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Conformally covariant field equations

J. MICKELSSON (1) and J. NIEDERLE (2)

Ann. Insr. Henri Poincaré,

Vol. XXIII, n° 3, 1975,

Section A :

Physique théorique.

ABSTRACT. - Conformally covariant field equations are defined in an
analogous manner to relativistically invariant field equations with non-
zero mass. To obtain a meaningfull definition we take the fields as Banach
valued functions on the conformal closure of the Minkowski space. A
standard conformal operator is a conformally covariant operator which
is also a non-decomposable relativistically invariant operator in the sense
of Naimark. The first and second order standard conformal operators and
the corresponding differential equations are studied in detail.

1. INTRODUCTION

The present work is devoted to conformally covariant field equations,
i. e. to an approach in field theory in which the conformal group plays a
role of a symmetry group of space-time. (For more details as well as for
other approaches of the conformal symmetry in particle physics see [1] [3]
[6] [10] [14] [16].)
There are at least four sources of motivations for such a study. Firstly,

the conformal group is the largest group which (beyond singularities)
preserves the light-cone and thus may be treated as a possible generaliza-
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278 J. MICKELSSON AND J. NIEDERLE

tion of the Poincaré group-the symmetry group of the special relativity.
Secondly, there have been attempts to use a certain homogeneous space
(conformal closure of the Minkowski space) of the conformal group as a
model of the Universe in cosmology; in particular, this model has been
used for calculating the redshift and microwave background [15]. The
third motivation is originated from an interesting indication that « any
theory invariant simultaneously with respect to the special linear and

conformal groups will be invariant also with respect to the general cova-
riance group of the general relativity » [2]. Finally, from the experimentally
observed phenomena of a « scaling law » in a deep inelastic electron-
proton scattering the idea of an approximate scale invariant field theory
arose and, since scale invariance implies conformal invariance for a class
of Lagrangian field theories, also the idea of constructing conformally
covariant field theories (the effect of symmetry breaking is considered

afterwards).
We shall try to deal with conformally covariant field equations in an

analogous manner to relativistically invariant field equations. Let us

therefore first study the latter case and then try to find a fruitful generaliza-
tion to the former.

Let M be the Minkowski space and let E be a complex Banach space.
For the sake of simplicity we shall assume that E is finite-dimensional.

Let g - R(g) be a representation of SL(2, C), the universal covering
group of the Lorentz group SO(3, 1 ), in the vector space E. Let C~(M, E)
be the linear space of all C~-mappings 03C8 : M - E. We construct the
(non-unitarily) induced representation T of P in C~(M, E), the universal
covering group of the Poincaré group P, by the rule

where g E P , x ~ M = P/SO(3, 1), gl E E) and gx is a translation,
gx0 = x. This representation is continuous if the space C:t)(M, E) is equipped
with the Schwartz topology. The group P acts through the natural homo-
morphism P - P on M. Let us consider a first order field equation

where LV: E ~ E (v = 0, 1, 2, 3) are linear E),
l~ is a derivative with respect to the co-ordinate x~, and x # 0 is a constant
which is connected with the mass [7]. As usual, we define the field equation
to be Poincaré invariant if = for each g E P. It is well-
known that this condition is equivalent with the condition

where the operators my~ represent the Lie algebra of SL(2, C) in E, corres-
ponding to the representation R of SL(2, C).

Annales de l’Institut Henri Poincaré - Section A



279CONFORMALLY COVARIANT FIELD EQUATIONS

Next we would like to define a conformally invariant field equation in a
similar way. The first obstacle is the simple fact that the conformal group
SO(4, 2) does not act in the Minkowski space. If gc is a special conformal
transformation in the direction c = (co, cl, c~2, c3), then

but this is not defined when 1 - 2c’x + = 0. In order to overcome
this difficulty, one must use the method developed in [5] or to work with
the conformal algebra as in [11] and [12] or to construct a field theory in
the conformal closure M of the Minkowski space [8]. In this paper we shall
study the last possibility. Roughly speaking, M is the Minkowski space + a
light-cone at the infinity (for a precise definition, see section 2). The con-
formal group acts in a on M. This space was introduced by Veblen
already in 1933 [17]. When going from M to M, the time axis is replaced
by a circle and the space by a sphere S3. However, if the radii are large it
is realistic to expect that elementary particle physics in M is almost the same
as in M because the distances and time intervals are usually very small.
Instead of M, one can also consider a certain covering M of M (as is done
in [15]) on which one can introduce the notion of causality; this change has
no effect on the results of the present work.

If g H R(g) is now a representation of the universal covering group W
of the Weyl group W c SO(4, 2) in a vector space E, then we can construct
the induced representation g H T(g) of SO(4, 2) in C(M, E) in an analo-
gous manner to the case of the Poincaré group. We come now to the second
obstacle. Namely, there are no physically interesting differential operators
which commute with T(g) for every g E SO(4, 2). Therefore we modify the
definition of an invariant operator. Let ~ be a first-order differential
operator in C(M, E). We say that ~ is conformally covariant if

= for each g E SO(4, 2) where Qg is a real valued
function on M determined by a certain one-dimensional representation
g H Q( g) of W (section 3). The physical meaning of this definition is the
following: if we take a conformal transformation g, then in the « new
co-ordinate system » we have the field 1/1’ = and the mass

x’(x) = ix) where 1/1 is the field and x is the mass in the « old
co-ordinate system ». Note that the mass x depends on the position x.
If g is a dilatation by a factor p &#x3E; 0 then x’ = If 1/1 is a solution,

+ xl/1 = 0, then is a solution when x is replaced by x’, = 0.
In section 3 we consider first-order conformally covariant field equations.

The results of section 3 have been derived earlier by Kotecky and Niederle
in a formal way [11]. In section 4 we study second-order field equations.
Under some technical assumptions we find the most general finite-compo-
nent conformally covariant equation of the type + + = 0,
where ~v is the extension of the partial derivative av to M. The Klein-Gordon
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280 J. MICKELSSON AND J. NIEDERLE

operator + x2 as been studied by Go and Mayer in the conformal
space M [9].

In the Appendix the reader can find some simple facts about tensor
operators of SL(2, C) which are used in the text.

2. PRELIMINARIES

We denote by G the conformal group SO(4, 2) and by ~ the Lie algebra
of G. A basis of ~ consists of the generators Mvp{v, J.l = 0,1,2,3; M~ ~ 2014 M,)
of homogeneous Lorentz transformations, of the translation genera-
tors Py, of the generators Ky of the so-called special conformal transforma-
tions and of the dilatation generator D. The commutation relations are:

Here g v = 0 when and - g00 = g11 = g22 = g33 - - l. The
elements Mvp D and Kv (v, p = 0, 1, 2, 3) generate an eleven-parameter
subgroup W of G, called the Weyl group.
The quotient space M := G/(W x Z2) is sometimes called the conformal

closure of the Minkowski space M. The group Z2 consists of the matrices 1
and - 1. We can give a geometrical construction of M as follows [4] [15].
We take first the cone

We claim that M = C/ ~ where « ’" » is the equivalence relation x - y
iff x = Ày for some real number À ; x, The quotient space C/- is

dressed with the natural C *-structure inherited from (~6. It is clear that C/~
is isomorphic with (S3 x S 1 )/Z2 where S 1 is a circle and S3 is a sphere
in 1R4; 7L2 identifies the antipodal points.
The group SO(4, 2) acts in a natural way on (~6. This action determines

a C*-action of SO(4, 2) in C/- by the rule

where [x] is the equivalence class { 
Annales de l’Institut Henri Poincaré - Section A



281CONFORMALLY COVARIANT FIELD EQUATIONS

It is easily seen that G acts transitively on C/ ~ ; in fact the subgroup
SO(4) x SO(2) c G already acts transitively. Let x = [(0, 0, 0, 0, 1, 1 )].
Then the isotropy subgroup of x is generated by:

a) The Lorentz transformations SO(3, 1) leaving x4 and x 5 fixed.
b) The dilatations, which are hyperbolic rotations in the (4,5)-plane :

and x;, = x~ for v = 0, 1, 2, 3.

c) The special conformal transformations

where c = (co, cl, c2, (3) E [R4. For any vector a = (ao, al, a2, a3) we

define ao, ak = - ak, k = 1, 2, 3. We put a . b := aVbv (we take a sum
over repeated indices) and a2 := a . a.

d) The reflection x ~-~ 2014 x.
The isotropy group of x is thus isomorphic with W x ~2 and therefore

C/- = G/(W x Z~) = M.
Next we note that the Minkowski space M can be embedded in M as

a dense open submanifold. We define first the map ~p : M - C by

The image of M in C is equal to the intersection of C with the plane
x~ + xs = 1. We then define the mapping : M - M by

It is clear that M - cp(M) consists of the classes [(xo, ..., xs)] for which
x~ + x5 - 0. The map rp : M -~ cp(M) c M is a C~-diffeomorphism.
In SO(4, 2) there is a commutative four-parameter subgroup T4 defined by

Vol. XXIII, n° 3 - 1975.



282 J. MICKELSSON AND J. NIEDERLE

where t = (to, ti, t2, t 3) E 1R4. This action of T4 on !R6 induces the follow-
ing action on cp(M) :

If we identify M with cp(M), then the action of T4 on M is given by x~ = xv + t~
so that T4 is the translation subgroup of G. Because of

we can consider M - M (where x4 + xs = 0) as « a light-cone x2 - 0 at
the infinity ».

Let E be a complex Banach space and let ç be a C~-vector field on a
C~-manifold X. We denote by C"(X, E) the space of C~-mappings from X
into E. The vector field ç acts in C~(X, E) in a natural way,

where Txt/1 : Tx(X)  E is the tangent mapping; Tx(X) is the tangent
space to X at x. If X = M then we can write

where a~ E C) (v = 0, 1, 2, 3) and av is the partial derivative with
respect to XV.

Any one-parameter group t H g(t) acting on X in a CX)-manner induces
a vector field çg on X, i. e. the derivative of the mapping t - g(t)x, x E X,
at t = 0. In particular, if X = M and t - g(t) e G is the group of trans-
lations in the xv-direction, we denote this vector field by a~. It is clear that
the restriction to M is equal to ðv. Because M is dense in M, any
C~-vector field on M is of the form where av E C).
By an nth order differential operator in COO(1B1, E) -we mean a linear

combination of the operators of the type Aç 1 Ç2 ... ~k where k = 1, 2, ..., n
and A(x) is a linear operator which is defined on a dense invariant sub-
space Eo of E for all xeM. The product ~1 1 ... ~k of C°°-vector fields
on M is to be interpreted as the composite mapping ~ o ç 2 o ... o Çk
acting on E). From the previous remarks it is clear that the most
general nth order differential operator in E) is of the form

Annales de l’Institut Henri Poincaré - Section A



283CONFORMALLY COVARIANT FIELD EQUATIONS

3. FIRST-ORDER COVARIANT FIELD EQUATIONS

Let a continuous representation g H R(g) of W, the universal covering
group of W, be given in the Banach space E. For any x e M we fix an ele-
ment gx of the universal covering group G of G such that

The group G acts through the natural homomorphism G - G on M.
. 

We construct an induced representation g - T(g) of G in C(M, E), the
space of all continuous mappings 1/1 : M - E, by putting

T is a continuous representation of G if we define in C(M, E) the topology
induced by the norm

Let g H Q(g) be a one-dimensional representation of W such that Q( g) = 1
for Lorentz transformations and special conformal transformations and
Q(g(t)) = exp ( - t) for the dilatations g(t) = exp tD, g(t)x = etx (xeM).
We denote by Qg the function Qg(x) := S2(gx where g E G and x e M.

DEFINITION 3.1. - The first-order differential operator ~ = is

conformally covariant if
(i) there exists a dense subspace Eo c E which is invariant under R

and the operators L~(x),
(ii) the differential dR of R is defined on Eo and Eo is invariant under dR,
(iii) = 0.; 1~~ for E Eo) and g E G.

REMARK 3.2. - In the case g is a translation x~ - x~ + tv equation (iii)
reads

, 

Thus LV must be constant on M and therefore also constant on M because M
is dense in M.

REMARK 3 . 3. - For Lorentz transformations we have T(g)~T(g-1 ) _ ~
(on Eo)), i. e. ~ is Lorentz invariant in the usual sense; see Nai-
mark [13].

Let x be a positive function on M, which we call the mass. We consider
the first-order differential equation

where D is a covariant operator. Let 03C8 be a solution of Eq. ( 1 ) and let
tjJ’ = for some Then

Vol. XXIII, n° 3 - 1975.



284 J. MICKELSSON AND J. NIEDERLE

where x’(x) = x). Thus also is a solution of the equation ( 1 )
but with the mass x’. This is just what is usually meant by saying that
Eq. ( 1 ) is conformally covariant.
Note that Definition 3.1 1 is taillored only to deal with equations of

type ( I ) in which x transforms according to representation Qg(x), i. e. as

a mass. In a more general case in which, for example, x is a matrix (even
singular), (iii) in Definition 3.1 should be replaced by

where Ng is a certain matrix function of g and x. It is generally true that
higher order differential equations can be written as a system of first order
equations. However, because we are not studying the most general first
order equation, there are higher order equations which are not contained
in the list of the first order equations treated below; thus we study second
order equations separately in Section 4.

Next we consider the differential of dT of the representation T of G ;
dT(G) acts on the dense subspace C~(M, Eo) c C(M, E) when dR acts
on Eo. As g - T(g) is a continuous representation of G in the Banach
space C(M, E), the differential dT(G) can be exponentiated to give the
original representation T of G ; this will be used in the proof of Lemma 3 . 4.
Let u and let = exp (tv). Then we have

In the following we shall often denote by the same symbol an element v
of ~ and its representative dT(v). We define = dR(D) = d
and dR(Kv) = kv. After a straight-forward calculation we obtain the
formulae

which are valid on the dense submanifold M c M. Next we define

when a(t) = exp tv, v E ~.

LEMMA 3.4. - The differential operator ~ = L v8v is conformally cova-
riant iff in addition to (i) and (ii) of Definition 3 . 1 we have

for all v E ~.

Annales de l’Institut Henri Poincaré - Section A



285CONFORMALLY COVARIANT FIELD EQUATIONS

T(a(t)) = exp tdT(v) for any one-parameter subgroup a(t) = exp tv
ofG. D

THEOREM 3.5. - The differential operator ~ = is conformally
covariant iff in addition to (i ) and (ii ) of Definition 3 . 1 the following
is true:

and L~ = Ly(x) for all x E M.

Proof : On M we get = = 0, = 1 and = 2xy.
Putting these and the expressions for dT(~) into the formula

and using the fact that M is dense in M we get the desired result. D

DEFINITION 3.6. - We say that the conformally covariant operator
g = is a (first-order) standard conformal operator if

(i) the representation R of W is a direct sum of irreducible representations
of the subgroup SL(2, C) c W,

(ii) E does not decompose into a direct sum of two non-trivial closed
subspaces which are invariant under mvu and the operators LB

(iii ) there exists a basis in Eo in which d is diagonal.
Because of (i) and (ii) any standard conformal operator is a Lorentz

invariant non-decomposable operator in the sense of Ref. [7] see also [13].

THEOREM 3.7. - Let Ft = - Then the non-decomposable

Lorentz invariant operator is a standard conformal operator iffd = À 1

for some ~eC, ~ = 0 and Lo] = (À. + 3 2 L . 0
Proof : Since [d, Ly] _ [d, = 0 the eigenspaces of d corresponding

to different eigenvalues are invariant under Lv and myu. It follows that d
has exactly one eigenvalue (d is diagonalizable), i. e. d = /[ 1, À. E C. From
[d, k,,] = k,, it then follows that k,, = 0. Because of the commutation rela-
tions (a) of Theorem 3 . 5 the equation (d) of Theorem 3.5 is equivalent to

Vol. XXIII, n° 3 - 1975.
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Repeatedly using (a) in 3.5 we get

THEOREM 3.8. - If ~ = Lvay is a standard conformal operator with
d =;: 1 then the equation + x~ = 0 has only the trivial solution

~ = 0 if ~, ~ - - 2 3 and x(x) # 0 for all x E M.
Proojl - The operator r 1 is diagonal in the canonical basis of the

Appendix,

Let A:=/~ +2 3 . From Theorem 3 . 7 it follows that if FBx = yx then

rBLoX = (y + A)LoX. Because of [m~o, Lo] = r~ ( j = 1, 2, 3) we have

If L~ has a non-zero matrix between the basis vectors lm) and

I’m’) then, according to Example 1 in the Appendix, either lo = 10 :t 1
and I; - I1 or Io = lo and li ± 1. If 03931ek(l0l1 ; lm) = 1m)
and y’ is the eigenvalue of r1 when acting on the vector then

either y’ - y = ± Io + - - 0 or y’ - y = ± I1 + - - 0. Now, A is fixed
(and assumed to 0) so one sees that when acting repeatedly on a
given vector lm) by the operators Lv, the vectors so obtained corres-
pond to a finite number (~ 4) of eigenvalues of the operator r 1. On the
other hand, because ~ is standard conformal operator ((it) in Defini-

tion 3.6), all eigenvalues of r in E must be on the same line in the complex
plane, the line being parallel with the vector A E C. For the same reason
and because the number of eigenvalues of r 1 is limited to 4 in any subspace
which is obtained by acting with the operators L~ and on a basis vector,
we conclude that lm) can be chosen such that it is cyclic with respect

Annales de l’lnstitut Henri Poincaré - Section A



287CONFORMALLY COVARIANT FIELD EQUATIONS

to the algebra generated by the operators Ly and Let the different

eigenspaces of r 1 in E be E~, ..., Ep with eigenvalues ..., 7p such
that 1 - yk + A. Let Pk be the projection E - Ek. Now we have

and thus = 0 for all xe M when 1/1 is a solution of our equation.
Next we get

because P2~~~)~x) = By induction we get = 0,
k= 1,2, ..., p, and thus ~ = 0. D
Note that from Theorems 3.7 and 3.8 it follows that if the equation

= 0 has non-trivial solutions (where LV(3v is a standard con-
formal operator) then the operators Lv can connect only the basis vectors
for which l20 + lf = lo + 112. From this follows either ± 2Io + 1 = 0
or ± 2I1 + 1 = 0 ; if the representations are finite-dimensional (1/1 2014! ~o! I

positive integer) it follows that 1 = :t 2’ The spin I can have the values
+ 1, ..., |l1| - 1; thus we see that the rule (- 1)2l = ( - 1)2),

derived in [5] which connects the spin I and the conformal degree À of the
field, is valid in the case of first order equations.

4. SECOND-ORDER COVARIANT FIELD EQUATIONS

In this section we consider a second-order differential operator
~ = + Bvay where AVP. and BV are linear operators defined on
the dense invariant subspace Eo ; the notation is the same as in sections 2
and 3.

DEFINITION 4.1. - The operator ~ is conformally covariant if
= for all Eo) and Eo is invariant

under dR, R and A~, BB
Let us consider the equation t~ is covariant)

where x is a positive function on M. If x’(x) = x) and §’ = 
then we have

i. e. Eq. (2) is conformally covariant. In the same way as in the first-order
case we get:

LEMMA 4. 2. - The second-order operator ~ is conformally covariant iff

[~ dT(v)] = - for all v E ~ (on C°°(M, Eo))

Vol. XXIII, n° 3 - 1975.
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where Eo is the invariant subspace in Def. 4.1. Without any real restriction
we can assume that A"1l = because = Through a direct
calculation with the help of Lemma 4 . 2 we arrive at:

THEOREM 4.3. - The operator + Bvav is conformally covariant
iff (on Eo) we have

We can define a standard second-order conformal operator in the same
way as in the first-order case, Definition 3.6. It is easily seen that for a
standard conformal operator ~ = we must have d = ~ 1 for some
À e C and kv = 0.
From (c) we see that A = { must be a symmetric tensor operator

of rank 2 (Appendix). If we like, we can write

where Af is a traceless operator, Af - A - 1 and Atr is the

invariant operator, Atr = 1 g03BD A03C103C1. In the notation of the Appendix, Af isp ~ v~ 4 gvu P pp

of type (lo, /1) = (0,3) and At r is of type (0, 1 ). If x E E=, where Et is the sum
of all subspaces of E which carry an irreducible representation! = (lo, /1)
of SL(2, C), the Avux can have components only in subspaces E=’ such
that i’ = I[) is one of the following nine pairs : (lo, I1 ), (lo :t 2, l l ),

The left-hand side of Eq. (d) is a tensor operator of rank 2. This operator
is zero iff its symmetric traceless part, the antisymmetric part and the
trace are each equal to zero :

By a direct calculation of the commutators, the left-hand side of Eq. (5)
is equal to

If now the trace 0 then from (3) follows that À = - 1 and

[rB, A ~~ _ AJ = 0, according to (5)’. On the other hand, if A~ = 0
then (3) is automatically satisfied and (5)’. Reduces to

Annales de l’Institut Henri Poincaré - Section A
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Using the same argument as in the proof of Theorem 3.8, one can show
that the equation + = 0 can have non-trivial solutions

only if ~, = - 1. Thus we have the following.

LEMMA 4.4. - If ~ = is a standard conformal operator and
the equation + x21jJ = 0 has non-trivial solutions then

(iv) is a symmetric tensor operator of rank 2.

Any non-decomposable Lorentz invariant operator ~ which satisfies (i)-(iv)
is a standard conformal operator.
We assume in the rest of this section that the representations (lo, li) are

finite-dimensional. We shall look more closely at the condition (iii). Let
us denote the left-hand side of Eq. (iii) by T~,,. Then T === {T~} is an
antisymmetric tensor operator of rank 2 ; thus Tuv can have non-zero
matrix elements between the subspace Ef’ and Ef only when 7:’ = T or
T’ = (li, li~ = (10 ± 1, 11 ± 1 ) (four cases). If T IlV connects Et and E’B
then the same must be true for AVIl; on the other hand, because of Eq. (ii),
we must have

Using the fact that lo I  1/1 and ! jo I (in the case of finite-dimen-
sional representations) we conclude that there is only the possibility

11) = I;). Thus we can write

where the coefficients depend also on v, p, lo and I1. Let
E - be the projection and denote

According to the Appendix, we can write

where a : - and b : - are linear operators
of the form

Vol. XXIII, n° 3 - 1975.
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where the numbers bkk, depdnd also on 10 and li. Using the definition
of T we get

According to the discussion above, = 0 = 0 for each pair (lo, 
By a direct calculation we get:

Thus we have proved the following:

THEOREM 4.5. - Let D = be a standard conformal operator in
the space E) (where E is now finite-dimensional) such that the
equation + = 0 has non-trivial solutions. Then

where

is the projection and b : - linear operator (which depends
on L) of the form

Conversely, any non-decomposable Lorentz invariant operator ~ which
satisfies (i)- (iv) is a standard conformal operator.

EXAMPLE 1. - Let E = be irreducible with III == 2, 3, .... In

this case we can define

Again d = - 1, kv = 0 and is a standard conformal operator.

EXAMPLE 2. - Let = 0, kv = 0, d = - 1. Then we have the confor-

mally covariant Klein-Gordon operator, Avu = H.

EXAMPLE 3. - Let E = C where and are

representation spaces for the irreducible representations (1, 11) and ( 1, 2014~)
with 11 = 2, 3, .... Looking at the Clebsch-Gordan series for the direct

product (h, 1,) 0 (0, 3) one sees that there exists a symmetric tensor

Annales de l’Institut Henri Poincaré - Section A
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operator A = { A~ } which maps a space into a space 2tl) for

any finite-dimensional representation (Io, 11), In particular,

It is easily seen that A satisfies the conditions (ii ) and (iii ) of Theorem 4 . 5
(in the space E). We gain take d = - 1 and kv = 0. Because neither of the
subspaces and is invariant under Ayu, is a standard
conformal operator.

Note that from Theorem 4.5 and the Clebsch-Gordan series for

(lo, li) Q9 (0, 3) given in the Appendix it follows that if the equation
+ = 0 has non-trivial solutions (where is a standard

conformal operator) and representations r are finite-dimensional ( I 11 i 2014 !/o! I
a positive integer) then 10 = ± ~ I or 0 (consequently the spin I can have

only integer values : , |l0| I + 1, ..., |l1 I - 1 ) and the conformal

degree À of the field ~ is - 1 ; thus the rule (- 1 )21 = (- 1)~ derived
in [5] is valid in the case of the second order equations.

5. CONCLUSIONS

The definition for a conformally covariant first or second order diffe-
rential operator was given which is suitable for a description of confor-
mally covariant equations of the type (~ + x)1/1 = 0 or (~ + X2)1/1 = 0.
Here, x is non-zero (and is connected with the mass of the field ~) and
transforms under conformal transformations like the mass. (The derived
results, however, are also mostly true for x = 0). All conformally covariant
first and second order equations (Definitions 3. and 4.1) were classified
(Theorems 3.7, 3.8 and 4.5). Let us note that the Dirac equation, the
Weinberg equation + 0 with spin 1, the Klein-Gordon

equation and the (zero-mass) electromagnetic potential equation
= 0 are conformally covariant in our sense.

It was found that the conformal degree À is equal to - - and 10 = - + 1 2
(so that the spin 1 is half-integer) for all finite-component conformally
covariant first-order equations with non-zero mass and that ~, = - 1
and lo = ± 1 or 0 (so that the spin 1 is integer) ’for all finite-component
conformally covariant second-order equations with non-zero mass. Conse-
quently the rule (derived in [5]) (- 1)~ == (- 1)21 is valid.

Finally, we stress that the cases where the generator d is not diagona-
lizable may be different from zero), which we have not studied, are
not necessarily unphysical. It it also interesting to consider reducible
non-decomposable representations g H R(g) of SL(2, C) (see Defini-
tion 3 . 6 (i)) and especially the zero-mass case which will be done elsewhere.

Vol. XXIII, n° 3 - 1975. 21



292 J. MICKELSSON AND J. NIEDERLE

APPENDIX

TENSOR OPERATORS OF SL(2, C)

Let g - R(g) be a continuous representation of SL(2, C), the covering group of the
Lorentz group, in a Banach space E. Let Eo c E be a dense subspace such that the repre-
sentation dR (the differential of R) of the Lie algebra of SL(2, C) is defined on Eo and Eo
is invariant under R and dR. Let V be a finite-dimensional linear subspace of the space of
all linear operators on Eo. Let t be a representation of SL(2, C). We say that V is a tensor
operator of type r on E if

(i) for all AeV and g E SL(2, C) ;
(ii) the rule (g, A) - R(g)AR(g - 1) defines a representation of SL(2, C) on V which

is equivalent to the representation r.
If the representation r is irreducible then V is said to be an irreducible tensor operator.
Let M~~ = 0, 1, 2, 3) be the generators of the Lie algebra of SL(2, C) (section 2);

we denote again ~ = Clearly (i) and (ii) are equivalent to

(ii)’ (~~, A) - [w~, A] is a representation of the Lie algebra of SL(2, C) on V, which
is equivalent to dt, the differential of t.

1
We define the linear operators ri = 4 mv’‘m~v and r2 = m01m23 + mo2m31 + m03m12

which commute with all the The irreducible representations of SL(2, C) which are
direct sums of finite-dimensional representations of the subgroup SU(2) are characterized

n

by two numbers lo and /1 (see [7]). The number /0 is of the form ± 2 , n = 0, 1, 2, ...,

and ll is an arbitrary complex number. The representation (10’ li) is equivalent to the

representation ( - Jo, - In the representation I1) we have

The representation (lo, !1) is finite-dimensional iff l1 is real I is a positive
integer. The finite-dimensional irreducible representations of SU(2) are characterized by

the « spin » I, 1 = 0, -, 1, .... If the representation (lo, ld of SL(2, C) is finite-dimensional,

then its restriction to SU(2) is the direct sum of unitary irreducible representations characte-
rized by l=|l0|, I/o I + 1, , , ., 1/1 I - 1. If (lo, l1) is infinite-dimensional, then / = |l0 I,
~o! + 1..... 

’

Let Fi be a representation space for an irreducible representation of SL(2, C) of the

typer = (lo, li). Let {~(1; Im) ~~m be a normed basis in Fs such that { e(z ; 1m) ~m= _r,-i+ 1,...,i
is a basis in the subspace of Ft on which a representation with spin I of SU(2) is defined.
Now let Fs and Ft’ be two finite-dimensional irreducible representation spaces. We consider
the tensor product

We can write
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where the numbers t’/’m’) are Clebsch-Gordan coefficients of SL(2, C).
We assume now that the representation R of SL(2, C) on E is finite-dimensional and thus
completely reducible,

where each of the subspaces F~, ~ = 1, ..., ~, carries an irreducible representation of

SL(2, C) which is equivalent to the representation T. We denote E’ = 0153 ! F; thus

E = 0153 ¿ E’. In each of the subspaces F we construct the canonical basis {:~(T; /~) hm
which is denned above. Now let V be a tensor operator of type r in E. Let V(7 ; ~) be the
canonical basis for V. According to the Wigner-Eckart theorem,

’ 

where the numbers depend on the tensor operator V.

EXAMPLE l. - Tensor operator V of type T = (0,2). This is the so-called vector operator;
V has four components V~ (u = 0, 1, 2, 3 ; this is not the canonical basis),

It can be shown (see [7]) that the tensor product of the representation r = (lo, I1) and
of (0,2) is a direct sum (/0 - + I, I~) C (Io, f 1 - 1 ) © (Io, ~i + 1 ) (we identify
(10’ li) with (- !o, - if l1 = l0 + I, then the second and third term are missing). It
follows that Vu can have non-zero matrix elements between the subspaces and 
only if lo = 10 ± I and I; = li or lo = 10 and I; = 11 ± l.

EXAMPLE 2. - The tensor operator V of rank 2. By definition, V transforms according
to the representation (0, 2) @ (0, 2) of SL(2, C) ; V has 16 components V~~ (,u, v = 0, 1, 2, 3),

V is not irreducible ; we can divide V into four invariant subspaces, namely the anti-
t 1

symmetric tensor operator Va, V u = 2 V~~ - 2 the symmetric traceless operator V,
lit 1 1

~ = 2 V"u + 2 V,,~ - and the trace tensor V~, V~~ = The anti-

symmetric part V can be further divided into two invariant subspaces, V’ and Va2, which
have the basis

and

respectively. As is easily seen, VS transforms according to the representation (/0’ jl) = (0, 3),
V’ and V°2 are of type ( 1,2) and ( - 1,2) ; Vtr is of type (0,1 ), i. e. Vtr is invariant, = 0.
With the help of [7] one can verify the following Clebsch-Gordan series:
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Thus, for example, the vector !m) can have components in at most nine different
subspaces E=’ of E.
The generators themselves give an example of an antisymmetric tensor operator

of rank 2.
We can also construct a symmetric traceless tensor operator

Let us consider the action of Soo on a vector e~(r ; 

Since (lo, li) and ( - lo, - I1) are equivalent, we can take l0 ~ 0. Because of |l1| ~ l0 + 1,
the right-hand side of this equation can be zero only any symmetric
traceless tensor operator of rank 2 such that VSEi c Et, then we can write, for some ope-
rator at of the form

if T = (lo, !1) is such that I &#x3E; lo + 1. With the help of [7] one sees that

It follows that we have at = 0 when T = 1 d with III = 10 + 1.

Everything that has been said above can be generalized also to the case when the sub-
spaces F~ of E are infinite-dimensional.
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