g-annihilating generalized
states on 9t it is possible to quantize systems that are not treatable with
systems of imprimitivity. Applications to non-relativistic and relativistic
systems are considered.

1. INTRODUCTION

Let M = 1R3 be the Euclidean manifold on which an elementary par-
ticle j3/ without spin moves, and let E be the a-algebra of Borel sets on 1R3.
The real 6-dimensional Euclidean Lie group E(3) of (transitive) motions
on M induce automorphisms a(E3)) in 03A3 by

where R and a are rotations and translations respectively and
Let f be a separable Hilbert space and E a

map from E onto a family ~ = { E(A) of orthogonal projectors in Jf.
The automorphisms a(E(3)) are represented in jf by a group of unitary
operators U(E(3)) satisfying
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394 H. SNELLMAN

The triplet (~, U(E(3)), 3i) is a canonical system of imprimitivity for j~ [1].
In particular, the projectors ~ define an abelian group V(T3) of unitary
operators by

Defining U(a) = U(t, 1i) the set {U(a), V(b)} generates a unitary repre-
sentation U(H7) of the real 7-dimensional Heisenberg Lie group H7,
satisfying

which is the Weyl form [2] of the canonical commutation relations. The
class of unitarily equivalent, unitary irreducible representations of H7
is unique up to the scale factor h [3] [4]. The skew-adjoint generators

satisfy on the Gårding domain DG of U(H7) the commutation relations

of the Heisenberg algebra ~7.
This method of quantization was developed by Wightman [5] and

Mackey [6] and is closely related to the « quantum logics » of proposition
calculus. Unfortunately the use of imprimitivity systems is restricted to
the case when there is a group of transitive motions on the manifold M.
In cases where M # 1R3, expressing constraints of the system, this is not the
case, and one would like to generalize the scheme.
One way to do this, is to observe that the system of imprimitivity can be

cast into the form of a « Heisenberg system » studied among others by
Segal [7] and Dixmier [8].
Hence if M is the concrete abelian C*-algebra generated by U(T3) or

the projectors ~ , then U(E(3)) acts as a group of automorphisms of 9t.
Denoting by a’ the map from E(3) into *-Aut (9t) defined by

then the triplet (N, E(3), a’) is a Heisenberg system [8].
In the present paper we shall discuss quantization in terms of structures

that we call local Heisenberg systems. These structures are one type of
generalizations of Heisenberg systems and hence of the systems of imprimi-
tivity. It turns out that the structure of the representations of local Heisen-
berg systems is very rich, and generates Lie algebra representations, the
enveloping algebras of which describe the considered systems by means of
symmetric operators in a Hilbert space. Interesting applications can be
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395QUANTIZATION IN TERMS OF LOCAL HEISENBERG SYSTEMS

found in the realm of relativistic quantum mechanics, where realizations
of relativistic Lie algebras (Lie algebras containing the Poincare Lie algebra)
on manifolds combining geometrical external, and internal degrees of
freedom are able to describe hadron like structures.

In section 2 we collect some properties of local Heisenberg systems and
their representations useful for the applications to quantization which
is outlined in section 3, both for non-relativistic and relativistic systems.
Section 4 contains a discussion of some problems connected with the genera-
lized quantization outlined in section 3 and the use of symmetric but not
self-adjoint operators as observables.

2. LOCAL HEISENBERG SYSTEMS

Let 21 be a topological *-algebra over C and let g be real Lie algebra.

DEFINITION. - A local Heisenberg system (lHs) is a triplet (21, g, b)
where 9t and g are as above and 03B4 : g ~ *-Der (9t) is a Lie algebra homo-
morphism into the *-derivations of U (i. e. 03B4xf* = (03B4xf)* for any / e 9t,
xeg, where 5~ denotes the derivation of 21 corresponding to x).

Let 5i be a separable complex Hilbert space. A representation (rep)
(n, T, Jf) of a IHs (21, g, 5) is an algebra morphism n : M -~ 

and a Lie algebra homomorphism T : g -~ such that

on some dense invariant domain D c jf. Suppose that there is a (genera-
lized) vector e in the (anti-) dual D of D, such that n(9t)e is a nontrivial
subspace of Jf, and T(x)e = 0, then jf carries a rep of g by the

operators T( g) :

If also = 0, then the operators T(x), x E g are skew-symmetric.
A standard way of studying reps of IHs: s is by means of the GNS cons-

truction relative to (generalized) states on ~I.
The sufficient condition T*(x)e = T(x)E = 0 for skew-symmetric opera-

tors cannot in general be relaxed if one wants to ensure skew-symmetry,
as simple examples show.
The condition implies (s, [T(x), II(~ f ~)]E) = (é:, = 0. This leads

to the conclusion that in order always to ensure the operators T(g) to be
skew-symmetric, the generalized states CD on 21 should satisfy = 0.

Denote by 9T~ the positive continuous linear functionals on N. Let
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396 H. SNELLMAN

2g be the sub-space of U generated by elements of the form E 9t,
x E g. Then

is the space of g-annihilating continuous linear forms on 9L The set

2; n is the set of g-annihilating generalized states Eg(U) on If 03B4’x
denotes the linear operator on the dual ~’ of ~, such that if fe E 

then 
°

An alternative characterization of ~(9t) is then

If 8l contains a unit element e ; ej = je, V/e 9t and w(e) = 1, then cv is a
state on 9t.

Most of our algebras will not have a unity, but only an approximate one,
{ ea where A is some directed index set. In this case the GNS construc-
tion takes the following form.
Let cv E ~’+ and define the set Nw by

Clearly N03C9 is a left ideal of U and is a pre-Hilbert space, where the
scalar product is defined by

with EW being the canonical map from 9t onto Put 
Then M has a canonical representation in by the definition

Thus we only lack a cyclic vector for nj/) in (lim does not

exist as a vector in where {e03B1}03B1~A is the approximate unity).
Now, let 9J~ be a topological *-algebra containing ~ as a topological

dense *-ideal.

DEFINITION. 2014 Put MJ~t) = { m e 8l, e 8l ) and
MR(~) _ fm, 
A multiplier of Mis an element in M(9t) = m MR(2~). Obviously

M(9t) =3 9t and M(9t) is a *-subalgebra of 8l i. We shall always understand
that M(9t) shall contain the unit element of U defined by lim e03B1 = e as
a multiplier. 

«EA

Hence mj’ E N~. Q. E. D.
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397QUANTIZATION IN TERMS OF LOCAL HEISENBERG SYSTEMS

From Lemma 1 follows that N~ is a left multiplier ideal.
We can now extend to elements in in the following way.
Let C = be the dense subspace of ~w defined by the canonical

map, and 1&#x3E;’ its (anti-)dual space. Clearly Bw(e) e 1&#x3E;’. In fact, for any 
we have that defined by = (Ew(m), = 

belongs to 0’. We can therefore define a rep by

Since U c M(9t), IIw is an extension of This extension will again be
denoted n~.

THEOREM 1. - Let (9t, g, b) be a IHs with a multiplier algebra 
containing the identity e : ’df’ e 9t. If OJ E 6~ and {fw, 
is the corresponding GNS rep of 9t, then there exists a unique faithful
rep T 00(8) of g in such that for Vx~g, we have

The representation is continuous from g to and every 

x E g is skew-symmetric on is a cyclic generalized vector
for K03C9.

Proof : - 1. Clearly is dense, and is cyclic.
2. Let x E g and define the operator T03C9(x) on 03A6 by

The linearity ofTJx) is obvious, as well as the fact that C is an invariant
domain for T~(g).

That Tro{g) gives a rep of g follows from the continuity of 5(g).
To prove that T~(x) is skew-symmetric let y, h e M and consider

But since = 0 we get from (2 . 4) and (2 . 5) that

The action of any 03B4 E Der on elements of can be defined by

This definition extends the action ofT~(g) onto 1&#x3E;’. Thus from (2. 6) applied
to m* we get

Multipliers of C*-algebras have previously been studied in references [10]
and [11].

Vol. XXIV, n° 4 - 1976.



398 H. SNELLMAN

Example. By a Heisenberg system (Hs) we mean a triplet (8l, G, a)
where M is a topological *-algebra, G is a Lie group and a is an injection
of G into Aut (9t). Define a’(g), g E G by the relation a’( g -1 )cc~( f ~) = 
Vf’E , w E 9t~. The G-invariant states satisfy a’(g)cc~( . ) = cc~( . ). If the map a
is differentiable, then (9t, g, da), where g is the Lie algebra of G, is a lHs,
every one-parameter sub-group ex‘ of G defining a derivation 6~ by the
definition

If D is G-invariant then for any x e g we have

The study of IHs’s is therefore a generalization of the study of Hs’s.
Let G be a Lie group with Lie algebra g.

DEFINITION. - Let (9t, g, (5) be a lHs. will be said to be integrable
if it is obtained as the differential drx(g) of a Lie group of automorphismes
a(G) in a Hs (M, G, a). 

-

DEFINITION. - Let (, g, (5) be a IHs and w E The rep 
of g in is said to be integrable if it is obtained as the differential dU ro(g)
of a unitary rep UJG) of G in UJG) then defines a Lie-group of
*-automorphisms a(G) such that (9t, G, a) is a Hs with rep HJM) in ~ro
and cv is G-invariant. The question of integrability is intimately related
to the concept of analytic vectors for Lie algebra reps in Hilbert spaces, for
which we refer to [12] and [13]. For M the following definition is useful.

DEFINITION. 2014 / is analytic for 6 E Der (M) if

in the topology of 9t.
The subset of analytic elments of 6 will be denoted 
Let cv be a generalized g-annihilating state on (M, g, b). Then Ew( ~ f ~) is

an analytic vector for x E g, if 
-

This implies
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399QUANTIZATION IN TERMS OF LOCAL HEISENBERG SYSTEMS

DEFINITION. - Let 21 be a locally convex linear topological vectorspace.
Then p is an algebra semi-norm for 9t if p(fh) ~ p(f)p(h), f, h ~ U [14],
and p(/*/) ~ p2(j’). If P is a family of algebra semi-norms for 21,
then (2. 8) is satisfied provided that for any pa E P

PROPOSITION 1. - If(, g, 6) is a IHs with 9t locally convex with an algebra
semi-norm family P and 03C9 ~ Eg, then 03B4x (x E g) having a dense set in

~ =&#x3E; Tco(x) integrable in jf~. ’ 

Thus is an analytic vector for T~(x), df E 2I~()x. This implies that the
closure of is skew-adjoint and generates a one-parameter
unitary symmetry group exp tTx satisfying

It should be noted that not every Ew( f ’) E is cyclic for In

the following we shall study the case when 9t is abelian. If w is extremal
then is irreducible in with as a generalized cyclic vector.

LEMMA 1. 2014 Let U be abelian and cv E Eg(U). Then, if cv is extremal
and (5(g) faithful, g is trivial. 

-

Proof. Let m be extremal and g-annihilating, and be the rep. of U
in Since nj9t) is irreducible in and is
one-dimensional.

a) Let TJg) be the rep of g in If TJx)e xeg then ~x is an
inner derivation, which since U is abelian, is impossible unless 03B4(g) is
trivial. Thus 6(g) E Der 

-

b) Let T~(x) be an outer derivation of 

Vol. XXIV, n° 4 - 1976.



400 H. SNELLMAN

From (2.3) we have

Since is abelian and irreducible, is one-dimensional

according to (2.3). Hence = 0 ~ ~x = 0, X E g and 6(g) is trivial.
If 6( g) is faithful this implies that g is trivial. 

- -

We shall therefore study only reducible reps of U given by mixed genera-
lized states w 
When U is an’abelian topological *-algebra, then it can be written in

the form U = UR + where any f’ E satisfies f* = f:

THEOREM 2. 2014 Let 9t be an abelian locally convex *-algebra with algebra
seminorms P = ~ pa and cu a generalized state in Gg. Then is
self adjoint in for any j’ E ~R. 

-

Proof : - Let E g be an element in Consider the
series

Now

Thus

This shows that every is an analytic vector for j’ 
Hence is essentially self-adjoint on for any j’ E ~R [12].
We shall need also a more specific result.
Let M be a real manifold and 9t an algebra of C °°, functions on M with

compact support, with algebra semi-norms P == { of the usual supre-
mum type.

, 
PROPOSITION 2. 2014 Let 9t be as above and be a generalized state

on N. Then the powers of x, x E M are represented by self-adjoint operators
in 

Proof : Let be the rep of U in For any xm, x E M we have
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401QUANTIZATION IN TERMS OF LOCAL HEISENBERG SYSTEMS

if /~9t. Then define = 

The operator is a linear operator in with domain 
If L is the a-algebra of Borel sets in M, then all j’ : s in 9t with compact
support in E generate ~I. Let j’ e 8l with compact support in E. For any
such j’ there exists a positive number L such that Then

This shows that IIw(xm) is essentially self-adjoint on and can
be extended to a self-adjoint operator in 

Finally we give the notions of irreducibility useful for reps of lHs.
Let denote the commutant of n(9t). Then the rep (n(9t), T(g), Jf)

of the IHs (9t, g, ~) is weakly (strongly) Schur-irreducible [9] if the only
operators B E that commute strongly (weakly) with T(g) on Dare
the multiples ~,’0, ~, E C of the unit operator in jf. In order for strong commu-
tativity to hold it is necessary that each T(x), x Egis essentially skew-
adjoint on D. 

-

THEOREM 3. be an abelian, locally convex topological
*-algebra of functions on the real (analytic) manifold 9Jl, G a real finite-
dimensional Lie group with Lie algebra g, and %w) a weakly
Schur-irreducible rep of the IHs (9t,~~) in jf, obtained- from by
the GNS construction. Then if TJg), is integrable, there is
a corresponding rep U 0)( G), of the Hs (~, G, a) that defines
a (topologically) irreducible system of imprimitivity based on 9M.

Proof: The weak Schur-irreducibility implies that %0) carries a rep
of g by skew-symmetric operators T(g). This rep is integrable to a unitary
rep U(G) of G. The U(G) : s define = g E G
a Lie group a(G) of automorphisms, with generators ~( g_ ). (9t, G, a) is the
Hs with rep UJG), 

-

Let ~R be the real elements in N = ~R + i2IR. The operators 
are self-adjoint according to Theorem 2 and admit a spectral decomposi-
tion { E(A) where L) is the Borel measurable space on m. From
the action

where y(xt) is the induced action of G on WI defined by

we deduce that

where

Now = since strong commutativity implies commuta-

Vol. XXIV, n° 4 - 1976.



402 H. SNELLMAN

tivity of the spectral families of the self-adjoint operators. Since furthermore
the operators U(G) are bounded, we have that

which is equivalent to topological irreducibility of the imprimitivity
system ({ E(~) ~ , U(G), The irreducibility implies that the induced
action of G on 9K is transitive.

3. QUANTIZATION

At the root of quantum mechanics lies the Born interpretation of proba-
bility density. If M is the manifold on which the density is to be defined,
one could introduce a set of « primitive observables » for a system .91,
corresponding to localization measurements on 9M.
The algebra of real primitive observables is embedded in a complex

function algebra on 9M equipped with a family ~ of algebra semi-
norms.

Let E be the a-algebra of Borel sets A on A function / E with

support A localizes the system A in A with probability density /*/. If 03C9 is

a suitable generalized state i. e. a positive, a-finite measure on
(9Jl, ~), then is the probability of finding the system localized by f.
The observables in will be « a complete set of commuting obser-

vables » for d, if the generalized state m E 
+ is such that the Hilbert

state has a direct integral decomposition into one-dimensional sub-
spaces corresponding to extremal generalized states 
The kinematical transformations of the measuring device of d determine

a Lie algebra g of generators of these transformations. This Lie algebra
*-Der (iX(8R)). If ~( g) is integrable 

then a(G) will be a Lie group of automorphisms (g being the Lie
algebra of G). Choosing m g-annihilating, a(G) will have a unitary rep 
in leaving the probabilities invariant.

According to Theorem 3, the rep U 0)( G), of the Hs

G, a) determines a UJG), of imprimi-
tivity for j~ which is irreducible if the rep (I10)(g-(9Jl), is weakly
Schur-irreducible.

Irreducible systems are associated with elementary systems. In case b(g)
is not integrable the rep Tro(g), can be considered as a

generalization of the imprimitivity system for j~. Again an elementary
system will be associated with a weakly (or strongly) Schur-irreducible
rep of (~(9ER), ~ 5).

In the following we shall illustrate how this method of quantization
works in specific cases both for non-relativistic and relativistic systems.
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403QUANTIZATION IN TERMS OF LOCAL HEISENEERG SYSTEMS

3.1 « Non »-relativistic systems

For a « non »-relativistic system the primitive observables is taken
to correspond to localization measurements (position) in configuration
space M = 1R3.

Let f/n be the nuclear *-algebra of functions f E with ordinary
pointwise multiplication as the composition law and complex conjugation
as the involution. The family P = { of semi-norms on Sfn can be
taken as

with ordinary multi-index notation. These semi-norms are algebra semi-
norms.

For a non-relativistic elementary particle without spin the primitive
observables are the real elements of [/3.
~3 contains the important sub-algebra ~3, composed of the functions

j’ E //3 which have compact support.
The observables in [/3 do not exhaust the complete set J of commuting

observables for j2/: we must add a number of observables called super-
selection observables. J for a « non »-relativistic elementary particle is
then composed of (the real elements of) [/3 and the polynomial algebra
of the super-selection observables such as mass m, Baryonic number B,
electric charge Q, etc. These are mapped into the set { 9t, ~(~?I) ~ .
By definition the super-selection observables commute with the obser-

vables on j2/. For any we shall therefore have a decomposition
of into subspaces labelled by the eigen-values of the super-selection
observables. In the following we shall neglect super-selection observables,
other than m.

The generalized states {03C9} on //3 are the positive tempered distribu-
tions !/’(1R3)+. For any one of these, can be written as L2(1R3, 
where /1 is a tempered (positive) measure. The one-dimensional subspaces
of carrying the irreps of !/3 are the generalized eigenvectors of posi-
tion in [/’(1R3). The Euclidean Lie algebra e(3) of translations and rotations
in 1R3 is mapped into *-Der (~3) by

The triplet (~3, e(3), 5) so defined is a lHs. It can be imbedded in a Hs

Vol. XXIV, n° 4-1976.



404 H. SNELLMAN

(Y3’ E(3), a) since 5(~(3)) is integrable to a(E(3)). The e(3)-annihilating
states give rise to reps where J1. satisfies

J1 is then the Lebesgue measure on 1R3.
The rep nalY3) is thus the natural imbedding of Y(1R3) in L2(~3, d3x)

with the same composition and involution as before. The operators n~(/),
j’* = f ~ ; f’ E ~3 are self-adjoint according to Theorem 2. The natural

multiplier algebra 0~!~) of ~3 contains the multipliers

These close with the derivations ~p under commutation to the Heisenberg
algebra ~7 :

Denote i P and nj- ix) _ - iX. Now is dense
in L2(f~3, d3x). By Proposition 2, the Xoperators are essentially self-adjoint
on 1 ), hence also on the invariant domain 1 ). The same
holds for the P : s on The operators - i P, - iX and iI satisfy
the commutation relations of a rep of h~ on by means of
essentially skew-adjoint operators. This rep is weakly Schur-irreducible
i. e. the only bounded operators that commute with the spectral projectors
of P, X and I on their domains of definition, are the multiples /LI, ~ e C
of the unit operator in This rep of h~ has a common dense domain of
analytic vectors for P and X in and can be integrated to a
unitary rep of the Heisenberg group H7. This is the ordinary Schrodinger
rep of Hy in the Weyl form which determines a unique equivalence class
of unitary irreps up to a scale factor.

In the rep of by means of the operators i P and iL is likewise
integrable (since 5(~(3)) is integrable on 
Dynamics is introduced in the ordinary way by letting the operators (X, P)

become time-dependent (thus also, This time-dependence should
preserve the algebraic structure h7.

Rather than elaborating on this point we shall indicate in which way
the use oflHs : s can take care of more general cases.

Instead of taking the manifold M = ~3, consider the following examples
a) M, = T3 = { X E ~3 ; 0  x~ - 2~ ~
b) M,=(~)= {xe~;x~0}
c) M, = !~BS-~ = {xe ~ ; ~ + ~ + x~ ~ 0}

and let there be an elementary spinless particle moving on these manifolds.
The algebra are composed of functions vanishing together with

all their derivatives on all boundaries. For these algebras the algebra
Annales de l’Institut Henri Poincaré - Section A



405QUANTIZATION IN TERMS OF LOCAL HEISENBERG SYSTEMS

semi-norms in (3 .1 ) can be used, provided the functions vanish together
with all their derivates on the finite boundaries.

If Ea is the a-algebra of Borel sets on Ma ; a = a, b, c, then the C°°-func-
tions with compact support on { 0394}; A E 03A303B1 generate dense sub-algebras
of the F(Ma) : s. Hence due to Proposition 2, the will be self-

adjoint on L 2(Ma, 
In all cases the derivations corresponding to the kinematical Lie

algebra e(3) can be defined on the as in equations (3. 2a-b). This
derivation algebra is not integrable on any of the F(Ma) : s, however.
Consider reps of the IHs: s (F(Ma, e(3), 5) by e(3)-annihilating

generalized states on F(Ma). The corresponding Hilbert space generated
by the GNS construction is = L(M, d3x) where d3x is the Lebesgue
measure on M«. By Theorem 1 there are reps of e(3) by means of
skew-symmetric operators in 
The following situations occur 

a - a
a) In L2(T3, d3x) the operators P = - i ax and L = - ix x ax are

symmetric on which is an invariant dense domain
for this rep of e(3). The same domain is the largest invariant dense domain
for the rep of h., generated by the algebra l~~ defined as in (3.4) with f’E F(Ma).
P has defect indices (1,1) on this domain but can be extended to a self-
adjoint operator on the domain of periodic (Lebesgue) differentiable
functions on T3. The rep of h7 is weakly Schur-irreducible (as is the rep of
(F(MJ~(3), 5)) but not integrable to a rep of H7, due to lack of common
dense domain of analytic vectors for P and X = The operators L
are self-adjoint on the same domain as P. Lack of common invariant
domain of analytic vectors makes this rep of so(3) non-integrable [15].
The rep is accordingly non-integrable.

b) In L2«1R+)3, d3x) the operators P are symmetric with defect
indices ( 1,0). The rep of h~ in this space is not weakly Schur-irreducible,
since the operators P don’t have any orthogonal projectors in It is
not integrable to a rep of H7. The rep of (F(Ma), e(3), 5) is not weakly
Schur-irreducible. The operators L have properties as in a) and neither
TJ~(3)) nor TJ~(3)) is integrable.

c) In L2(1R3S3, d3x) the operators P are self-adjoint and the rep of h~
is weakly Schur-irreducible, but not integrable to a rep of H7. The opera-
tors L have self-adjoint extensions and the rep Tro(so(3» is integrable to a
unitary rep of SO(3). The rep T~(3)) is non-integrable however.

In each of the cases a)-c) there is a mechanics defined by the observable
algebra spanned by reps of ~(3) Ð (t~ (B ’0 ) : -so(3) B hy.
The symmetry between P and X which exist in the ordinary case M = 1R3

is lost when M ~ 1R3. There is, however, nothing to prevent us from using
the momentum space for M, provided this is meaningful for the problem.

P is then self-adjoint and X = will be only symmetric in general.
Vol. XXIV, n° 4 -1976. ap 
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406 H. SNELLMAN

The Casimir operator for is P2. If T~,(e(3)) is invariant under the
time-development we can expand the states according to irreps of e(3)
labelled by the eigenvalues of P2.

3.2 Systems with spin

The measureability of the spin of a free lepton is a delicate matter 
Primarily the spin degree of freedom shows up in the degeneracy of the
eigenstate of the observables, corresponding to the fact that quantum
mechanical spin is not a classical concept in general. The Hilbert space
has the form Jf = @ where is the carrier space of a rep of the
spin algebra su(2). This situation can only be achieved by considering
~I = F(M) to be embedded into a larger algebra 9t such that 
where F(5M(2)) is the complexification of the enveloping algebra of su(2).
A state on  then decomposes into a family of identical states when
restricted to M.
The kinematical algebra e(3) can be mapped into Der (9t) by the defi-

nition

where [st, = 

If r~ is a state then the e(3)-annihilating states give rise to the trivial
rep of su(2) thus for these states the GNS construction gives an unfaithful
rep of M coinciding with a rep of 9t. A faithful rep of M is therefore given
in @ jfy, where cc~ is the e(3) annihilating state only when restricted
to and is a carrier space of a rep of su(2). If we insist upon a rep by
skew symmetric operators in ~, then it is either non-decomposable or a

direct sum of the ordinary irreps I)Ï; j E! 2 N of SU(2) [7J].
If the particle has extension, then the spin can be introduced by extend-

ing the primitive observables ~3 to ~3 (x) !Ø3(Q), where !Ø3(Q) is the algebra
of C~-functions on

the space of Euler angles, where composition is ordinary point-wise multi-
plication, involution is complex conjugation and the algebra semi-norm
is given by
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The derivations

define a map 03B4 from su(2) into Der (.@3(Q)).
In a natural manner the derivations 5j = 6j 8) 1 + 1 @ ~s define

a map b’ from su(2) into Der Q .@3(Q)) which combines with

03B4pf = -~ ~xf ; / ~ @ to 03B4’(e(3)). An e(3)-annihilating generalized

state OJ on Y3 @ gives = L2(R3, d3x) @ L2(03A9, dQ) where
dS2 = sin f3 dad~3dy.
The symmetric operators S = xTJJ) have self adjoint extensions

on functions periodic on the boundaries of Q and generate an integrable
rep of su(2). dQ) decomposes into a direct sum of carrier spaces of
irreps of SU(2), but these are not stable under 
The irreps of the IHs (~3 ~) .@3(Q)~ e(3), b) in thus describe systems

with rotational bands. This situation is typical for extended objects like
molecules and nuclei, and is suggestive for hadrons (Regge trajectories)
indicating that hadrons also might be extended objects.
For leptons we have so far not seen any rotational levels, and the spin

for these particles seems to be an intrinsic property. If these particles are
described by the Euler angles, then one has to postulate that the operators

y)) are not observables in and that the superposition
principle is valid only in sectors with fixed eigenvalues of the super-selec-
tion observable S2.
For particles with spin, the Casimir operators characterizing the irreps

of T~(3)) are P2, S2 and P - S, where P - is the helicity operator.

3.3 Relativistic systems

A. CONFIGURATION SPACE REPRESENTATION

Let M = 1R4 and the real functions of Y4 correspond to the primitive
observables describing localization in space-time for an elementary relati-
vistic particle.
The algebra ~ = 14 EE ~(3,1) is mapped into Der (Y4) by
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Since space-time is homogeneous and isotropic we can integrate ~ to
the automorphisms a(~+) where ~+ - T4 8 SOo(3,1) is the restricted
Poincare group.
The Lebesgue measure on ~4 is ~-annihilating. Thus the IHs ([/4’ ~, 6)

can be embedded in the Hs ([/4’ ~+, a) which carries in = L2(1R4, dx4)
a rep of h9, the covariant Heisenberg algebra, by means of the operators

= P~ = XV and 1 on the domain Gro( 9’4). On the same
domain is differentiable and its differential coincides
with The group (U( 1 ) 0 T4) 8 SOo(3,1) was studied
in [17].

Introducing the time-parameter r, corresponding to proper world-
time (historical time) leads, in an analogous way as for the non-relativistic
elementary particle, to the dynamics of Horwitz and Piron [18]. Spin
degrees of freedom can be introduced by considering ~4 = (sl(2, C))
and representing the IHs ([/4’ t4 S ~(2, C), b) in 3i = fro @ where fv
carries an irrep of ~(2, C).

B. MOMENTUM SPACE REPRESENTATION

In many situations in particle physics one is not concerned with the

position of the particles but rather with their velocities along rays in space-
time and with their masses (and super-selection quantum numbers). This
situation is typical for scattering experiments. It seems then worthwhile
to investigate this situation per se.

Introduce the primitive observables f ~( ~), ~ E (M, E) where M = 1R4 is
the momentum space (always neglecting super-selection observables).
The corresponding algebra is again Define the derivations b(so(3,1 ))
by

The triplet (sP4, ~(3,t), 5) is a lHs. It can be represented in fro = L2([R4, 
where

is a (3,1 )-annihilating measure. The rep of 9’4 is generated by
. the natural embedding of into For a free particle p2 = M2 ;

p° &#x3E; 0. We then take The ensuing rep is

then isomorphic to the algebra ~3 in = L2(1R3, (2(p2 + M2)) - 
with the generators of T~(~(3,l)) given by
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Together with the multipliers

the M.uv : s close to a rep of the Poincare algebra ~ = 1.4 (E so(3,1 ) which
is integrable to a rep of 

Spin is introduced by considering the algebra ~3 = ~3 0 ~(.sM(2)) and
the derivations

where Ji = and K’ = The IHs (~3, so(3,1 ), b) is represented
in = L(R, (2Jp2 + @ $’v where $’v is the carrier space
of a rep of su(2). Together with the operators P° and P, previously defined,
the operators J and K close to a rep of ~, given earlier in [9]. If %v carries
an irrep of su(2), then the vectors in 3i~ satisfy

where W  = i 2~ 03BD03C103C3M03BD03C1P03C3. If i T J and iT03C9(K) are symmetric, then is

finite-dimensional and s E 1 2N. In this case the irreps are integrable to the
real mass, positive energy unitary irreps [M, s] of 9 given by Wigner [19].

Reps of the Weyl algebra a~ = t ~ ~.

The following example illustrates the use of IHs to treat relativistic
systems with mass-spectra.

Let T2 = { u, v ; 0  u  2x, 0  v  2x} and ~2 be the algebra
of Co-functions on T2 equipped with the algebra semi-norms

Put 21 = ~4 8&#x3E; P}2 and define the derivations 5(c~) by
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The IHs (9t, co, ~) so defined can be represented in Jf = L 2( 1R4, T2 ; dq).
Taking dp = M2)d4p gives a rep n of U that is given by

Q with the rep T(cvl given by

The operator P /lP/l has the spectrum { rn2 ; m2 - + l)2 ; k, 
on the domain periodic on T2 ;
I I (au + av)2.f I I.~’’ ~ ~ ~ .
The operator D has also a self-adjoint extension. There is, however, no

common invariant domain of analytic vectors for D and P~‘, hence no
integrability of 

This rep of T(w) can be extended to include spin degrees of freedom but
is not weakly Schur-irreducible.
Weakly Schur-irreducible reps of with the same mass spectrum as

above (although with different multiplicity) can be obtained as in [20] if
one relaxes the condition of a rep in terms of symmetric operators.

4. DISCUSSION

The examples of quantization by means of reps of 1Hs : s given above
should be enough to show the potentialities of the scheme. Below part of
the physics involved in describing observables with symmetric operators
will be discussed.
From an algebraic point of view quantization in terms of reps of 

is an exercice in induced reps of Lie algebras, which have been studied
i. a. by Dixmier [21]. Our approach emphasizes topological aspects.
The weakly (or strongly) Schur-irreducible reps of the IHs (9t, g, 5) are

in many cases connected to reps of finite-dimensional Lie algebras due to
the fact that 9t is generated by an abelian finite-dimensional real Lie

algebra 3~y~ contained in The quantum mechanical system j3/ is in
such cases characterized by the Lie algebra structure A = 6w 0 g and the
time-development generator. The reps of A pertinent to a description of j~
as an elementary system, are the weakly (or strongly) Schur-irreducible
reps of A. An interesting but unsolved problem is in which way various
notions of irreducibility reflect themselves in the concept of elementarity
for a system.
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The irreps of A or (8l, g, 5) are obtained by suitable choice of the state
on 9t, in practice (when 9t is abelian) by certain positive measures on a
measurable space (9M, E). We have demanded that this state should anni-
hilate 6(g) when ~ is abelian. One would then like to know whether such
a state (measure) can always be found. This seems to be the case for a large
number of Lie algebras g, but we have no answer for the general case.

Also a classification of reps of IHs: s would be desirable, but even
when A is finite-dimensional this seems to be difficult since there are plenty
of non-decomposable reps. A type classification a la von Neumann-Murray
might, however, be attempted, e. g. by considering the W *-algebras gene-
rated by the reps T( g), Jf).
We shall now discuss the use of symmetric, non-selfadjoint operators

for the description of observables of quantum phenomena. In favour of
such operators the following arguments could, e. g., be advanced.

1 ) Quantum mechanics essentially always deals with closed systems.
This is an idealization which is violated already by the contact between
the measuring apparatus and the system. It must be considered as a
weakeness of the conventional theory not to be stable under small pertur-
bations from this, idealized, situation of describing isolated systems. In order
to describe open systems non-selfadjoint symmetric and dissipative opera-

. tors come into play, being generators of contractive semi-groups, etc.,
and the time development might in general even be non-Hamiltonian.

2) Already canonical quantization leads to ambiguities, since e. g. the
use of spherical coordinates for a free particle, renders the radial momentum
symmetric, without selfadjoint extensions inside the Hilbert space. Why
not still try to interpret the radial momentum as an observable ?

3) Only commuting operators can be measured simultaneously with
arbitrary precision. Taking such a « complete set G of commuting obser-
vables » defined on a common dense domain D, one might ask why those
observables that do not commute with ~ should be essentially selfadjoint
on D, since they are anyhow incompatible with those in ~. In continuation
of this argument one might well ask why they should be essentially self-
adjoint at all.

For the cases discussed in this work symmetric operators are considered.
Any such operator A, densely defined, can be extended outside the given
Hilbert space Jf to a selfadjoint operator A+ in a Hilbert space

[22]. By projecting back to the original space Jf one obtains a
rep of A in the form

is a so called « generalized spectral family », satisfying

1 ) B(~) ~ B(,u) for À  ,u.
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Unless A is selfadjoint in Jf, the B(2) : s are not orthogonal and are thus
not in general projections. The B(2) : s are of the form P+E(2)P+, where P+
is the projection in on Jf and { E(2) } is the spectral family of the self-
adjoint extension A+ in This extension is unique if A is maximally
symmetric.

Since the B(2) : s are not projections, they do not generate a rep of the
ordinary quantum logics of yes-no propositions. This means that with
respect to the operator A (as an observable) we cannot get complete infor-
mation of the system. Thus if A is a Borel set on , then the question

B(A) = JA ~B(~) applied to a normalized vector / e Jf, does not prepare /
to be within or outside A with respect to A after the measurement, since for

any  1 and 

{ B(2)} is a family of contraction mappings, the only fixed point of
which is the zero vector in Jf. Repetition of the question therefore does
not improve the preparation. An attempt to illustrate the physics connected
with this phenomenon is made in the discussion of case b) of 3.1 below.

Let A and ~ be two Borel sets in R such that = R and A n ~ _ 0.
The two operators B(A) and will then both be positive and selfadjoint.
The spectral projections ofB(A) and do give a complete set of questions
of the two operators respectively. In fact we have

hence

Thus B(A) and a(~) are compatible questions. However, for arbitrary
Borel sets A and A’ the corresponding operators B(A) and B(A’) do not
in general commute, but since they are observables in the ordinary sense,
they satisfy the usual uncertainty relations on vectors in f.
A general feature of the quantization of systems a, b and c in section 3.1 1

by means of reps of IHs : s is that the symmetry between P and X is broken.
In the case 9[R = 1R3 this symmetry is connected to the unitarity of the
Fourier transformation in d3x), and questions regarding position
or momentum can be asked with the same right, although not at the same
time according to the idea of complementarity. However, in case 1R3
as in the examples a, b and c of 3.1, questions pertaining at localization
are distinguished and can be asked, whereas questions of momentum will
depend on the possible boundary conditions that can be put on the respec-
tive manifolds. This seems to be intuitively connected to the possibility
of a geometrical arrangement for momentum measurements in the mani-
folds.
’ 
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In all cases let us consider a particle of mass - moving in the manifolds.The Hamiltonian is then H = P~. 2

Case a. - The momentum of the particle is measured on the plane
waves with periodic boundary conditions. This domain is not invariant
under the operators X, which explains why there is no contradiction with
the Heisenberg uncertainity relations. On the dense subdomain of vectors
in physics goes on as if there were no boundaries. Trouble only
comes when the states describe particles that hit the boundaries, since the
arrangements for momentum measurements are then affected by the
geometry.

Case b. - On the domain

H = P2 and P commute (" means closure). On this domain the state
functions vanish fast enough so that the dynamics is unaffected by the
walls. This is of course extreemely important, since only when the particle
is located away from the walls is the momentum conserved (Energy is
always conserved). In fact, considering the walls as infinitely heavy one
might well have elastic collisions without energy loss. Any arrangement
put up to measure the momentum at the walls must take up (either some
energy or) some momentum and transport it away from the particle, or
one cannot get information from that part of the measurement apparatus
(say the second of two slits). Insisting upon that the measurement process
should not affect the boundary conditions results in a lack of information
whether the particle passed the second slit or not and makes the question
« does the particle have momentum in A c R3 » impossible to answer
with « yes » or « no ». There is a certain probability that the particle did
have momentum in A before the measurement, but it will not have this
momentum after the measurement, since it will have hit the wall and sub-
sequently changed its momentum. It is in this case intuitively as well as
formally clear that the modulus of P can be measured, being in
fact P! = JH which is a selfadjoint operator. On the normalized eigen-
states j’ of H we have (f, Pj’) = 0 but (f, | P /) = fl.
As we mentioned in 3.1, the rep of the IHs describing the system is not

weakly Schur-irreducible, since P does not have any selfadjoint exten-
sions in (It is certainly neither strongly Schur-irreducible). In cases
like this, with maximally symmetric operators we suggest a different notion
of irreducibility.

Let T(g), jf) be a rep of a IHs (3t, g, ~) where T(g) is an algebra
of maximally symmetric operators on a common dense domain D. Let %+
be the minimal extension space of in which T+( g) is represented by essen-
tially skewadjoint operators. 

-
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DEFINITION. - (IT(9t), T( g), Jf) is quasi-weakly Schur-irreducible if
the only bounded operators B ~ 03A0+(U)’ in that commute with the
set T+(g) are multiples of the unit operator in The rep of the IHs in
case b) is quasi-weakly Schur-irreducible.
We conjecture that the physically more appealing definition of a quasi-

weakly Schur-irreducible rep ofalHs which demands that the only bounded
operators B E that commute with the generalized spectral families
of T( g) are the multiples of the unit operator in Jf is equivalent to the
one given above.
Case c. - The situation closely resembles that of case a), only that

we now have rotational invariance around the origin.
From the above discussion the following simple rule seems to emerge.
Given that all questions i. e. all measurements regarding an observable

can be asked (performed) with unique result, this observable should have
a selfadjoint representation and conversely, if it has a selfadjoint represen-
tation, any question regarding this observable can be asked, with unique
answer. If all measurements cannot be performed, then it should not
have a selfadjoint representation and conversely.
An alternative examination of this point, avoiding the possible critisism

that P = - iV is not necessarily a dynamically consistent definition,
could be made in the following way for case b). 

~ 
1

Let ~3 be the observable algebra on (1R+)3, and let a particle of mass - 2
move in (1R+)3. If, as is often stated [76], all measurements can be reduced
to position measurements, it is enough to give a rep of ~3 and the time-
development of x(t). The momentum of the particle can then be derived

by defining it as 1 2 x(t). Knowing the algebra of the x(t): s implies that
p = ~ 2 can be calculated by taking the limits

on certain well behaved state functions. If P + = P- on a sufficiently nice
set of functions of X, then P will be a good operator with respect to which
any question can be asked with unique answer. If the set is too small to
give unique answer to all questions then P + ~ P- for some states and P
should not be self-adjoint. But it could still be used on the nice states !

Taking H = - A, which has self-adjoint extension in L 2((1R +)3, d3x) the
result is that
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and

Hence P+ = P _ = P on all states j’(X) differentiable on ([R+)3. This is
~ 

true only for those states that vanish, with vanishing derivative at the
origin. We thus reach the same conclusion as before, namely that questions
pertaining at momentum measurements can not be asked on states where
the particle is hitting the walls after the measurement. If the question
should be possible to ask arbitrarily many times, then obviously we get
the condition that j’(X) is CX) and /~(0) = 0, ’dn E N. It should be men-
tioned, that the rather primitive analysis made here of the use of symmetric
non-selfadjoint operators as observables is no substitute for an incorpo-
ration of these operators (and hopefully even dissipative ones) in a formal
theory of measurements.

Finally some remarks on the use of IHs : s in relativistic physics. The
Lorentz invariant boundary conditions in [R4 are probably not of much
interest to particle physics. However, the idea that constituents of elemen-
tary particles are confined to a small volume is in direct accordance with
the type of constraints imposed in the example of the Weyl algebra w.
This way of mixing internal and external degrees of freedom seems very
promising, giving a well defined mathematical structure to such systems.
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