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Semi-classical approximations

A. VOROS (1)
Service de Physique Theorique, Centre d’Etudes Nucléaires de Saclay,

BP n° 2 - 91190 Gif-sur-Yvette, France

Ann. Inst. Henri Poincaré,

Vol. XXIV, n° 1,1976,!

Section A :

Physique théorique.

ABSTRACT. - We give a unified presentation of the most common
semi-classical approximations to non-relativistic quantum mechanics:
the Wigner representation, the WKB-Maslov method and quantization
a la Bohr along closed classical paths (Balian-Bloch, Gutzwiller). We
start from a simplified, physically oriented version of the symbolic calculus
developed by Hormander, Duistermaat, Leray, ...: it leads to the Wigner
method and to a definition of those operators (quantum observables or
density matrices) for which the classical limit makes sense. The WKB
method applies when the semi-classical density in phase space is supported
by a Lagrangian submanifold: for the levels of a separable system this
leads to the Bohr-Sommerfeld rules corrected by the Maslov index. We
then show that non-separable systems can also be treated in the neigh-
borhood of closed, stable classical, physical paths (or invariant, involutive
manifolds more generally): non trivial corrections to the Bohr rules arise,
corresponding to quantized transverse fluctuations (as in the rotational
spectrum of a nucleus). Each path yields a multiple series of levels which
fixes the local structure of the spectrum.

1. INTRODUCTION

In physics a method of solving a quantum problem is usually called
semi-classical if it produces the result as a power series in h. Empirically,

( 1 ) Attache de Recherches au C. N. R. S.
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32 A. VOROS

the term of lowest order turns out to be related to the trajectories of the
classical system and the next power in 11 is related to the invariant density
on the trajectories; higher powers are offen too complicated to be computed
or interpreted. In spite of their family likeness, these semi-classical expan-
sions are arrived at through very different methods depending on the
object considered : geometrical optics, stationary phases, harmonic approxi-
mations to the potential, etc. The mathematical theory of differential
operators has more unity but it is very abstract and remote from physical
considerations. The purpose of this paper is partly to give a unified formu-
lation of various existing methods, and partly to show the physical rele-
vance of the recent mathematical developments, in particular for the

quantization of non-separable systems. Thus a part of the paper has to be
in review form but it does not claim to completeness nor to full mathema-
tical rigor (the latter can be found in the references of section 3): we have
rather stressed the geometrical structure common to all methods and
its physical consequences. We begin here by a brief survey.

1) The standard semi-classical equations

Let’" E be a solution of the Schrodinger equation in a regular,
semi-bounded (2014 oo  c  V(q)) potential :

If we explicit the modulus and phase as ~ = eq. ( 1 ) is equivalent
to the system (2) :

Physically (2") is the continuity equation for the probability density a2 = ~*~

and its current a 2 2014 = 2014 and q) is interpreted as the local
m 21m m .

velocity field of the flow [1] [2].

2) The semi-classical approximation

If terms of order h2 and higher are neglected, system (2) describes a
classical flow of particles without mutual interactions, in the potential V,

Annale,s de l’Institut Henri Poincaré - Section A



33SEMI-CLASSICAL APPROXIMATIONS

vs
with action S = So, invariant density ~~ = X and velocity field u = 2014~,
satisfying: ~

where 2014 = 2014 + v.V is the total derivative along the classical path. The
« semi-classical » expression = solves (1) modulo O(2): e. g.
for Cauchy data §(to) = q)

solves (3") in terms of the explicit classical action So and paths qt.
The right hand side (RHS) of (2’) can be exactly interpreted as an elastic

force between the particles of the flow [4]. But we shall use a different,
recursive approach.

3) The WKB expansion (2)

Assume that S = So but that a is a formal power series (FPS):

v

with ao = /. The correction terms an (n &#x3E;_ 1) satisfy a recursive set of
ordinary differential equations along the classical paths [5] :

THEOREM 1. - Assuming the initial data:

(~) It is the analog of the « eikonal » in optics, named after Wentzel, Kramers, Brillouin.

Vol. XXIV, n° 1 - 1976.



34 A. VOROS

where the Sj are distinct solutions of (3’) for j E J (a fnite set): the Cauchy
problem for ( 1 ) has the solution :

where for each j, is obtained by integrating (5) along the classical paths
corresponding to the action S;: in short, writing Xj == 

(thus the distinct 5j do not interfere).

COROLLARY. - If (6’) holds in the sense of asymptotic series, so does (6")
provided that for all t’ E [to, t], and for all j, the remain disconnected
solutions of (3’) and all integrands in (7) remain finite, in particular 0.

Analogous expansions exist for systems [6] like the Dirac equation [7].

4) The caustic surfaces

They are the envelopes of the classical paths of S. A simple caustic is

locally the boundary between a region where S has two branches S~ S2
(which join on the caustic) and a region where S is not defined as a real

function (forbidden region) ; and - has a simple zero at each focal point [5]
X

(i. e. a contact point of a path with the caustic). Thus the WKB method
breaks down and the semi-classical wave is infinite on the caustic; this
follows from high quantum interference between waves with the almost
equal phases S and S2 (Figure 1 shows a caustic of straight paths in two

Annales de l’Institut Henri Poincaré - Section A



35SEMI-CLASSICAL APPROXIMATIONS

dimensions: caustic singularities are not related to singularities of the
potential).
However the semi-classical wave can be continued beyond the (simple)

caustic in the form 1/1 cl = Along a classical path the
discrete phase jumps add up to where n is the number of focal

points encountered (for a geodesic flow, n is the Morse index of the path [8] ).

5) Uniform semi-classical methods (3)

Uniform semi-classical methods are those which are also applicable on
and beyond caustics. They are necessary whenever the difficulties due to
caustics must be overcome (e. g. to compute energy levels and eigenstates).
All uniform methods are obtainable by representing the quantum problem
in classical phase space, where the classical flow, being incompressible,
cannot have caustics (cf. section 4). Such a realization, in a form invariant
by canonical transformations of phase space, exhibits the unity of all
methods.
The Wigner method [9] (section 4) approximates, in an « algebra of

observables » framework, quantum observables (resp. states) by classical
observables (resp. states), with weak convergence (of expectation values)
as h - 0.

The Maslov method [10] [11] [12] (section 5) defines Hilbert spaces in
which wave functions of the WKB type can be followed as h - 0. The
Hilbert space structure allows us to look for semi-classicaT eigenstates
and energy levels : the latter are given by Bohr-Sommerfeld rules corrected
by the « Maslov index ». But practically only separable systems can be
treated in this way. The representation in phase space makes a crucial
use of the invariant Lagrangian submanifolds of phase space.

In section 6 we take a look at geometric quantization from a similar
point of view.
For a non-separable system admitting closed stable paths (or invariant

manifold of higher dimensions), we show in section 7 how the Maslov
method can be explicitly applied to yield energy levels and eigenfunctions,
provided the transverse fluctuations of the system are approximated by
their quadratic (harmonic) parts. Each closed path yields a multiple series
of levels involving the angles of rotation (or characteristic exponents [14])
and a generalization of the Maslov index. These results extend previous
results relating quantization and closed paths (refs. [15] to [19]).

Since the completion of this article, we have in addition obtained the

(~) We shall not look at higher powers of h which are not determined by classical
dynamics alone.
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36 A. VOROS

full h-expansions of the quantum bound states described herein (articles
in preparation, and [54]).
We have omitted several important topics such as the Feynman path

integral [19], the stochastic methods [20], analytic function methods [21]
and the hydrodynamical picture [4]. For an extensive review with a complete
bibliography, see ref. [22].

2. CLASSICAL MECHANICS

We give a short summary of canonical mechanics in the framework
of a cartesian phase space with a Hamiltonian flow [23] [24] [25], assum-
ing Coo smoothness everywhere. More general phase spaces (symplectic
manifolds) are sometimes useful [24] but they pose global problems, mostly
unsolved, for quantization (examples in section 6).

. 

1 ) Notations
We often follow ref. [22].
Configuration space fl = ~; momentum (dual) space 9 = ~*.
Phase space M = ~ Q ~ with points x = (q, p). We let:

= algebra of real-valued functions on M (called observables),
q"(M) = space of vector fields on M (a vector field X defines a Lie

derivative Lx and a 1-parameter semi-group of mappings U~),
= space of differential forms on M of degree p ( p-forms).

2) The canonical form
I

OJ = dp. A dqi (in short, dp A dq). Derived notions:
1

a) Define: q"(M) .!4. by lb(X 1 ))(X2) == 03C9(X1, X2).

In coordinates x = (), b has the matrix J = ( 0/ t; OJ is non-

degenerate (i. e. # = b - 1 exists) and closed (dcv = 0): it is a symplectic
form.

b) Canonical transjormation: a mapping M ~ M preserving m.
For X E U~ is canonical (Vt) iff Lxw --_ 0.
Linear canonical maps on M form a sub-group Sp(I) of GL(21) called

the symplectic group [11] [13]. In matrix form U E Sp(I) iff tUJU = J; the
eigenvalues of U come in pairs (A, À -1)klR or (~, ~’~eM. or in quadruples
(g 5 À - 1, 5- The Lie algebra sp(l) is the set of matrices A such
that tAJ + JA = 0 [23]. It has dimension 1(21 + 1).

Annales de l’Institut Henri Poincaré - Section A



37SEMI-CLASSICAL APPROXIMATIONS

c) Canonical orientation: every space R# (spanned by qk and pk) is oriented
by the volume = dpk n dqk.

d) Symplectic gradient : for j’ E let :

e) Poisson brackets : is a Lie algebra for:

3) The canonical volume

where f/2] = integer part of 1/2. Derived notions:

a) Determinant (jacobian) of a mapping M U M : the scalar function
defined by U*Q = (detn U)íl

b) Divergence (trace) of the scalar function defined by :
LX03A9 --_ (divn X)Q; the identity :

implies that U~ is volume-preserving (incompressible) iff diva X --- 0.
A canonical transformation is always volume-preserving.

4) A special class of canonical transformations

We introduce the following notations for subsets K, H, ... of

Q=~1,2,...,I~: P=0; !K)=cardK; K’=CK; K-H=KnH’;
K A H = (K - H) u (H - K) (a group operation). Following Leray [12] ;
we introduce canonical transformations exchanging the configuration
and momentum coordinates in some spaces R# ; for any mapping U of 1R2,
let UK be the product of U on all spaces R# (k E K) and of the identity on
all spaces (k’ E K’).

If now U is the rotation by -~- ~ : q -~ + p : (VK) and: . ~ 2 p - q 
K p( )

Vol. XXIV, n° 1 - 1976.



38 A. VOROS

Denote by j the ordered set of coordinates obtained by the action
of UK, on the original coordinates (qp):

1

The I-forms OK = 1 sjKdtjK satisfy d03B8K = ¿ ds£ A dt( = m and:

5) Lagrangian manifolds [10]

A Lagrangian subspace is a vector subspace of M, isotropic for cu,
maximal (i. e. of rank I); a submanifold A c M is called Lagrangian if
its tangent space at any xeA, Tx(A) is Lagrangian; or equivalently:
dim A = I and :

A Lagrangian manifold is stable by canonical transformations. We now
provide two descriptions of connected Lagrangian manifolds. l

a) The K-charts : define the projections x = p E ; 1tQ is

locally 1-1 except on the singular set LQ c A (fig. 2) :
l 
A... 

On any connected open set V c A - EQ, nQ defines a local chart which
we call Q-chart ; V is the graph of the vector field q E nQ(V) # p

FIG. 2. - l = 2 ; it is impossible to show graphically
the Lagrangian property = 0.

Annales de l’lnstitut Henri Poincaré - Section A



39SEMI-CLASSICAL APPROXIMATIONS

and (12) is equivalent to: curl p = 0. Define the Q-generating function

of A, SQ(q), by: p = VqSQ’ i. e. SQ(q) = .’&#x3E;:0 integrated along

any curve on A of arbitrary fixed origin xo. The integral is one-valued

on the universal covering A of A; we assume the homotopy group
n1(A) = A/A to be free and we choose independent generating cycles y; :

then the integral is defined on A, modulo the set of constants {03A3ni03B1i}
where rxi = r ", ’)’i pdq (changing xo adds an irrelevant overall constant);

moreover SQ has several branches (their number will always be assumed
finite) according to the choice of x~03A0-Q 1 (q) : those branches connect two
by two on nQ(LQ).

Similarly, for any K c { 1, ...J} we define the K-chart by:

(e « K-space ») and the K-generating function :

which has the same ambiguity as SQ since (p 0~ = a;.
The K-charts form an atlas of A (proof in ref. [10]). The coordinate

transformation from the K-chart to the H-chart is :

( 11 ) and ( 13) imply :

In terms of SK and SH, (14) is equivalent to:

(15) and (16) describe a partial Legendre transformation noted :

SH(tH) = symbols satisfy:

Vol. XXIV, n° 1 - 1976.



40 A. VOROS

Conversely to any family { SK } with SH = we can associate one
Lagrangian manifold A of equations = sK for all K-charts.

b) Phase equations: if A is defined by t equations {Fj(x) = 0 } in M
(with independent dFJs in a neighborhood of A) then ( 12) holds iff: Vj, k,
Vx E A {F j, = 0. If moreover the are I observables in involution, i. e.

the equations { F~ = a~ (constant) } define an I-parameter family of Lagran-
gian manifolds { which fill (a domain of) phase space; this is called a
polarization, or Lagrangian foliation, of M. Each A~ admits a canonical
volume 11a. which is the pull-back of Q, normalizable to 1 if A~ is compact :
’1a. = ... ~~Fl - «I~ . ~~ L e.

By projection on any K-chart we obtain 11« in the tK coordinates :

and the Jacobian vanishes on nK(LK).

6) Hamiltonian mechanics

An energy function H(x) is given over M (or a domain of M). The classical
paths are the integral curves of the Hamiltonian vector field X = i. e.
the Hamiltonian flow U~ satisfies:

For any observable f, (8) implies :

The flow UXt is canonical (proof: (20) implies w = dp ^ dq + dp ̂  dq --_ 0)
therefore incompressible (Liouville’s theorem).

7) The time-independent Hamilton-Jacobi theory

Let A be a Lagrangian manifold contained in the energy shell

EE = H-1(E) c M. We consider such A as generalized solutions of the
time-independent Hamilton-Jacobi equation, since in the Q-chart, where-
ver SQ is defined it does satisfy :

THEOREM 2. - a) Any classical trajectory intersecting A lies in it ; thus A

Annales de l’Institut Henri Poincaré - Section A



41SEMI-CLASSICAL APPROXIMATIONS

FIG. 3. - Striped areas represent invariant volume elements in tubes of paths.

is generated by classical trajectories, on the energy shell tE, of a stationary
flow (fig. 3).

b) If y is a classical path in A, then for variations y of y in EE, with fixed

endpoints, the integral L is stationary at y = y and equal to SQ
( + const). ~ ~

proojl a) It suffices to prove that if a trajectory y(t) meets A at x,

then dy/dt In the Q-chart (but this is chart-independent),
(22) implies

2 by 20 RHS is 

proving the result. Every x E A is the initial point of a classical path, and
all these paths, travelled along according to (20), form a stationary flow
on A. If the flow is ergodic on A, any single dense trajectory generates A
(by taking the closure).

b) is in all textbooks [3] (the Maupertuis principle); SQ is known as
the time-independent (« reduced ») action.

8) The time-dependent Hamilton-Jacobi theory

To investigate non stationary problems in a similar framework, we
add time and energy coordinates to M to obtain an extended phase space

I

N4 ~ 1R21+2 with the symplectic form w = - dE A dt A dqi.
1

Let A be a Lagrangian manifold in M (=&#x3E; dim A = I + 1 and W IA = 0),
contained in the hypersurface {H(q, p) - E = 0}. In the (t, Q)-chart

S(t, q) = Edt satisfies the Hamilton-Jacobi equation :

Vol. XXIV, n° 1 -1976.



42 A. VOROS

As before, A is generated by classical trajectories, along which the action
is extremal and equal to S(t, q) (+ const.). Moreover, time evolution is
given by:

THEOREM 3. - The projection on M of A n {f = to ) is a Lagrangian
manifold Ata c M which is transported (with time to) by the flow Uto
satisfying the laws of motion (20).
The same A seen in the (E, Q)-chart has the generating function :

This is the reduced action for all values of E, and indeed the time-inde-
pendent theory can be entirely recovered by this change of chart (which
is a Legendre transformation).

9) Explicit examples

The ultimate (but generally hopeless) solution of a Hamilton-Jacobi
equation is a complete integral [3] [26], i. e. some subfamily of solutions
{ Sa for which any other solution is one of its envelopes (4). The time-
independent theory is completely integrable if there exist I observables
F1 = H, ..., F, in involution (eq. ( 18)) : on Aa = { F/~ p) = (Xj 
(cf. § 5 b) we can express p as a function of q and a ; then the Q-generating
function of A~:

can be computed by quadratures and is a suitable complete integral.
Examples:

a) free particle (l = 3) with spherical wave fronts :

b) The same with plane wave fronts:

c) 1-dimensional harmonic oscillator of frequency .
2n

(~) Ref. [26] stresses the importance for partial differential equations of envelope techni-
ques (such as the Legendre transformation).

Annales de l’lnstitut Henri Poincaré - Section A
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It is worth mentioning that the mapping Ur is the elliptic rotation around
the origin by the angle + this rotation is uniform with angular velo-

city m. Conversely any elliptic symplectic map in 1R21 (see section 7) can
be interpreted as the action during a finite time of a harmonic oscillator;
each normal mode gives an independent rotation in a 2-dimensional

plane [13].
The reduced action is :

d) In general we can solve (22) or (23) in powers of the coupling constant,
30

with S = I Sn : So is a given solution of the free equation: the are

0

then obtained by successive integrations along the unperturbed paths.

3. SYMBOLIC CALCULUS
ON DIFFERENTIAL OPERATORS

1 ) Introduction

Let P be a linear differential operator (LDO); in multi-index notation:

where q E Rl, Da = i|03B1|~|03B1| ~q03B111 ... ~03B111 , 
and the Aa are real and C XJ.

The highest order terms form the principal symbol [28] of P :

Possible discontinuities of solutions of Pu = 0 are studied with the
ansatz [61 _

where is arbitrary, and for j &#x3E; 1 : dfj ~ fj-1 (the form a sequence
M(~

p~~
of increasingly smoother functions). For instance fj = 20142014: will describe

high frequency waves and (31) wilt then define M up to terms of rapid decrease

Vo!. XXIV, n" 1 -1976.



44 A. VOROS

in w ; another choice: fj = (03C6 - s)j+ j! ( = s) (03C6 - s)j j!) will describe

waves discontinuous across the and then (31)
will describe u up to terms C’~ across that hypersurface; in all cases the
algebra is the same.

Substitution of (31) into Pu = 0 and identification in the if S yields:

where the scalar function C and the LDO’s Kj depend on the Aas and on
the function cp chosen among the solutions of (32’).

Eq. (32’) expresses the fact [26] that in Q-space the surfaces {03C6 = const.}
must be characteristic. Then, by the Euler equation :

the so-called characteristic curves q(t), solutions of

lie in the surfaces {lp = const.}, which they generate thereby.
A solution rp of (32’) is also the Q-generating function of a Lagrangian

manifold in phase space A c P~(0). The curves in phase space, solu-
tions of

are called bicharacteristic; their projections on 2 are characteristic curves ;
and moreover they generate A (cf. theorem 2 and fig. 3).
We recognize in (32’) the Hamilton-Jacobi equation of the « hamilto-

nian » Pm; (34) defines the classical trajectories; eq. (32") just states that the
amplitude of a discontinuity is transported along the classical paths by
some formula like (7).

2) The Wigner symbol

In order to generalize the preceding results, it is convenient to compute
the action of an operator like P(q, D) by means of an associated scalar
function called its symbol.
Given an integral operator A:

Annales de l’Institut Henri Poincaré - Section A



45SEMI-CLASSICAL APPROXIMATIONS

we formally define its Wigner symbol [9] A",(q, p) by any one of the equi-
valent formulae:

where

and Q and P are operators with kernels:

satisfying the Heisenberg commutation rules: [Q~, PJ = ib~’0 ; (37) holds
in the weak topology (equality of matrix elements).
The reciprocal operation A, or the passage from (39), where q

and p commute, to (37), is called the Weyl quantization. It is reality-pre-
serving since it associates hermitian operators to real symbols [27].
To begin with, we define (36) and A E (the Hilbert

space of Hilbert-Schmidt operators) with the scalar product :

The Plancherel theorem tells us that (A - A,,.) is a unitary isomonphisrn

of onto so that for A, 

But Fourier transformation works for other spaces too. In quantum
theory using algebras of observables, B is restricted to be of trace class
and A runs over the dual space of bounded operators; then :

but otherwise symbolic calculus is very difficult in this frame [29]: the

Vol. XXIV, n° 1 - 1976.
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author knows no necessary and sufficient condition ensuring that a symbol
belongs to a trace-class (resp. bounded; resp. positive (~)) operator. A
convenient framework for symbolic calculus and classical limits is obtained
by restricting the symbols of observables AW to certain spaces of test func-
tions (with some freedom of choice for the space) and letting Bw run over
the dual space of distributions. Thus, the symbol of an LDO like P in (29)
is a polynomial in p, and eqs. (32) to (34) show that the principal symbol (30)
governs the propagation of discontinuities for distributions u such that
Pu = 0 (or similarly Pu E C~). Mathematically, the computation of disconti-
nuities for such problems amounts to solving equations like

(A : integral operator ; u, f’ : distributions) « modulo C~ ~ i. e. writing
off all smooth ( = C~) contributions to u, f, and to the kernel of A, i. e.

omitting all rapidly decreasing (as I p - cc) terms in the symbol of A (for
a consistent and rigorous exposition, see ref. [28]). Having considerably
relaxed the problem as compared to solving (42) exactly, we can enlarge
the class of A in (42) from LDO’s to linear pseudo-difj8rential operators
(PDO), characterized (modulo terms of rapid decrease in p, which escape
investigation in the present approach) by a C’~ symbol asymptotic to a
sum of the form:

where ar is homogeneous of degree r in p, am (called principal symbol) is
not identically 0; m (a real number) is the order of A.
The product of two operators formally satisfies Groenewold’s rule,

where Ä stands for the two-sided differential operator (Vq Vp - VpV ):

If A and A’ are PDO’s of principal symbols am and (44) gives an asymp-
totic expansion of the type (43), so that AA’ is a PDO (modulo C~), of
principal symbol amam. if 0. Moreover, if A is elliptic (i. e. am(q, p) ~ 0

0), it has a PDO inverse A -1 : AA -1 - 1 [mod C x] = A -1 A with :

where E~ = 2014 so that:
am

e) Positive operators of trace 1 are used as quantum density matrices.

Annales de l’Institut Henri Poincaré - Section A .
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3) Other symbols

We just mention that other orderings are possible in eq. (37), changing
the correspondance (operator - symbol). For instance Hormander’s

symbols [28] have the (non-hermitian) definition:

while Wick ordering in suitable units oc oc’ 

Wick ordering always refers to some fondamental mode whose frequency
fixes the scale between Q and P. For a general non-relativistic problem
there is no preferred mode; we shall use the more intrinsic Weyl quantiza-
tion. We note that under changes of ordering, symbols obey transformation
rules which leave principal symbols invariant.

4) The characteristic set

The characteristic set of a PDO A of order m is defined as the subset
y(A) closed and conical in the p variables
(in physics y(A) is the union over points q E f2 of the « momentum light
cones » at q). ’

5) The Coo singular spectrum

The C~ singular spectrum of a distribution j’e ~’ is the closed, conical
(in p) subset SS( f’) c M - { p = 0 }, defined (6) as follows. We call the
set of functions in Cü(f2) equal to 1 in a neighborhood of qo, and we write
(f @ q’) = Then : "

when £ - + oo, for some p E !!Jqo and for all p in some neighborhood
of p~. An equivalent definition is [28] : 

.

The set SS(j’) describes how f’ deviates from C* smoothness; outside of

(6) Also called « wave front set of f », in short WF(f).

Vol. XXIV, n° 1 - 1976. 4



48 A. VOROS

the projected set Hp {SS( f’)) = sing supp j’ (singular support of j’),
the distribution j’ is actually C~.

THEOREM 4 (regularity theorem). - If P is a real PDO of order m with
a simple characteristic set (i. e. Vx E y(P) : dPm(x) -:1= 0), then for all u E ~’,
j’ E ~’ with Pu = j’ : SS(u) c SS(j’) u y(P), and SS(u) - SS(j’) is invariant
by the Hamiltonian flow in M of the principal symbol pm.
A very special case of singular spectrum occurs when j’ is only singular

~ 

across an isolated hypersurface of equation = s (all this : locally);
then: SS(j’) ci {(~, À. Vcp) E E cp - 1 (s), À # 0 }; such a singular spec-
trum belongs for instance to a function u given by (31) with jj = 
or to a WKB wave of quantum mechanics (in the homogeneous variables
of eq. (45)); eq. (32) provide a quantitative description of theorem 4. Unfor-
tunately we shall see in 5, § 9 that if j’ is a solution in a bounded domain
of a Helmholtz-type equation, we cannot expect in general SS( j’) to have
such a simple structure.

4. THE WIGNER CLASSICAL LIMIT

The formalism of section 3 can be applied without change to Maxwell’s
equation in an inhomogeneous medium (wave optics) and yields geometrical
optics: bicharacteristics (light rays) satisfying the Fermat principle.

1) For quantum mechanics,

however, we must first change the form of the differential operator, to
ensure that all terms will have the same weight in the classical limit,
irrespective of their order as derivatives. The equation (whichever it is)

is h omoge n eize d by the substitution - = for instance (1) becomes :

the classical limit is then the high frequency (in « proper time » s) limit,
or the limit of geometrical optics in (l + 2) dimensions: we have there an
extended phase space M = {(~ t, q, /)., E = ~E, p = ~p)} with the form :
cv = - d/L A ds - dE A dt + dp A dq : (~,, E, p) are homogeneous coor-
dinates for the physical quantities E and p ; s is conjugate to the variable ~,

(physically 03BB = 1 ); s is analogous to (in the absence of interactions :

proportional to) the proper time (which is conjugate to the mass).

The fact that ( 1 ) becomes homogeneous under 1 -&#x3E; i-seems to be anh as
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essential property of quantization in the sense that if terms of lower order
were present in (45), they could not be canonically determined by classical
dynamics alone.

If we parametrize the characteristic surfaces t, q) = const. of (45),
which satisfy _ _ , _ _ , ...

in the form s = S(t, q) + const., we recover the classical action of eq. (23) ;
the physical characteristic surfaces S(t, q) = const. are no longer generated
by classical trajectories (this was true only for homogeneous systems)
but we recall that the bicharacteristics still generate the Lagrangian
manifold of S in the phase space M (cf. 2, § 8). This reduction of phase

space  ~ M corresponds to the choice of 03BB as scaling variable, 2014 and -
remaining fixed when h - oo ; we could take other scaling variables, each
yielding a different reduced phase space with a different dynamics, but
they all correspond to different parametrizations of the same surfaces

t, q) = const. We could thus describe the high energy limit (E -~ oo).
On the free equations, the s - t symmetry of (45) shows that the asymp-
totics for £ - oo and E - oo is the same, while for the Klein-Gordon

equation (20142014A2014 m2~2 ~s2)03C8 = 0 making 03BB ~ oo gives the euclidean

high energy limit.
We recall that semi-classical methods can be used for various other

problems involving scaling, such as thermodynamics (volume V - oo,
the intensive variables remaining fixed), statistical mechanics (expansions
around mean field theory viewed as a « classical limit », e. g. ref. [30]) ; or
(Appendix 1 ) quantum field theory expanded around the sum of tree
graphs [48].

2) The Wigner method [9]

The choice of parametrization : C(.s, t, q) = S(t, q) - s and the restric-

tion in M to the correspond to some changes in the

formulae of section 3 when viewed in M.
Wigner symbols are given not by (36’) but by :

where
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so that

and

We shall restrict observables to have the form 1 A where A is a PDO
~m

of arbitrary order m in the homogeneous variables and independent of s.
Expressed in the physical variables, eq. (43) means :

where p) and (Vn) p) E C:xJ(~21); moreover, as I ~ 00 :

where ~-~ is homogeneous of degree n’ in the p variables.
Neither classical mechanics nor Weyl quantization distinguish between q

and p. We are thus led to define a quantum observable as admissible if Aw
satisfies analogous relations in both variables (q, p) = x, that is : eq. (50)
with : 

__

homogeneous of degree n’ in x. All usual non-singular hamiltonians
are admissible observables.

If A and A’ are admissible observables, eq. (44) implies that:

and that [A, A’] ± are admissible observables.
As admissible states we then take the positive linear functionals B such

that :

with Bw(q, p) and bn(q, p) E ~’(~2~) (tempered distributions [31]).
The expansion (52) is uniquely characterized as weakly asymptotic : the
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expectation value of any admissible observable A in the admissible state B
satisfies, provided all the brackets make sense:

so that :

3) The quantum expectation values

The quantum expectation values have the form Tr pA, where p is a

density matrix (a positive operator of trace 1 ) and A is a hermitian ope-
rator [5~ ]. We know no criterion on Pw ensuring the positivity of p. However,
if we want p to be a positive operator for all values ~, -~ oo it is necessary
that po as given by (54) should be a positive distribution (i. e. a measure);
moreover  po, 1 &#x3E; = 1 therefore po is a classical density on M : the classical
limit of the quantum density p ; eq. (54) implies :

For instance the quantum density of a coherent state (a minimal wave
packet) satisfies all requirements, moreover:

so that the classical limit is the state localized (~) at (qo, po) E M : for any
observable A : 

lim Tr pA = po) .Tr pA = po).

4) The equations of motion

We use the Heisenberg picture in order to exploit Groenewold’s

formula (51 ). Heisenberg’s equation A = -[H, A] is equivalent to :

(~) Simultaneous localization in q and p occurs because both
A~)~ -  4p2 &#x3E; 1~2 = ~(~I1~2) .

This makes the coherent state densities useful as convolution kernels to study classical
limits (ref. [29]).
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and at lowest order this implies the classical equation (21 ) : = { 
meaning that time evolution is generated by the Liouville operator [51].

In this approximation it is equivalent to keep observables fixed and
transport the states by the reversed flow.

It follows from ref. [28] that the quantum evolution operator for a finite
time is not a PDO but a « Fourier integral operator » whose symbol is

roughly an expansion like (50) multiplied by an overall phase Their
calculus yields [28] rigorous properties of quantum vs. classical time
evolution (ref. [15] is another approach to this problem).

’ 

5) The scope of the Wigner method

A description by algebras of observables is possible for both quantum [51] ]
and classical systems. Clearly the Wigner method provides a smooth
transition when ~ -~ 0 from the (quantum) operator algebra to the

(classical) function algebra. We could not have expected such smoothness
for any scheme involving Hilbert space explicitly, since the Hilbert space
is expected to somehow vanish in the classical limit. So the Wigner limit
is weakly, not strongly continuous at  = 0. It will not provide reliable
information on the spectrum, nor on the eigenstates of operators. For
instance the semi-classical spectrum naively defined as the set of

singularities of ( 20142014__) - z - 1 H ’ is a continuous spectrum if p)

is a continuous function : 
-

6) The Thomas-Fermi spectrum

There exists a roundabont way to quantize the spectrum according
to the Wigner approach. Define : VE = HJ~(2014 oo, E] (VE has boundary EE)
and V(E) = volume (VE) = ~VE |03A9| . The « region of bound states » is

defined x E M  eigenvector of energy E,
a reasonable classical limit for pE = I must be. an invariant
measure on EE of total mass (2~~)t because of (49); for instance

03C1Ecl = (203C0)l dV/dE03B4(Hcl - E), which is the only candidate if the motion is

ergodic. When we fill the region !!4 so 1 I"" we obtain the

quantization « rule » : ~~
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which has only a heuristic value but predicts the correct Weyl [16] or
Thomas-Fermi [17] asymptotic density of levels p(E)dE

Eq. (55) will at best hold for ergodic systems. On the contrary, for the
many quantum systems (like nuclei) which are degenerate or quasi-dege-
nerate (i. e. the density p(E) has sharp peaks) more adapted and precise
methods are given in section 5 and 7.

5. THE MASLOV-WKB METHOD

We shall work here with time-independent wave functions; later we
can choose them to be stationary states, or else introduce time as a para-
meter. We shall show that the Lagrangian manifold, whose generating
function is the phase of a WKB wave, is an intrinsic object in phase space,
independent of the quantum representation of the wave.

1 ) Quantum change of representation

In 1 dimension we go from the coordinate to the momentum represen-
tation of wave functions by a Fourier transformation. The natural genera-
lization to 1R’ is to introduce [12] for each state vector ~ and each set of
coordinates { tK } of K-space (cf. 2, § 4) a wave function t/!K(tK) E L2(Rl)
such that:

where 03BB = 1  and Ar g ( _ ) + i t l2 = ± 03C0 4. This partial Fourier transforma-

tions ~H is unitary and satisfies
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simply realized by the formal substitutions (without changing the order-
ing !) : .

Equivalently: A~ and A~ describe the same invariant Wigner symbol

p) in the two sets of coordinates and = SK :

2) The asymptotic Fourier transformation

If in some K-representation V1K has the form we associate
to it the Lagrangian submanifold A c M of K-generating function SK
(notations of section 2); to allow for a finite number of branches of SK we
shall conside. more general waves which we denote « WKB waves » :

We call the (possibly complex) function aK the amplitude and 2 0~ thephase; aK is only given as an asymptotic series (cf. (6)) :

let supp aK = supp an (it is not the support of the function aK) and
n=0

assume it is a compact subset of A. If the series a" is reduced to one term,
say ao, we call t/lK a semi-classical wave. It is a crucial fact that the WKB
form (and, as seen later, the semi-classical form) is covariant under the

!Ý’K

change of representation (K) ~ (H) ; A is invariant and 55£ acts locally
in x on aK(x) at every order in ~. This follows from the stationary phase
expansion of (56) (Appendix 1 ) which holds provided :
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The result is (the overall phase y can and will be disregarded):

where an is a polynomial of the derivatives at x :

and (D~)1/2 has the complex determination

where is the inertia of the quadratic form ( 2014-!2014r-) i. e. the

number of negative terms in any diagonal form; this number will jump by
integer values when Dj(x) goes through the value 0. In particular

so that the semi-classical approximation is also covariant (and consistent).
atH a2sK B

Eq. (i6) implies  = that, using (t4):

Thus D~ = 0 on the expansion is regular only if supp a n E~= 0
(where we write supp a for the chart-independent set supp aH). Now any
arbitrary amplitude a can be decomposed, by a partition of unity subordi-
nate to the covering A = EK), into a sum of terms a(K) each

K

expandable in the K-chart. This gives a singularity-free WKB expan-
sion [10] [12] [32] indeed, but very cumbersome ! It is clearly desirable to
somehow attach the WKB expansion to the manifold A since all the trouble
seems to come from the projection operators IIK being singular on EK.
Assume now x e (supp a n E~) ~ 0; formulae (59) and (60) indicate

that has the phase ÀSH (which is the Legendre transform plus
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a term discontinuous across LH like I~(x); and the amplitude is infinite (g)
like 1 ~2. To show that these singularities are caused by rIH
it is necessary to show that they have an expression independent of K ; the
real difficulty is for the phase and is solved by the Maslov index theory of
Keller, Maslov, Arnold [10] [12] [38].

3) The Maslov index

The function nH(x) = H - K is locally constant on 
its jumps are those of the phase of t/lK across EK, and of minus the phase
of t/lH across EH (moreover nH = 2014 nK). Maslov [10] proves the following
generic properties (we omit details) : for all H, EH is a submanifold of A of
dimension (I - 1 ) on which D(x) has a simple zero (apart from exceptional
points LH has a positive and negative side on A, such that for
any K, jumps by + 1 ( - I) when x crosses EH from the negative to
the positive (resp. positive to negative) side. See fig. 4.

FIG. 4. - A typical / = 2 toric Lagrangian manifold.

The Maslov index nH(x) is defined as the Kronecker index with respect
to EH of any oriented curve y on A, with arbitrary fixed origin xo and
extremity x, i. e. it is obtained by adding + 1 ( - 1 ) every time the curve
crosses LH from the negative to positive (resp. positive to negative) side.
This quantity is unchanged by continuous deformation of y with xo and x
fixed; therefore nH(x) is a single-valued function on the covering A, defined
up to an overall additive integer (xo being arbitrary). But there exists a
choice for the indices nK(x) VK, such that VK, H : nH(x) - is single-
valued on A and equal to 
The most important property of the Maslov index is the following: for

a closed oriented curve (a cycle) y, the index nH(y), which counts the inter-

(8) These singulamies belong not to the but only to their expansions.
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sections with EH, only depends on the homology class of the cycle y, and has
the same value for all H : thus the index is the value of an (integer) cohomo-
logy class n E H1 (A, Z). The rigorous proofs (Arnold [11]) use a coordinate-
free definition of n in the cohomology of the manifold of all Lagrangian
vector spaces in M.
Thus we have on A two intrinsic cohomology classes of degree 1, a real-

valued one : 03B3 ~ ~03B3 0K and an integer-valued one: y - both inde-
Jy

pendent of K, when y is a cycle.

4) The semi-classical approximation

Eq. (61), which proves the consistency of the semi-classical approximation,
allows us to deiine the semi-classical Fourier transformations #~ by:

Clearly: = ~L ; ~K = id : ~H is local, unitary since

and regular at x if 0  I I  00. 
-

Under reasonable assumptions, the error term ðt/1H = ~~)t/1K can
be bounded in Hilbert space locally in x ft LK U EH. Following Appendix 1,
we must assume SK and SH E C Xl on supp a, and t/1K E domain ( - h20394tK + t2K),
to get H-chart estimates of the form : VK 3C~ (depending on derivatives
of SK):

Thus the approximation is uniform in each H-chart away from EH.

5) The canonical operators

Assume A to be orientable, i. e. there exists a global volume element
’1 E Q’(A), r~(x) ~ 0 Vx. If ~ E r~) we let :

where - stands for d et IIK, a n d yx is any curve on A from Xo to x; theDtK
choice of xo fixes the global phase and the choice of ~ is irrelevant, so we
omit the subscripts xo and 11. By construction is local, isometric, of
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domain | Supp 03C8 n 0 }, and FKH = 1 with properly
adjusted phases.

Physically, if ~ is regular on A and has a constant phase, will have
the right semi-classical phase (with the jumps at E~) and the right semi-
classical singularity in the amplitude. Conversely the action 1 

on

any WKB wave .pK(tK) ’" ¿ exp ( ~ kills the phase and singu-
larities: ~ B J /

where = I is independent of K and regular on A.

The scheme is consistent only if the semi-classical phase can be defined
as a single-valued function, i. e. if the RHS of (62) is single-valued. But yx is
defined modulo cycles, so that the phase is unique iff any cycle y of a homo-
topy basis for A satisfies the Bohr-Sommerfeld-Maslov quantization rule
(where the LHS is independent of K):

Eq. (64) select the manifolds A on which the semi-classical approximation
is consistent. Then (63) shows that the representation on L~(A), which
Maslov calls the semi-classical representation, is regular for the classical
limit. We remark that the superposition principle disappears when £ - oo,
since waves with different phases will « live » on different A’s and cannot
be combined.

It is a crucial but open problem to extend the scheme to higher orders
1

on - and obtain a uniform WKB expansion defined on A ; this requires
the explicit construction of full canonical operators IIK (depending on a
quantization procedure, and satisfying ~H * The answer is
known only for very special cases (e. g. if A = a Lagrangian subspace,
the 03A0K are the evolution operators of certain harmonic oscillators). The
only known method is then to work out a standard WKB expansion in
any K-chart, away from 

6) Comparison with the Wigner method

If in the Q-chart:
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then we have the following expansion for the symbol of p = t/J @ t/J (the
density) :

where

which is meaningful (and chart-independent) when applied to admissible
observables. The expansion is concentrated (9) on A, in particular :

(and if ao and a? are real O(h) becomes O(h2)), thereby showing that the
wave in the semi-classical representation is the square root of the classical
density. Obviously this gives a 1-1 correspondence between classical
densities concentrated on Lagrangian manifolds and semi-classical waves.
We may call those densities « pure-classical states » and think of all other
densities as continuous mixtures of pure-classical states, a case for which
we have no canonical method to obtain the wave functions as power
expansions in h.
For pure-classical states we can write (65) as:

where ~(A) is defined as:

The action of an observable A, given by (51 ), involves derivation operators
transversal to A. The Maslov method is interesting when the semi-classical

term of (51), namely - acts along A ; for simplicity
we assume that in (50) a- 1 - 0 (this is true in usual cases). So we shall
suppose that A lies in a hypersurface ACl = c ; this implies (cf. theorem 2)
that A is invariant by the flow VS of but

(9) But coefficients of h" (n # 0) are not measures and have no intrinsic interpretation
on L2(A, ~).
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along the flow. Formally then :

Applying this to a real semi-classical wave = in the semi-
classical representation we obtain :

(compare to eqs. (3) and (5)). The simplest choice for ri is a measure invariant
by the flow Vs. The residual term contains second order derivatives of 
if these are bounded and if A is compact we get L2 estimates :

It is much harder but essential to show [10] [32] the analogous result in
the Q-chart (for instance) for the uniform WKB wave t/lQ:

In the semi-classical approximation : A - c - is the sum of the

scalar value of Acl and of the linear translation generator TB = 2014 g A ds
which is self-adjoint since ~ is invariant. The system (A, ~, VS) is a classical
dynamical system in the sense of ref. [13].
We now apply the foregoing considerations to specific cases.

7) The initial value problem

Given a semi-classical wave = 0 ; x) there corresponds to it an
initial Lagrangian manifold Ao of M. We already know that the corres-
ponding solution of the classical equation (23) is the Lagrangian manifold
A c M generated by the classical paths starting from Ao. There is an
obvious invariant volume element ~ associated to any volume ijo on A :

x~) = dt A = dt (Xr = classical path; 0, = flow, on M).

We can apply eq. (66) with A = i - H; since Acl = E - 
on A, we get : °~ 

.

i. e. ao is constant along the classical paths.
The semi-classical wave at time t is thus defined on the section Ar c M

of Ã (cf. 2, § 8) by : = the K-chart wave is obtained by
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applying the canonical operator only at this step are the possible
caustic singularities introduced : the caustics are the hypersurfaces of

K-s p ace tK|DtK D~t = 0 ; under time evolution they move and a connected
component may even appear or vanish at some instant.

The connection with the usual treatment of caustics [3] is established

via the following result [70] ] [11] : if is a positive definite form,

the Maslov index ~Q along a classical trajectory is equal to the Morse
index [S]: this is true for the time-dependent (in M) or time-independent

(in M) problems ( but only in the Q-chart for H~= 2014 + V, V arbitrary).
B 2m /

Since the canonical operator f~ has a phase i-"Q it introduces a phase
loss of 7T/4 per focal point encountered.

It also follows from Hormander’s theory [28] that the time-dependent
Green’s function Gt(q, q’) (0  t  oo) has a WKB form, with A generated
by the trajectories in M radiating at time t = 0 from the source point q’
(this will not be true in the time-independent case). So the time dependent
problem admits a uniform semi-classical approximation.
Under reasonable conditions (the flow 0, must be continuous and

proper) the approximation will be uniform for finite times. We assert
nothing about the t - oo behaviour of the method.

8) Time-independent problems

Time-independent problems could in principle be treated along the
same lines. To any WKB wave ~E such that = corresponds
an invariant Lagrangian manifold A c E~ (cf., 2, § 7) such that

If ri is a volume on A, the semi-classical amplitude al’o is such that the
density ( = positive I-form) ~2r~ on A must be invariant by the flow.
Solutions 03C8E are thus described by the invariant densities on A.

A is not compact we expect in general L2 (a generalized eigen-
vector of the continuous spectrum). For instance, A defined by (22) and
by the (qj = - oo) boundary conditions : pt = ... = pl- 1 

= 0, pI = 2mE
describes the scattering of an incident wave exp ( (cf. the eikonal
method [22] [33]). 

(
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7/ A is compact e L 2(A, ~) describes an eigenstate, but we suggest
in § 9 that if E is a bound energy, 03C8E will often not have a WKB form and
no A c E~ will exist. Here we assume that is a WKB wave for all E.

Then the quantization of the spectrum is concretely realized by the rules (64).
Since there are in general I independent cycles on A (=&#x3E; I equations (64)),
and since A is determined by parameters, among which the energy E,
only a discrete subset will satisfy the Bohr rules. We now make a
digression on their meaning in this framework.

a) On the one hand, the Bohr spectrum is related to the discrete spectrum

of the classical system [13] A, ~, - i 2014), i. e. the spectrum of the time-

translation generator on L 2(A, ~), or « Liouville operator ». This appears
clearly in one dimension, where A is a closed curve (an energy shell E~ in
M = 0~); if T E is the period of the curve, the classical spectrum is

~ 20142014 ~ ; the spectrum of the semi-classical Hamiltonian 
( T E B dt

(acting on A = LE) is E - 203C0n T }. The Bohr rule (64) says :

but ( cf. ref. [2]) Tp, implying that for energies near E, the spacing

of the Bohr eigenvalues has the Taylor expansion:

The first term gives the semi-classical spacing ; the second term becomes
negligible in the limit (which often coincides with the large quantum

number limit) or dT dE ~ 0 (where one keeps only the quadratic fluctuations
only around the classical path). For the harmonic oscillator the semi-
classical spacing is exact everywhere (and uniform). In several dimensions
we expect the same results but since the spacing of levels has several gene-
rators the picture is more complicated (see section 7).

b) On the other hand, the Bohr rule gives not only the spacing but also
an absolute position to the eigenvalues ; in particular the Maslov indices

play a non-trivial role in fixing the zero-point energy of the system. The
relation of the Bohr spectrum to the exact discrete spectrum results from

the L2 estimate (67) : it implies that if the exact spectrum is simple, with
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a spacing of order O(h), then the Bohr spectrum approximates it at order
O(h2). Heuristically, one writes (66) as :

and one applies standard perturbation theory to the (unperturbed) Bohr
spectrum and Maslov-WKB eigenvectors. In principle it should work
if the Maslov WKB solutions belong to the domain of(5H (bH is essentially
a PDO of degree 2) and if in some sense the unperturbed level spacing is
large with respect to the size of (5H. Meaningful perturbative calculations
require the use of the semi-classical representation, which however is

extremely unpractical at higher orders.

9) Recurrence problems

Little notice seems to have been paid in the literature to a difficulty
which concerns the time-independent Maslov method, and restricts its
theoretical and practical use to a limited class of dynamical systems (see § 10).
On a formal level the time-dependent and time-independent WKB problems
are solved alike, by finding a Lagrangian manifold A c M (resp. A c M)
satisfying the Hamilton-Jacobi eq. (23) (resp. (22)), and by loading it with
an invariant density. We shall now view A or A as generated by classical
paths (theorems 2, 3). Indeed A was generated (§ 7) by the trajectories
through an initial I-manifold (1 0) A~, and the density ~ was the pullback
along the same paths of an initial density. Locally, we can also realize A
as the union of the paths through an initial manifold r’-1 c L~’~ 1 but
globally we cannot ensure that the union of the full-length (  t  + ~~)
paths through r’-1 will form an l-submanifold of M : if just one path is
recurrent it may alone « fill » (by closure) a manifold of dimension up
to (21 - 1). For regular scattering problems this trouble will not occur,
so the WKB (or eikonal) theory is possible. But recurrent paths are a
fairly general feature of bound state problems.
For the worst case of an ergodic system, Birkhoff’s theorem [34] [35]

implies that almost every path fills Î:E, and that the pullback of any
initial density given on (almost any) r~-1 1 is the invariant measure

QE = E)Q obtained in (55) by the Wigner method and concen-
trated on ~E~ -1 (while the WKB density (65) is concentrated on an /-mani-
fold). For I &#x3E; 1, this means that the eigenstates of H are not « pure-classical »
and do not have WKB expansions. Only the weaker Wigner method
seems available for them. The argument does not quite exclude the existence
of some Lagrangian manifolds generated by exceptional non-ergodic
paths, but with such implicit objects the examples of § 12 suggest that
no calculation is manageable. We conclude that for all practical purposes,
the Maslov method is then useless.

(1°) We shall sometimes exhibit the dimension as an upper index.
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10) Completely integrable systems

There exists an amount of degeneracy which is exactly sufficient (and
practically necessary, by arguments as in § 9) to make the Maslov-WKB
method work smoothly : it is the completely integrable situation.
Assume that the quantum system admits commuting observables F~,

with Fi 1 = H, where every F~ is an admissible observable quantized a la
Weyl and the relations : F k] = 0 are meant as identities in the para-
meter 1 Then (50) and (51) = 0, thus making the
classical system completely integrable.We have introduced in section 2, § 5b,
the Lagrangian foliation { defined by the equations { Fjl(X) = 
each A~ is a good candidate for the time-independent WKB method since
03B1 c carries a natural invariant density (19) ; using (19’), (24)
and (62) we find the semi-classical wave in the Q-chart :

Since Fi, ..., F l play the same role, t/1 Q will be a joint eigenstate of
all FJ provided 03B1 satisfies the Bohr rules ; the solutions { 03B1j } represent
the joint spectrum of the commuting set { (all that in the semi-classical
approximation). If A~ is compact and connected, it is homeomorphic [13]
to a torus T~ (the direct product of I circles) therefore it has exactly I inde-

pendent cycles, each giving rise to a Bohr quantization condition.
We remark that for a cycle, the Maslov index is always even, since it

jumps by ± 1 every time the jacobian changes sign along the cycle ( 11 ).
There is also a natural picture using paths : if the motion is ergodic on

the A~ then almost every classical trajectory fills a A~, and its measure dt
(t = time) generates in the sense of averages precisely the unique invariant
measure ~03B1 (by Lewis’s ergodic theorem [35]). That trick solves (22) without
referring to any initial conditions (which would involve a degree of arbitra-
riness not present in the solution). Unfortunately if the quantum system
has more degeneracy than strictly needed (i. e. more than I commuting
admissible observables), the ergodicity of the classical system is correspond-
ingly reduced and the path picture collapses. The Maslov method works

anyway, but the explicitly constructible family { is not unique, moreover
on each A~ there is an infinity of invariant densities. That is the way quantum
degeneracy shows up in a semi-classical representation.
The problem is much worse if the additional degeneracy is caused by

a non-admissible commuting observable, for instance by a discrete symmetry
operator. Arnold [36] provides the example of a plane cavity having the

e 1) This is true on any orientable Lagrangian manifold.
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symmetry group of the equilateral triangle: semi-classical waves are

3-fold degenerate by geometrical arguments, but it is possible to show
that the exact modes have multiplicity  2. The three semi-classical
waves behave like three resonators of the same frequency weakly coupled
through the quantum perturbation h2. ~H : this term mixes the states and
splits the levels (partially or totally) : the latter effect is small but the first
one is not (and depends crucially on 5H). The situation of A having several
connected components presents the same problems.
More generally we expect the WKB formulae for eigenstates to be

inaccurate whenever the corresponding semi-classical levels are degenerate
or almost degenerate, since the necessary information to approximate
the states is missing at the semi-classical level.

11 ) Explicit examples of completely integrable systems

a) I-dimensional systems (t = 1) : the family { 03B1 } coincides with the
energy shells {~ }, the singular set on each A is the set of turning points;
(68) becomes :

The 1-dimensional case is exceptional in many respects; all curves are
trivially Lagrangian ; the energy shells coincide with the classical paths,
they are either unbounded or periodic : in the latter case, provided a path
is homotopic to a circle, its Maslov index is just 2 x (number of turns)
so that formulae (55) and (64) coincide.
A remarkable example is the harmonic oscillator (fig. 5): {E~ } is a

family of concentric ellipses and the Bohr (or Thomas-Fermi) rule gives

b) Separable systems : when separation of variables is possible, it leads
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to a complete integral [3] of the classical system, therefore a family { 
and a semi-classical solution can be computed ; but the same result would
have been obtained by applying the 1-dimensional WKB method to each
variable of the quantum equation separately. For example, 3-dimensional
potentials are treated in Appendix 2.

12) Examples of non-integrable systems

For such systems one cannot fill the region of bound states ~ by a
family { 03B1 } of Lagrangian manifolds. However in a few cases one can
almost do it.

a) For the billiard ball problem in a finite domain of [R2 with a convex
regular boundary, Lazutkin [37] has shown the existence, in a neighborhood
of the boundary, of (closed) « caustic » curves such that a classical path
remains tangent to it after an arbitrary number of reflections on the
boundary. The tangents to a caustic curve generate an invariant Lagrangian
manifold A (for the singularity at the boundary, see § 13) homeomorphic
to a torus T2. Unfortunately the caustic curves do not fill even a neigh-
borhood of the boundary in ~, only their relative density tends to 1 as we

approach the boundary (itself a limiting caustic curve); the paths enveloping
the caustics must satisfy conditions of an irrational nature and the caustics
cannot be constructed explicitly. Not to speak of the difficulties of practical
computations using those Lagrangian manifolds, it is impossible to deter-
mine which of them, if any, satisfy the Bohr rules (64) which are of a rational
nature. There is an exception : for the elliptic boundary, the caustics are all
the cofocal ellipses and the WKB method works throughout [38].

b) For a system differing from a completely integrable system by a
small perturbation the Kolmogorov-Arnold-Moser implicit function
theorem asserts the existence of invariant Lagrangian manifolds. Let { 
be the Lagrangian foliation of the unperturbed system ; fix A c 

A is homeomorphic to a torus TI and we can define mod 1 the rotation
numbers (v;, ..., vD of the classical flow : v’ = (v;, ..., vi) is the velocity
of a linear flow on TI which averages the classical flow in time. If v’ satisfies
some condition of irrationalit y there exists an invariant Lagrangian manifold
of the perturbed system which goes to A as some norm B of the perturbation
tends to 0 ; moreover the manifolds obtained in this way fill a subset of M
of relative measure tending to 1 as B - 0 (there exist various precise
statements of this according to the regularity requirements on the data,
see refs. [13] and [39] for details). On the other hand, it is known since
Poincare [14] that a A with rationally dependent rotation numbers is

unstable and breaks up into a very complicated pattern of closed paths.
The situation is as bad as in the preceding case for explicit computations.
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13) Discontinuous potentials

It is standard to apply the WKB method in the case of discontinuous
potentials. The classical trajectories are then reflected by the singularities
of the potential. But these turning points are essentially different from
caustic turning points, which have nothing to do with any singularities
of the potential (fig. 1 ) ; accordingly, the phase discontinuity depends on
the dynamics and is no longer a Maslov index. For reflection on a wall
with Dirichlet boundary conditions, the incident and reflected waves have
opposite phases, so the semi-classical phase shift is taken to be 7r (cf. sec-
tion 7, § 9 and Appendix 2, c). But the mathematical theory is less advanced,
so we take this only as a heuristic extension of the WKB method.

14) The scope of the Maslov-WKB method

The value of the method is that it yields the classical limit in a Hilbert
space framework : the limiting « classical » Hilbert space is r~) (depend-
ing on of course) and many observables reduce to translation operators
induced by flows on A ; this scheme serves as a skeleton to non-euclidean
quantization (see section 6). But there are serious conceptual and practical
obstacles against extending the method to all powers in ~.
For bound states, the method applies well to completely integrable

systems (in practice this means separable systems, so that the computing
power is the same as for the 1-dimensional WKB method) ; moreover no
discrete degeneracy must be present. Then the Bohr-Sommerfeld-Maslov
levels are exact at if the spacing is 0(), and the normalized eigen-
vectors are strongly approximated at 0(11).
For non-separable systems, classically ergodic on manifolds of dimen-

sion &#x3E; 1, the Maslov method does not apply. On the other hand we show
in section 7 that a non-separable system for which there exist stable closed
trajectories (a non-ergodic property) can be approximated by a linearized
system for which the Maslov-WKB method is fully applicable.

6. GEOMETRIC QUANTIZATION

For classical systems such as rotators, constrained systems ... the forma-
lism of section 2 is too restrictive. The phase space is then a general sym-
plectic manifold (M, w), i. e. a 21-manifold M with a non degenerate,
closed (dw = 0) differential form w of degree 2 (refs. [23] to [25]). The search
for a canonical quantization of such systems, generalizing the Weyl rule (46),
has a long history. Geometric quantization attempts to define a general
procedure solely in terms of the symplectic structure (with possible applica-
Vol. XXIV, n° 1 - 1976.
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tions to relativistic spinning particles [41], systems in curved space-
time, non-trivial field theories, ...). We shall not treat the subject here
(refs. [24] [~2] [~3]), only give a few remarks in close connection with sec-
tion 5 and suggest why the method does not seem to solve physical problems.

1) The semi-classical structure and the integrality condition

A reasonably quantized system should give the same semi-classical
structure as in section 5, inasmuch as the cartesian nature of M does not
come into play. The quantum Hilbert space ~f should contain semi-
classical vectors to which are associated constant densities on Lagrangian
manifolds of M. Therefore to any Lagrangian foliation { 03B1 } we can

e
associate a « semi-classical Hilbert space » ~~~} _ ~ C~ where C~ is the

1-dimensional Hilbert space spanned by the invariant half-density 
~ being the invariant volume on Aa. ,

Any non-trivial cycle y  Aa must satisfy some quantization rule analo-

gous to (64). But whereas in (64) could be replaced by (p 0 with 0:

any 1-form such that = d0, here no such 0 will exist if the closed form 03C9

is not exact, L e. if its class in the (de Rham) cohomology H2(M, !?)

is # 0; 0 can always be defined locall y so we can define by addition

of pieces but this value has a global ambiguity (12): if y is moved around
and back to itself so as to generate a closed 2-surface 6 without boundary

(a 2-cycle : we note 6 E Z2(M)), (p 0 is shifted by the value 03C9 (using

the Stokes theorem). So the Bohr rules (64) are consistent iff M satisfie.s
the integrality condition [24] [43] :

If non-trivial cycles (i. e. not homotopic to 0) exist, eq. (71) impose « pre-
quantization » conditions on M; then we can quantize the manifolds 03B1
using (64), if we assume the existence of the Maslov index.

2) Example : the non-relativistic spin

Let s = su be a spin of fixed length s. The phase space is (M, = (S2, sQ)
where S2 is the unit sphere and Q is the euclidean area (this w leads to the

(12) Physically: the action function is not globally defined, only its variation is.
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correct Larmor equation [24] [40]). Eq. (71 ) yields for the only non-trivial
2-cycle 6 = M :

s03A9 = 403C0s = 203C0n or s = 
n 2 

(integer or half-integer spins)

Semi-classically (cf. (55)) the volume of M in units 203C0 gives the dimension

of the Hilbert space d = 2j + 1; here d = 2s  ~ s = j + 1 2) (compare
to the Langer shift of Appendix 2). 

~ B ~

3) The Kostant-Souriau quantization

(Very roughly speaking) takes the desired semi-classical structure as

an input, e. g. defines the quantum Hilbert space as for some { A(J. }
provided M satisfies (71). Unfortunately, two different foliations give in
general unitarily inequivalent Hilbert spaces. We think this is related to
the fact that the canonical structure alone cannot predict the higher powers
of h which are inevitably present in a quantum theory (in the euclidean
theory, cf. eqs. (52), (60), (65), etc.). Higher powers of h can be consistently
discarded only if there exists some large symmetry group. Then quantiza-
tion is related to the important classification by Kostant [42] of the repre-
sentations of the group (with the Poincare group it leads to the usual

description of free relativistic spinning particles).
For the reasons given here it seems that the method as it stands cannot

deal consistently [43] with interacting systems (apart from exceptional
potentials with high symmetry).

7. QUANTIZATION ALONG CLOSED PATHS

For a general non-separable, non-ergodic system, all the previous
methods fail. We are going to show that the periodic, Poincare stable,
classical trajectories can be used to construct a semi-classical approxima-
tion. Generically there are (infinitely) many closed paths; all we need is to
find a « simple » (explained later) stable one and to compute its linearized
Poincare map; this is much simpler than to compute Lagrangian manifolds.
The price to pay is some loss of accuracy.

1 ) Previous results

We recall the study of closed paths by Poincare [14], and their quantiza-
tion by the Bohr-Sommerfeld rule. More recently, Balian and Bloch [16]
have shown that the quantum density of modes in a cavity
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can be expanded by the stationary phase method if the time-independent
Green’s function is given a semi-classical form

Each stationary phase corresponds to a closed path of energy E and yields

an oscillatory contribution sin - to p(k), L being the length of the path ;
L = 0 gives the monoscillating Thomas-Fermi contribution (56); analo-
gous results hold for the Schrodinger equation [17]. They have found
moreover that for the spherical cavity the sum of a few first oscillating
terms (corresponding to the shortest paths) is already sharply peaked
near the exact levels; this looks like a miracle.

Gutzwiller [18] uses a slightly different approach : since one closed path

gives a contribution exp to q)dq where SE = pdq then
the same path repeated m times contributes exp (imSJh) and the sum

contributes ¿ exp = ¿ i. e. a series of sharp levels.

He finds moreover that the stability exponents and the focal points act
to shift all the levels together, but his proof works only for I = 2. Besides,
in a neighborhood of a simple closed path there will in general exist paths
which close up after a considerable number M of turns, and it is not clear
whether these should be treated separately in the same way or counted
together with the « simple » path repeated M times. Finally we need to
understand the relation between the Balian-Bloch and the Gutzwiller
methods of building the quantized levels; at first sight they seem orthogonal
to each other.

2) The Fourier transform of the spectrum

The semi-classical form for GE(q, q’), used by Balian and Bloch, is not
justified (see section 5, § 9). To get mathematically rigorous results we must
use the time-dependent formalism. The corresponding result holds under
mild assumptions [44] :

THEOREM 5. 2014 If

(for { = the spectrum of a positive elliptic PDO of order 2, assuming
the spectrum discrete) then p E fØ’ and sing supp p = { ± T, 0}, where T
runs over the set of periods of all closed bicharacteristics.
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. The proof uses the stationary phase expansion of p(t) = f Gt(q, q)dq
where the time dependent Green’s function can rigorously be written [28]

G1 = A,(q, q’) exp Since a singularity of #(t) at t = T describes

an oscillation of p(E) of period AE = 20142014, the theorem corresponds to
the Balian-Bloch results. T

3) The converse problem

Theorem 5 gives the discrete classical periods, knowing the oscillations
of the quantum spectrum. But the problem of quantization goes in reverse:
find discrete levels in the quantum spectrum, knowing the classical closed
paths. Unfortunately we have no inverse Fourier transformation yield-
ing p(E) in terms of the singular part only, given by the closed paths.
There is an exception however : for the linear flow on the unit circle En == nh;
theorem 5 reduces to the Poisson formula:

The converse problem is solved by the dual Poisson formula :

(and similarly for a linear flow on a torus T~); the spectrum is thus generated
by summation over repeated paths. The dual Poisson formula will now

. 

be applicable to an arbitrary system if we can linearize its flow by action-
angle coordinates on invariant tori T1: this will be performed by the Maslov
method in the neighborhood of a closed stable path.

4) The linearized system

Let: t E [0, T] -+ y(t) E M = be a closed classical path of energy E
and of period 0  T  co : xo = y(0) = y(T). The case I = 1 is exceptional
and has been treated in section 5, § 12; we assume I &#x3E; 1. We suppose y
« simple » meaning that for all x 1 in a neighborhood of xo (of volume =0(l)),
the classical trajectory re[0,T] -~ x(t) such that x(0)==Xi 1 is smooth
and has no multiple points; the idea is that quantities like T, the size of the
path, the radius of curvature, etc. should be macroscopic, i. e. finite and
continuous when ~ -~ 0, even if quantum fluctuations are present. We
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shall also suppose (this is less important) that the projection on f2, fIQ(Y)’
should be simple.
The Poincare map [13] x(0) - x(T) has the fixed point xo ; the tangent

map P at xo is the linear part of (xo + - (xo + 5x(T)) where

In terms of the reduced action SE(q’, q"), P is given in matrix form by :

We know that P E Sp (21) and that if we change xo = y(0) to y(to), P is
only changed by a symplectic equivalence P ~ St0PSt0-1 ; St0 ~ Sp (21):
T y(o)(M) -4&#x3E; T y(to)(M), and Sto = TUro, where U, is the classical flow.
By standard results [23] : the eigenvalues of P come in quadruples

( ~, -, ~, = ~. 1 or pairs ( ~ -) {o} 

or pairs we assume that

only the last case occurs, i. e. y is a stable path. There exist canonical coordi-
i

nates ðx = () in which P = 03A0Pj where P j is the rotation by vj in thebz 
j= 1

2-plane lRJ spanned and oriented by the symplectic form

03C9( = 03A3 dzj ^ dyj).

The v j are called the angles rotation (they are functions of E) ; at
least one, say vi, is equal to 0. To avoid difficulties, we moreover assume
vl, ..., vt all distinct mod 2?r (and we select the determination
) v j I  n). Then y is parametrically stable [13] (a property preserved under
small perturbations); also, y actually belongs to a continuous f amily ~ 
of closed orbits of the exact system [23], of energies E’ (for E’ near E), of

periods TE. ; and yE = y. The reduced action S(E’) == (p pdq is the Legen-
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dre transform of the time-dependent action (cf. section 2, § 8) for t = ~ ;
so, at E’ = E for instance [3] :

The invariant eigenspace R21 (for v 1 = 0) is spanned by the directions
of time translation along y and of energy increase in the family { YE’ } ; so
we can choose ~yl - bt and bzi = ~E : the latter follows from the indepen-
dence relations and eq. (72) :

which imply that the direction (5zi 1 is the normal to the energy shell tE.
We shall now remain in Ep and fix bE = 0. The remaining planes IRJ
( j = 2, ... , I) are called transversal. Any vector bx /I EE can be decomposed
as ~x = 5x’), bx’ denoting the transversal part. Also, primed (resp.
unprimed) indices will run from 2 to I (resp. 1 to l). All transversal tori

x ... x are preserved by P, where is the circle in !R}:

The linearized system (72) is completely integrable because { 03B4E, ðEj’ }
are in involution. The invariant foliation { is given by the equations:
{ ðE = = We now fix c EE (Ctj fixed, ai 1 = 0 : now we
shall omit the subscript a everywhere). Each constant time section At
of A is an image of the torus T’-1 = r«2 x ... x (see eq. (75)); the
image in At of the circle denoted r}, carries a natural angular coor-
dinate The dynamical behaviour of At is that of an (l - 1 )-dimensional
harmonic oscillator representing transversal fluctuations around the
path;~ taking them small makes the linear approximation reasonable
(fig. 6).
The linearized flow 0,. carries Ar onto At+t’; moreover A‘ and
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= rj, (thus A = is a torus Tl) but each rj’ has rotated by
an angle vj’ (mod. 27r) under the flow. This « twist » prevents the separation
of variables, and there are no nice angular coordinates 0~, global in t.

The invariant volume on A is, using eqs. (19) and (75) :

ri = C5(5E)~’~(~ - = Cdt A d82 A ... A 

5) The semi-classical formalism

We now apply the Maslov method to the linearized problem. To compute
the Maslov index we need a basis of the homology of A, represented by I

independent cycles. Of these, (I - 1 ) can be taken as the circles rj, at some
arbitrary t (transversal cycles) ; we need a longitudinal cycle r 1 running
once along to complete the basis ; such a r 1 is only defined up to the addi-
tion of any number of transversal cycles, but this will not affect the final
results. We propose :

a) To choose r 1 not intersecting the singular set LQ c A~ of the pro-
jector Ho; unfortunately r 1 might not exist if the geometry of A~ is too
twisted (r does exist if the problem is separable, or if 1 = 2). // r 1 exists,
it defines a unique homotopy class, which moreover stays unchanged
under a continuous canonical displacement of the coordina.te frame of M
(redefining Q and as long as remains simple (the proof relies on
the fact that if Ih(y) is simple the structure of the transversal sections A~
and Lb is the same as for an (l - 1) dimensional harmonic oscillator).
Clearly 1 winds up minimally around y with respect to cartesian coordi-
nates, therefore the basis { Fi, ..., is the most appropriate to measure
the « twist » of any cycle on Aa.. The Maslov index of r is 0.

b) A more dynamical (and always possible) choice f 1 is built with a

physical path x(t) (0  t  TE) on A~ : since rotations by (- v~.) on r°
bring x(T) back onto x(0), the path x(t) can be closed to a cycle r 1 by
adding to it arcs C r~, of angles ( - v~.) (fig. 6). In spite of some arbi-
trariness, the homotopy class of r 1 is unique ; we shall denote the (even)
number n( r 1) which, by continuity is independent of a, the rotation index n(y)
of the path.

If r exists as in a) we can express the class of r in the basis, { ri, ..., r~}:
I

+ the coefficient linear in rl, gives the
2

number of turns along F,. This suggests defining the absolute angles of
rotation as : 

wr = U.j, + ( h1 ) . _
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Since ~(~) = + 2 as for the harmonic oscillator (eq. (70)) we also have:

Other remarks about n(y) are given in § 12.
We can now quantize A. The Bohr rules are:

We can write any x E [’1 as (y(t) + with bx’ transversal, for some t,
and we introduce the 2-dimensional surface

By the Stokes theorem :

Dynamical ingredients enter now : on the part of S corresponding to t # 0,
cu vanishes (because any plane tangent to S for t ~ 0 is spanned by bt and
some transversal vector). The part of S where t = 0 is a union of circular
sectors c 1~ spanning the arcs and :

The transversal energies are not observed, so the only effect of their
quantization should appear in the total energy. Putting together eqs. (76)
to (78), we obtain the Bohr rule for y(t) :

If r1 exists the RHS can also be written (cf. [18]):

e3) After completing this work we have become acquainted with ref. [52], where this
formula (divided by 2) introduces the rotation index as an invariant for deformations of a
parametrically stable system.

Vol. XXIV, n° 1 1976.



76 A. VOROS

Of course the angles ~ are functions of E. The formula is meaningful
for » 1 and 0  n J. « N ) . In that region the spacing of levels is

generated (in the approximation where T(E), are constant) by the

numbers hcv where Wi = 2014, cv ., = -!-. If there is a rational dependence

relation of the type 1 = 0 (Vj E « N), some levels in eq. (79)

will be accidentally quasi-degenerate. If the are rationally independent
but if we put no limit on the size of the levels of eq. (79) become more
and more dense everywhere, so quasi-degeneracy occurs again. So we
restrict the range of the to a set {! « N } small enough so that no
two levels in eq. (79) are (quasi) degenerate. Another source of (quasi)
degeneracy is when there exist several independent closed paths of energy E
which are good candidates for y ; we also exclude this case (the negative
effects of discrete degeneracy have been discussed in section 5, § 10). Then
to any quantized energy E there correspond a unique path y, unique
values { and a unique manifold A~. Applying the machinery of section 5
we can construct unambiguously a semi-classical wave function of energy E.

The limiting Hilbert space Yfa) is a (part of a) Fock space built
oc

over the transversal fluctuations. Any description of a state vector using
Hermite functions depends on a choice of Fi and is not unique. For this
we believe that the best choice is given by the minimally twisted r1 (cf. § 5a),
if it exists.

6) Error estimates

The linear approximation is totally unappropriate for the classical

system since it exhibits a non-generic behaviour for the paths whenever
these have rationally dependent angles of rotation; but we hope that in the
quantum theory such accidents are smoothed out. Heuristically, the

linearized treatment drops all terms of H of order 0(~x3) which have a
size 0((~)~) around the tori A~ for small n’ = sup ~; so formally eq. (79)
is true with a remainder 0((~h)~), but this is doubtful for quasi-degenerate
levels.

THEOREM 6. 2014 On the phase space M = (with q~ 1 = coordinate

on a circle of period T) let 2 + + Pt + Sup-

pose the Weyl-quantized operator H essentially self-adjoint on the domain
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S(E) = ET, wj’ = up to corrections 0(3/2) for stable, simple eigen-
values. Sketch of proof: (79) gives the spectrum of Ho and the correction
results from Kato’s perturbation theorem [45] for eigenvalues.
The relevance of this to our problem is that there exists a canonical

map S from an annular neighborhood of y in M to a cylindrical neighbor-
hood of the line { q2 = ... = 0 ; p2 = ... = PI = 0 ; pi = E } in M,
sending t on q 1 and Hcl to a function = x). Relating the

0

quantized operators Hand H is more difficult ; we must assume that S
extends to a global one-to-one canonical map. Then H can be thought
of as the « Weyl » quantization of Hcl in the curvilinear coordinates induced

0

on M by S. The expansion of HW must have the same first two terms as H,v
(these are canonically determined by Hel) so the difference is O(h2). It is
reasonable to apply perturbation theory and conclude that the spectra

0

of H and H differ by 0(~2), but because of the global nature of the problem
we see no way to prove this in general.

7) Concrete examples

We check the validity of the method on the separable 3-dimensional
central potential, for which we know the exact WKB formulae (Appendix 2;
we use the same notations). For every value of J3 = M we take for y the
circular equatorial trajectory running at the minimum W(M2) of the

FIG. 7. - Structure of A for the I = 3 central potential.

effective potential (v(r) + M2 2 , i. e. y is the degenerate Lagrangian2mr
manifold of equations {H = W(M2}; J2 - M2 ; J3 = M }, or the path of

period T = M 
of equations :
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It is appropriate to remark that W(M2) is a Legendre transform :

so that :

In particular the radius roof y satisfies:

The equations of motion of the fluctuations around y (i. e. v = M2) read :

and

Since - = 0, the Poincare map is just (exp TA). The angles of rotation

are (mod 27r) the eigenvalues of 2014 : Two, wo = 27r, w03C6 = 0. We

check that these are the absolute angles of rotation (with the proper signs)
when we take the most natural choice for the longitudinal cycle r 1 :

( 6r = const, ~8 = const}. Quantization of r1 gives M = mh; the longitu-
dinal energy being W(M2), we get the total energy by adding the transversal
energies:

This is the analog of eq. (79), it holds for large m and small l’ and n’. Actually
it would have been better to linearize the problem in the ((5r, plane
only since we know the exact solution in the angular coordinates: then
the formula for the levels shows the usual SO(3) degeneracy:
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FIG. 8. - Two examples of Regge trajectories.

For fixed n’ this formula gives a relation between energy and angular
momentum which is nothing else but a Regge trajectory (fig. 8).

8) Singular paths

It is possible to relax some of the conditions on the path y. For instance,
the projection nQ(y) might have multiple or turning points. The latter case
creates no difficulty: eq. (79) was derived in phase space and still holds.
We can also treat reflections on a hypersurface of f2 as usual by adding
a phase shift of 7r at each reflection point with a Dirichlet boundary condi-
tion [16].

9) An interpretation of eq. (79)

In our method, sharp energy levels are generated by a combination of
the Balian-Bloch and Gutzwiller mechanisms. We must recall that each A~
is generated by (linearized) classical paths, which are generally dense on A~
or exceptionally closed. It is the family of all such paths wound around
the « simple » path y, and (whenever they are closed) repeated an infinite
number of times, that conspires to create the family of levels (79). A path
can close after p turns only if the angles of rotation are rationally dependent;
then the exact classical system also admits paths which close after p turns;
since p &#x3E;_ 2 except if every = 0, those closed paths are not « simple »,
and under our hypotheses for y there is no possible double counting (fig. 9).
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The classical perturbation theory around closed paths [39] goes beyond
the linear approximation since the angles vj are allowed to vary conti-
nuously with a (they take their linear values for a = 0). Consequently
the structure of closed paths around a given simple path is extremely
complicated [13], and it is satisfying to see that only the central path is
relevant to quantization; the other paths (which may have quite different
shapes) only contribute through the angles of rotation. We believe that
by introducing this classical dependence of the vj into eq. (79) we should
make the formula more accurate (14):

Finally we remark that although the existence proof for the invariant
tori relies on classical « perturbation » theory, all the results of this section
are non-perturbative in the coupling constants g, i. e. if the classical objects
and v j are known exactly, the semi-classical levels and waves are functions
of g, not power series (however they are power series of Ii and we have seen
that nothing is known for higher orders in ~).

10) Partial degeneracy

This section was devoted to systems with closed paths; section 5 treated
systems with closed Lagrangian manifolds of dimension We give a
short treatment of intermediate cases (without proof; details in ref. [53]).
Assume that Fi 1 = ..., Fp are p observables in involution (1 
eq. (18) implies that = 0; by the Frobenius theorem, the
system has (invariant) p-dimensional integral manifolds, each of which
lies in a fixed (21 - p)-dimensional manifold E~ == { Fi = al, ..., Fp = 
and carries a p-parameter abelian semi-group of canonical mappings
Ut = Utl ... Uip (where U k is the flow of F~). We suppose there exists a
(continuous, unique) family { of compact integral manifolds (Va C 
necessarily Va is a p-dimensional torus. The linearized Poincare map along
a cycle (15) y(t) c V« only depends on the homotopy class of the cycle;
p such commuting maps P 1, ... , Pp correspond to a homotopy basis
{Y1’ ..., of Each Pk has the angles of rotation 0 (with multipli-

(14) With an error 0(2) only. We are very grateful to Prof. S. Sternberg (Harvard Univer-
sity) for discussions about classical perturbation theory [39]. 

~

(’5) The linearized flow around y(t) satisfies the equation 5x(f) = ci(t). ~03C9(03B4Fi) if

the ci are defined by: y(f) = 03A3 ci(t). ~03C9Fi(03B3(t)); cf. eq. (72).
1
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city p), l’ ..., ui (and we assume parametric stability : 0   n ;

v; =f. ~, for j ~ j’). The semi-classical joint spectrum of F l’ ..., Fp is then
given by the quantization rules for k = 1, ..., p:

where the rotation index is defined in analogy with the case p = 1,
in which the formula reduces to eq. (79); for p = l, n(Yk) is the Maslov
index and the rules coincide with eqs. (64).

11 ) The rotation index

In § 5 we have defined n(y) for a closed, stable physical path y. If y belongs
to an invariant Lagrangian manifold of a polarization ( § 11 with p =1)n(y)
is the Maslov index. Also, if the classical dynamical flow is locally equi-
valent to the geodesic flow of a riemannian manifold, and if y is a closed
stable geodesic, n(y) is the Morse index of y. Proof: in the t = 0 section A°
consider straight lines Lj’ ci through 0 such that Lj’ n # 0

(they exist since I  x). By a symplectic map we put A in such a position
that the Lagrangian plane generated by the L~. and the velocity y(0) becomes
parallel to 22 (we keep the old notations for the rotated objects). The Maslov
index of f1 is just the Maslov index of x(t) (0  t  T) since the arcs y/ t’j’
do not intersect ~Q. But for a geodesic problem the (locally) minimal action
principle is satisfied in any canonical coordinates, so the Maslov index
of the physical path x(t) is its Morse index ( 16) (cf. 5, § 7). By continuity
this is also the Morse index of y (making r:J.j’ - 0). We think that the alter-
nate method given by Gutzwiller for I = 2, which keeps track of an absolute
angle of rotation all along the path in order to count the focal points, works
only for some special (although frequent) problems of the geodesic type.

In conclusion : for a restricted class of paths (physical, closed, stable)
we have defined a rotation index which requires neither an invariant
Lagrangian manifold A ~ y (as for the Maslov index) nor the geodesic
character of the flow (as for the Morse index) : the rotation index takes the
place of the Maslov (or Morse) index in the quantization rules (79) or (80).

12) The Laplacian spectrum

The Laplace operator on a compact riemannian manifold is an

elliptic PDO of order 2 whose bicharacteristics are precisely the geo-
desics [44]. Therefore we conclude that the semi-classical spectrum of the
Laplace operator is given by eqs. (79) of (80) if the hypotheses of § 5 or § 11 1

e6) Without the « concavity » term (Dr R. Cushman, private remark).
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are satisfied; for isolated paths (p = 1) n(y) is the Morse index. The quantiza-
tion rules give information on the local structure of the spectrum for a
high energy quantum number [50].

13) Experimental tests

The Poincare theory we have used in this section finds its most natural
application in celestial mechanics. But the literature about the quantum
theory of the solar system is far from abundant [46] and suggests few
experimental ideas. Instead, we might test eqs. (79) or (80) on molecular,
atomic or nuclear spectra : in a region of the spectrum around the energy E,
not too large but containing a sizable number of eigenvalues, the spacing
should be generated by at most I numbers if the system has I degrees of
freedom [50] (provided the family of classical paths { 03B3E } is unique in
that region). This structure could vary slowly over broader regions of the
spectrum as the v j’ vary, and rapidly at energies where the family {~ }
has « accidents ». In theory, agreement should be good only for high energies
but, as is often the case, the extrapolation to lower energies might work
quite well.

8. CONCLUSIONS

We can sum up the relations between the degree of continuous

degeneracy of the system and the possibilities of a semi-classical treatment :
F 1 = H, ..., Fp are a complete set of commuting admissible observables.

In cases a) and c), the smallest invariant manifolds will in general be the
E~"~ : { F 1 = ..., F p = The criterion to the possibility of a
Hilbert space semi-classical treatment is then that the invariant stable
closed manifolds of ’ the system must be oj dimension ~ I (cases a) and b)).
Our conclusions are idealized, in assuming that we can localize the

analysis to a limited region of interest in phase space. On the other hand
they hold for the non-euclidean systems of section 6 as well.
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APPENDIX 1 .

THE STATIONARY PHASE EXPANSION

Let a - 20142014 be an asymptotic series for £ - + ~ with a" e semi-normed

uniformly in n, and ~ e C~(~) slowly increasing at infinity, with a single critical point q = 0

(V~(0) = 0), non-degenerate, i. e. (Q .k) = (2014~2014) has : det Q ~ 0. Let
/

Then

has an asymptotic series obtained by integrating term by term the Taylor series at q’ = 0

of the brackets with the gaussian weight exp (iq’ 2 (Q + iE)q’ , where ~ (- 0) is any posi-
tive definite quadratic form (the Feynman convergence factor). Integration term by term is
legitimate if the contributions to I(Â) from q - oo are zero (e. g. a(q) = 0 or &#x3E; c &#x3E; 0
outside a finite region), and the limit 8 - 0 is uniquely determined [47]. This gives the
contribution of the critical point. By a partition of unity we can isolate the contribution
of any region avoiding q = 0: rp can be taken as an independent variable, which appears

in subintegrals (03B11 E 9’), but [28]:

(VN): this is 2014 0. So, the resulting series for 1(,1,) is local at q = 0, it reads:

where (- i~.)~r2 = ( ~, ~~r2; (det Q)1~2 = det Q ~1~2, I(Q) being the inertia (number

of negative eigenvalues) of Q; m, k, r are I-indices k :::;; m p k~ :::;; rn~ (’di); ~ r ~ I = rj;
I 1

r ! ,I = s, E r. and is the sum over those { sr ~ satisfying sr . r = k ; finally
1 r

means the sum over all pairs (ip, ~p)p-1,..,,q exhausting the set { 1, , l, ..., I, , I ~
n 
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(Wick’s theorem C6»). Formula (81) is extremely complicated. It shows however that

(omitting the overall factor) the coefficient of 1/(iÀ.)P contains a maximum power of

1/ (det Q)3p (originating from the contractions 1/ (det Q)q, = I k  2q and

j r &#x3E; 3 imply 2q and p ~ q - 03A3 sr ~ q 3) and is linear in for n + 2014  p .
Assuming on Supp a but only a° E C2, 03B11 E C° we may truncate the expansion
and obtain the estimate :

For the asymptotic Fourier transformation we can derive Hilbert space estimates: the
hypothesis ao E C2 must be replaced by the chart-independent condition that ~Q = 
belongs to the domain of the operator ( - + q2) (and SQ E C 7)).

If has several isolated critical points, each contributes as in eq. (81 ), and the resulting
value for !(/.) is simply the sum of the individual terms; there are no interference terms
between two critical points. This follows from a partition of unity applied to the ampli-
tude a(q) [12] [21 ].

e6) Eq. (81) expresses the Feynman rules for a « field » theory with 1 degrees of freedom

free Lagrangian 1 2 qQq ; interaction the lowest order corresponds to the sum of

tree graphs (ref. [48]).
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APPENDIX 2

THE CENTRAL POTENTIAL IN 3 DIMENSIONS

Let H = 2014 + V( I q I ). To separate variables, it is convenient to work in polar coor-
dinates : 2m

At every q there is a euclidean frame in ~ of vectors parallel to dr, de, dcp (except when
sin 0 = 0) in which the coordinates of p are:

The fundamental 1-form of M is:

It is well known that the obrervables H, J2, J3 (where J = 4 x p) are in involution. In
our coordinates the Lagrangian foliation is given by:

In the Q-chart, the equations of a Lagrangian manifold are (8 = ± 1):

(fig. 7) and the invariant density is:

The singular cycle EQ is { pr = 0 } u { po = 0} (assume for the moment M ~ 0 so that
the singularities of the polar coordinate system r = 0 and sin 0 = 0 are not encountered).
Formula (67) becomes, using (82):

.
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M
where and = Arc sin 

- 
are the lowest turning points. The Bohr rules are

We remark that the radial quantization only uses the well-known effective potential
(V + L2/2mr2) for which we assume a unique minimum W(L2) for each L2 &#x3E; 0. Also,
the spectrum of L2 differs from the exact spectrum J2 = l(l + by the constant h2/4;

L2 = l + 1 2)2 h2 where I = I’ + (this is known as the Langer modification [22]); the

eigenvalue L = t + - 2 h is (21 + 1 )-degenerate since m = - I, ... , + I. In our opinion,

since the spacing of levels when m varies is correct, the reason for the Langer modification

can be found at m = 0. Then the cycle p03B8 = e L2 - 20142014) 1/2 becomes p03B8 = - L and
has indeed 2 reflections at 0 = 0 and 7r, giving rise to the shift I’ ~ l’ + 1 2; but these
reflections are due to the singularities of the polar coordinates and are not genuine turning
points (any meridian circle on the sphere r = const. is a good representant of the cycle
in Q-space). However we cannot discard their effects altogether since the effective potential

to be used in the radial Bohr rule is indeed [22] V(r) + ~ + -J~/2~.
Solvable cases:

a) Spherical harmonics are obtained by dropping the radial degree of freedom. The
normalized semi-classical expression is:

b) The Kepler problem : the radial quantization rule for bound states is

so we find the exact levels 
2(n’ + I + 1 )~2 

with their degeneracy.
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It is known that the (radial) relativistic equation with the 4-momentum p = ( po, p) is
obtained from the non-relativistic one by the substitutions of constants:

Since the Langer shift commutes with these substitutions 03BB + 2 - 1 = I + - - jthe WKB spectrum and the exact spectrum coincide: 2 2 "

The WKB method can also be applied to the Dirac equation in a Coulomb field with
some approximation (J. Leray, private communication).

c) The spherical cavity [16] (of radius I, with Dirichlet boundary conditions) for a
momentum k = the radial Bohr rule is:

3 1 L I
(in the RHS the shift - 4 is made from - 4 at the turning point r min = - k and - 2 at the reflec-
tion point r = 1 ). This is not very interesting since the level is better known as the
n’-th zero of the spherical Bessel function jl and it is easy to check that the exact expan-
sion [49] for n’ - .

differs from that resulting from (83):
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