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ABSTRACT. - Continuing recent investigations of Pearson [1] [2], and
Amrein and Georgescu [7], on asymptotic completeness of wave operators
for singular attractive or repulsive potentials, we study the case of a
spherically symmetric potential which is singular and strongly oscillating
near the origin. We consider all potentials which are L i (a, ~) for each a &#x3E; 0,

and satisfy the following conditions: let W(r) == 2014 f’" We assume

a) WeLi(0, 1) ; b) lim rW(r) = 0 as r - 0. Under these hypotheses, we
show that

1) The spectrum of the Hamiltonian H, == 2014 2014y + 20142014 + V(r),
= 0,1,..., is simple; ~ ~

2) The essential spectrum is [0, 00);
3) H~ has no singularly continuous spectrum;
4) The bound states are finite in number, and non-degenerate. It is

known that, under our assumptions, there are no positive eigenvalues.

(*) Erkend onderzoeker bij het Interuniversitair Instituut voor Kernwetenschappen.
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2 M. L. BAETEMAN AND K. CHADAN

5) The Miller wave operators exist as strong limits, and are asymptoti-
cally complete.
These results generalize those of the previous authors.
6) Moreover, if we assume that rV(r)e L1 (1, oo ), we can define the Jost

function exactly as in the regular case, and it has exactly the same analytic
and asymptotic properties. In particular, it contains complete information
about the spectrum, scattering, and bound states, and the inverse scatter-
ing formalisms of Gel’fand-Levitan-Jost-Kohn, and Marchenko, apply
without any modifications.

1. INTRODUCTION

We consider in this paper scattering of a particle by a spherically sym-
metric potential which is short range and highly singular at the origin.
The potential is assumed to be locally absolutely integrable j’or r &#x3E;. 0. By
short range, we mean that V(r) = 0(r-2-E) as r - co (e &#x3E; 0), or more
generally,

By singular at the origin, we mean, as usual, that

If we split the potential into its positive and negative parts, we have two
cases, according to whether rV- is integrable or not at the origin. In the
first case, there is no problem for formulating scattering theory, no matter
how singular V+ is [1], and the usual conventional formalism applies.
In this paper we consider the case where

We also assume that

since, if rV+ is integrable at the origin, V+ is regular, which means that
the potential is equivalent to a strongly singular attractive potential. This
case is also rather well understood, and for a very large class of potentials
of this kind (very singular and attractive) the asymptotic completeness
has recently been proved by Pearson [1], and Amrein and Georgescu [7].

(~) There is no special meaning attached to the lower limit 1. It is chosen merely for

convenience.
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3SCATTERING THEORY WITH HIGHLY SINGULAR OSCILLATING POTENTIALS

According to Pearson’s analysis, a potential which violates the asymp-
totic completeness must be very singular and violently oscillating near
the origin, and should satisfy both (3) and (4). Such an example has indeed
been found by Pearson [2]. In this example, the absolutely continuous posi-
tive spectrum is doubly degenerate on a finite part of the positive axis.
Moreover, there are no positive-energy eigenvalues, and the negative
eigenvalues are finite in number. Finally, the Hamiltonian is essentially
self-adjoint and bounded from below. The scattering operator is of course
non-unitary, so that this example leads, with a real potential, to the absorp-
tion of part of the incoming particles, which remain bound to the scattering
center.

In this example one can verify that

In other words, there are no compensations between V+ and V- . However,
it is not clear in Pearson’s paper [2] whether condition (5) is necessary
for the breakdown of asymptotic completeness. Our purpose is to show
that in some sense (5) is necessary. Indeed, we show in the next section
that if

where V is locally absolutaly integrable for r &#x3E; 0, and if

is such that WE L 1 (0, 1 ) and

the S-wave Schrodinger equation (S-wave for simplicity !)

has a regular solution satisfying

An integration by parts show that (6) and (7b) lead to

The reason for asking the absolute integrability of W will become clear
in the next section. We shall show there that everything is then exactly
as for the usual regular potentials satisfying
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4 M. L. BAETEMAN AND K. CHADAN

This means that the Hamiltonian is self-adjoint and bounded from
below, that the absolutely continuous part of the spectrum is the whole
positive axis and is simple, that there are no bound states with positive
energies, and, finally that the singular spectrum is void. Needless to say
that asymptotic completeness holds, and that the S-matrix is unitary.
We shall in fact see that as for regular potentials, we can formulate

everything in terms of the Jost function, which is known to be by far the
most convenient tool in dealing with central potentials [3] [4].
We deduce from the above results the usual completeness relation for

the wave-functions {03C6(E, r)}, where E runs through the whole spectrum.
Similarly, we deduce the Gel’fand-Levitan and Marchenko representations
for the regular solution and the Jost solution, respectively, in section 3.
It follows from these results that the inverse scattering methods of Gel’fand-
Levitan, Jost-Kohn, and Marchenko apply to our case without any modifi-
cation. We end up this section with some illuminating examples.

This enlargement of the class of admissible potentials to which the usual
Jost function formalism applies is far from trivial since, as can be easily
seen, wildly oscillating potentials associated with

and in fact

where B is any bounded function on [0, 1] which is differentiable for r &#x3E; 0,
and a  1, or a = 1, f3 &#x3E; 1, ... etc., are allowed.

Singular oscillating potentials at infinity have recently been subjecte
to extensive studies [5] [6]. One of their features, which we do not have here,
is the occurence of bound states with positive binding energies. Here,
since we assume the potential to be of short range, and for positive energies,
it is known that the asymptotic behaviour for large r of all the solutions
of the Schrodinger equation is given by a linear combination of eikr and

[3] [4]. It is then obvious that no positive-energy solution can be
square-integrable at infinity, a well-known fact. Our analysis is somewhat
the analogue of the work done for oscillating potential at infinity.
As a final remark, let us notice that, if we define W by (24), which differs

from (7a) by a constant, it follows from ( 1 ) and We L 1(0, 1), that in fact
WELl (0, oo). As will become clear in the next section, in order to prove
the existence of a regular solution of the Schrodinger equation satisfying (8b),
it would be sufficient to assume only the local integrability of W at the
origin. However, when we introduce the Jost function, and demand that

Annales de l’lnstitut Henri Poincaré - Section A



5SCATTERING THEORY WITH HIGHLY SINGULAR OSCILLATING POTENTIALS

it should have properties quite similar to the case of regular potentials
satisfying ( 10), we have to use also ( 1 ), or We Li(0, oo ). The most general
conditions under which our results are valid are then as follows : 1 ) Absolute
integrability of V on [a, oo ), for each a &#x3E; 0 ; 2) WELl (0, oo); 3) Condi-
tion (7b).
We have considered in this paper one singular point, which is at the

origin. However, from the analysis of the next section, it will become clear
that singularities of the same kind (roughly speaking, simple integrability
of V from left and right) situated at finite distances can be accommodated
as well. The general case of n dimensions has been studied by Ginibre and
Combescure (this Journal, the following paper).

2. SOLUTIONS OF THE RADIAL EQUATION

We wish to show that, under the hypotheses stated previously, namely
the absolute local integrability of the potential V for r &#x3E; 0, and WELl (0, 1),
and (7b), there exist a solution satisfying the boundary conditions (8b).
If such a solution exists, it must satisfy the well-known Volterra equa-
tion [3] [4] 

_

where k = JE. Since the potential is short range, we shall cut it at r = 1
and replace it by 0 for r &#x3E; 0. This tail can always be treated by perturbation
as long as it satisfies ( 1 ), and does not lead to any modification of the
results. Intergrating by parts, and using (7a, b), we find (2)

Before showing the existence and uniqueness of the solution of these
two coupled Volterra equations, let us first notice that rVV2 E Li(0, 1 ).
This is obvious since rW, by (7b), is continuous and bounded in [0, 1].
Therefore, rW2 is in L1(0, 1 ) if W is so.

It is then obvious that by iterating ( 13a and b), one always gets, at each

(~) Because of the boundary conditions (8b), cp = 0(r) near the origin. Therefore, 0
as r - 0, in accordance with the assumption (7b).

Vol. XXIV, ri° 1 - 1976.
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step, integrals of absolutely integrable functions. The usual procedure for
proving the absolute and uniform convergence of the series thus obtained
should then go through as for regular potentials. For these potentials,
one starts from the bound

which one uses both for the inhomogeneous term and inside the integral
in ( 12). The simplest way to obtain (14) is to notice that

where C is an appropriate constant. Now using

and

we get (14). In our case, since we are dealing with the coupled equa-
tion (13a, b), we shall use separately the two bounds ( 15) for | kr  I

and I kr &#x3E; 1, together with

Given k # 0, and ro = B we have the two cases r  ro and r &#x3E; ro.
First consider r  ro. Equations (13a, b) lead to 

’

Writing now

and using

we get

and

Annales de l’lnstitut Henri Poincaré - Section A



7SCATTERING THEORY WITH HIGHLY SINGULAR OSCILLATING POTENTIALS

whose solutions are easily obtained by transforming them into differential
inequalities. One then gets

and

It can easily be seen that they are also true for k = 0 (just make k = 0
in ( 13a, b)). These bounds, when used in ( 13a, b), at once show the existence,
for r  ro, of the solution qJ satisfying the boundary conditions (8b). That
this solution is unique, follows from the standard procedure, and does
not need to be elaborated here.
Now consider the case r &#x3E; ro. This time we have

and

Using now the second bound in (15), and the previous bounds obtained
for cp and at r = ro, M(k, ro) and N(k, ro), we find that the inhomogeneous
terms in the above integral equations are bounded, respectively, by

and

Proceeding now exactly as before to convert our integral equations into
integral and then differential inequalities, and solving them, we find

Using now that fact that I k = ro 1 &#x3E; ~’ I &#x3E; r-l, we see that the integral
in the above expression can be converted into an integral identical to that
which figures in M(k, r). Taking now into account this fact, and using the
same remark to go from (15) to (14), we finally get, for all r,

. where the factor

Vol. XXIV, n° 1 - 1976.



8 M. L. BAETEMAN AND K. CHADAN

has been absorbed into C. Similarly

These bounds are valid for all r &#x3E; 0 and finite k. Notice that they are
identical to the bounds for regular potentials [3] [4]. Moreover, if we now
add a regular tail to our potential, the bounds will keep the same form.
From the above results, we obtain, exactly as for regular potentials [3] [4],

that cp for each r &#x3E; 0, is an entire function of k of order 1 and type r, and has
the asymptotic property (3) 

,

Since we are dealing with short range potentials, we can also introduce
the Jost solution r) which satisfies

It exists for all r &#x3E; 0, and is analytic in &#x3E; 0, continuous in 0

because of (1) [3] [4]. Similarly, we can define the Jost function through
the Wronskian

which, because of (8b), is given also by

and has the integral representation

where (4)

Of course we assume now that W is L1 on the whole axis r &#x3E; 0. The Jost

function is analytic in Im k &#x3E; 0, continuous in 0, and has, because
of ( 18a, b), the asymptotic form 0).

The wave-function 03C6, being an even function of k, can now be written,
for real values of k, 

(~) Just use ( 18a, b), ( 14) and ( 16) in ( 13a).
(4) Since cp = 0(r) near the origin, and because of (6), there is really no need to intergrate

by parts the integral in (23).
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9SCATTERING THEORY WITH HIGHLY SINGULAR OSCILLATING POTENTIALS

Because of

and

We also have

Using now (20a) in (26), we get for k real, the asymptotic form

where the phase-shift 6 is defined by

Continuing our analysis we find, exactly as for regular potentials, and
by absolutely identical methods, that the Jost function F does not vanish
on the real axis, except perhaps at k = 0 (eventual « bound » state at zero
energy), that its zeros in Im k &#x3E; 0 are situated on the imaginary axis, are
simple, and finite in number. There is a one to one correspondance between
these zeros and bound states. We know also, as was said before, that there
are no bound states with positive energies. We see therefore that every-
thing is quite identical to the regular case.

Also notice that, because of (25),

If the potential is regular and non-oscillating near the origin, it is known
that for large values of k, the phase-shift keeps a constant sign, opposite
to that of the potential. For oscillating potentials, however, the phase-
shift, while going to zero as before, oscillates indefinitely with a period
related to that of the potential. We shall see examples of this phenomenon
in the next section.
The Levinson theorem [3] [4], which relates the variation of the phase

of the Jost function along the real axis to the number of its zeros inside
the holomorphy domain Im k &#x3E; 0 is again obviously valid in our case,
and reads

where n is the number of bound states. In case there is an almost bound
state at E = 0, one has of course to add n/2 to the right hand side of (33).
Having shown that everything concerning the Jost function is exactly

the same as for regular potentials, it is obvious that there is no difficulty
to carry out the eigenfunction expansion a la Titchmarsh, as it has been
done by Jost and Kohn and others [3] [4]. The completeness of the

Vol. XXIV, n° 1 - 1976.



10 M. L. BAETEMAN AND K. CHADAN

set { cp(E, r) ~ when E runs over the whole spectrum can be written then,
symbolically

where { Ej } are the energies of the bound states, and C~ their normaliza-
tion constants

According to the general theory of differential equations, for each
value of k, the roots of ~p on the r-axis are isolated. Let r 1 (&#x3E; 0) be the
closest root to the origin. A second and linearly independent solution
of (8a) is given by

Because of (8b), it is obvious that ~P(O) = 2014 1. Since the Wronskian
of the two solutions is

it follows that

All solutions, in particular the Jost solution being a combination of
these two solutions, it is obvious that we have also, exactly as in the regular
case, _. _.. , r.. ,-,...,

This justifies the definition (22) of the Jost function.
At any rate, the origin is a limit-circle case since all solutions are L~.

There is no difficulty in defining the free and total Hamiltonian

as self-adjoint operators in the Hilbert space L2 (0, oo), exactly as for
a regular potential, by adding the boundary condition

~(0)==0 (39c)

Annales de l’Institut Henri Poincaré - Section A
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The existence of the Miller wave operators as strong limits follows
from a recent powerful theorem of Amrein and Georgescu [7], which is
as follows. Let V belong to Li ([a, 00» for each a &#x3E; 0. Let H be the self-
adjoint operator defined by the differential expression (39b) and the
boundary condition (39c). Suppose that the essential spectrum of one
of the self-adjoint operators defined by the differential expression
- + V in L2 (0, 1) is empty. Then

a ) The spectrum of H is simple.
b ) The essential spectrum of H is [0, oo ).
c) H as no singularly continuous spectrum.
d) H has no positive eigenvalues.
e) Furthermore, let V and 9 be such that each of them verifies the

hypotheses given above. Let H be a self-adjoint extension of - d2/dr2 + V,
and fi a self-adjoint extension of - + V. Then the wave operators

exist and are asymptotically complete

and it suffices to set V = 1(1 + 1 )/r2 to obtain the existence and the asymp-
totic completeness of the wave operators for each partial-wave.
We know already the truth of the statements a)-d ) through our study

of the Jost function and its properties in the physical sheet of the E-plane,
0 ( 5). In order to verify the asymptotic completeness e), we only

have to verify that the essential spectrum of - + V in L2 (0, 1) is
empty. To see this, let us consider the self adjoint operator defined by the
differential operator and the boundary conditions (39c) and

As we saw before, the estimates ( 18a, b) show that the integrals in ( 13a)
and ( 13b) are absolutely convergent for all finite values of r and k. The
convergence is also obviously uniform in any compact of the k-plane.
Therefore, cp and qJ’ are entire function of k. Therefore, the t . h . s. of (42)
is an entire function of k, and its root are separated and form a denumerable
set whose only accumulating point is infinity. Therefore, the self-adjoint
operator defined in L2 (0, 1 ) by the differential expression and the boundary
condition only has a point spectrum. Therefore, we can directly apply the
Amrein-Georgescu theorem, and the conclusions a)-e) hold.
The above analysis can be carried out without any difficulty for higher

partial waves. The starting point is the analogue of the equation (12) in
which sine and cosine are replaced by appropriate combinations of Bessel
and Hankel functions. Integration by parts again leads to equations

(5) Remember that we define now W by (24), and assume that WeL,(0 oo) togetherwith (7b).

Vol. XXIV, n° 1 - 1976.



12 M. L. BAETEMAN AND K. CHADAN

analogous to ( 13a et b), which are then solved by iteration as for regular
potentials, exactly as we did above for I = 0. Using the well-known estimates
and bounds for Bessel and Hankel functions [3] [4], one is able to show,
under our assumptions on the potential, that everything is exactly as for
regular potentials. In particular, that the Jost function, holomorphic in
Im k &#x3E; 0 and continuous in 0, contains all the necessary informa-
tion about the spectrum and the asymptotic form of the wave-function
for large r, that the connection between its roots and the bound states is
normal, that these are finite in number and bounded below, and, finally,
that one has an absolutely continuous spectrum on [0, 00), which is non-
degenerate and leads to a completeness relation identical to (34a, b et c).

It is also straightforward to show that the hypotheses of the Amrein-
Georgescu are verified, and that the Miller wave operators exist as strong
limits and are complete.
As a final remark in this section, let us notice that to reach the above

conclusions, there is really no need to assume W~L1 (0, oo ). The hypo-
theses of the Amrein-Georgescu theorem are satisfied if V e Li 1 ([a, 00))
and W~L1 (0, 1). The only property which is no longer true in general
if we abandon ( 1 ) is the continuity of the Jost function at k = 0, and the
occurrence of a true bound state at E = 0 [8].

3. INVERSE SCATTERING PROBLEM

In this section, we shall briefly discuss the Gel’fand-Levitan and Mar-
chenko theories [9] [10] [11], assuming ( 1 ) and W~Li (0, 1). Since the
regular solution ~, r) is an entire function of k of order 1 and type r,

and the asymptotic estimate (19) holds, it is obvious that it satisfies the
Gel’fand-Levitan representation

Combining this with the completeness relation (34a), we are led, in a
staightforward manner, exactly as for regular potentials, to the Gel’fand-
Levitan integral equation

where

and

Annales de l’Institut Henri Poincaré - Section A



13SCATTERING THEORY WITH HIGHLY SINGULAR OSCILLATING POTENTIALS

Therefore the same conclusions are reached concerning the existence
and uniqueness of the solution of (44a), and we obtain the potential from
the scattering data dp(E), via (44a), by

Comparing this with (24), we see that W(r) and K(r, r) are identical up to
an additive constant.
The Marchenko formalism is also identical to that of the regular case.

The S-matrix

having properties identical to those of the regular case, there is no diffi-
culty for proving the Marchenko representation of the Jost solution

(r &#x3E; 0, 0) 
... -

and the Marchenko integral equation (t &#x3E; r)

where

The potential is again given by

and we see that now, according to (24),

As an example, we can consider the simple case where there are no bound
states and the phase-shift is given by

This leads to

Vol. XXIV, n° 1 -1976.



14 M. L. BAETEMAN AND K. CHADAN

which shos that, in the limit k - oo, the phase-shift goes to zero while
oscillating indefinitely. On the other hand, it is easily seen that [12]

It then follows from the GeFfand-Levitan equation that the potential is
given by (~) 

_ , ,

This shows that the most singular part of the potential behaves like r - 5/2
near the origin. The Jost function itself is given by

It is holomorphic in Im k &#x3E; 0, continuous in 0, and satisfies (25).
Another example is given by [13]

where we choose again

Again, it can be seen that the potential near the origin is given by (6)

whereas the phase-shift for k - 00 oscillates and goes to zero like k~ t.
Notice that in the above examples, the potential has a long tail : V(r) ;00..; r- 5/2
as r - oo. This is the reason why k = 0 is a branch point for the Jost
function. If one multiplies the r . h . s . of or (56b) by then the

branch point is shifted to k = - i~c, and V - as r - oo .

4. CONCLUDING REMARKS

From the analysis of section 2, it is clear that, in order to keep the usual
conventional theory without any modification when dealing with poten-
tials which are not necessarily repulsive near the origin, it is sufficient to

(6) Details and other examples will be given in a separate paper, to appear in Nuclear
Physics A.
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15SCATTERING THEORY WITH HIGHLY SINGULAR OSCILLATING POTENTIALS

require only the absolute integrability of W at r = 0, which is a much

weaker condition than the absolute integrability of rV.
Many of these potentials may be generated by superpositions of Yukawa

potentials. For instance, we have

If one wishes a potential decreasing exponentially when r becomes

very large, it is sufficient to integrate the above expressions only from m
to ~, m &#x3E; 0. It is obvious that this does not change the singularity at the
origin.
For such potentials, the Jost function is holomorphic in the entire

k-plane cut from - im/2 to - i oo, and (25) holds in this cut plane. There-
fore, one would be able to write dispersion relations a la Martin for the
Jost function, or dispersion relations and N jD equations for the partial-
wave amplitudes [4]. These in turn can be used to solve inverse scattering
problems by methos identical to those developped by Martin and others.
We shall give more details on these in a separate paper.

There is also no difficulty in combining singularities considered in this
paper with similar singularities at infinity considered in [5] [6], and have
more general potential. Our analysis shows that, in order to have the double
degeneracy of the continuous spectrum similar to that in the Pearson

example, it is necessary that V, while oscillating violently near the origin,
should be such that rV is not integrable there.
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