
ANNALES DE L’I. H. P., SECTION A

J. M. BELTMAN
Thermodynamic equivalence of spin systems
Annales de l’I. H. P., section A, tome 22, no 2 (1975), p. 143-158
<http://www.numdam.org/item?id=AIHPA_1975__22_2_143_0>

© Gauthier-Villars, 1975, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1975__22_2_143_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


143

Thermodynamic equivalence of spin systems

J. M. BELTMAN

Institute for theoretical physics, University of Nijmegen, the Netherlands

Ann. Inst. Henri Poincaré,

Vol. XXII, n° 2, 1975,

Section A :

Physique théorique.

SUMMARY. - This article is concerned with the thermodynamic equili-
brium properties of systems composed of classical spin 1 2 particles (Ising
spins). Given an interaction pattern between the Ising spins the main pro-
blem is to calculate the equilibrium state(s) of the system. The point we
want to put forward in our paper is the existence of many thermodynamical
equivalent spin coordinate systems. As a consequence of this phenomenon
the interaction pattern of a system may be very intricate when described
with respect to one spin coordinate system whereas it may become simple
with respect to another one and vice versa.
The content of this article is a systematic investigation of this phenome-

non.

In § 2 we introduce the configuration space r of an infinite, countable
set of Ising spins. The set r is provided with a topology and a Borel measure.
This mathematical structure enables us to define the equilibrium states of
a large class of finite as well as infinite systems of Ising spins. By simple
arguments we show that measure preserving homeomorphisms of r connect
spin coordinate systems that are thermodynamically equivalent as long as
one considers finite systems only.

In § 3 we consider infinite systems. The reason for this is that one is
interested in the thermodynamic limit rather than in finite systems. We start
with the definitions of infinite systems and their equilibrium states. The
main result is contained in proposition 4. From it we learn that measure
preserving homeomorphisms of r satisfying certain additional conditions
connect spin coordinate systems that are thermodynamically equivalent
both for finite and infinite systems.

In § 4 lattice systems are discussed. That is we consider infinite systems
of Ising spins having the translation symmetry of some v-dimensional
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144 J. M. BELTMAN

lattice. In this situation the relevant homeomorphisms of r are those com-
muting with the homeomorphisms induced by the lattice translations. In
its most explicit form the problem of finding such homeomorphisms appears
to be a problem in code theory. That is it appears to be the problem of
finding finite codes. For the 1-dimensional lattice this question has already
been studied to some extent. For higher dimensional lattices little seems to
be known. We conclude with a few explicite examples for 1- and 2-dimen-
sional lattices.

RESUME. 2014 Cet article concerne les proprietes thermodynamiques a

l’équilibre de s y stemes de particules classi q ues de spin-(spins d’lsing).

Lorsqu’on se donne un schema d’interaction entre les spins d’lsing le pro-
bleme essentiel est de calculer le (ou les) etat(s) du systeme. Le point essentiel
de cet article est 1’existence de nombreux systemes de coordonnées de spin
thermodynamiquement equivalents. En consequence de cette propriete le
schema d’interaction d’un systeme peut etre tres complexe dans un sys-
teme de coordonnées de spin mais tres simple dans un autre, et vice versa.
Cet article est une etude systematique de ce phenomene.
Au § 2 nous introduisons l’espace de configuration r d’un ensemble

infini et comptable de spins d’Ising. L’ensemble r est equipe d’une topo-
logie et d’une mesure de Borel. Cette structure mathematique permet de
définir les etats d’equilibre d’une large classe de systemes d’un nombre
fini ou infini de spins d’Ising. Une argumentation simple permet de demon-
trer que les homeomorphismes de r qui conservent la mesure invariante
relient des systemes de coordonnees de spin qui sont thermodynamiquement
equivalents aussi longtemps que seuls des systemes finis sont considérés.
Au § 3 nous considerons des systemes infinis. La raison en est que l’on est

plus intéressé a la limite thermodynamique qu’aux systemes finis. Nous

définissons les systemes infinis et leurs etats d’equilibre. Le resultat prin-
cipal est contenu dans la proposition 4 qui nous apprend que lorsqu’ils
satisfont certaines conditions supplementaires, les homeomorphismes de r
laissant la mesure invariante relient des systemes de coordonnees de spin
thermodynamiquement equivalents, pour le cas fini comme pour le cas infini.
Au § 4 nous discutons des systemes de reseaux, c’est-a-dire nous conside-

rons des systemes infinis de spins possedant la symetrie de translation
d’un reseau de dimension v. Les homeomorphismes appropriés de r sont
alors ceux qui commutent avec les homeomorphismes induits par les trans-
lations du reseau. Dans sa forme la plus explicite, le probleme de trouver
ces homeomorphismes se revele etre un probleme de la theorie des codes :
celui de trouver des codes finis. Dans le cas a une dimension ce probleme
a deja ete etudie jusqu’a un certain point. Pour les reseaux de dimensions

superieures il semble que peu soit connu. Nous donnons en conclusion

quelques exemples explicites de reseaux a une et deux dimensions.
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145THERMODYNAMIC EQUIVALENCE OF SPIN SYSTEMS

1. INTRODUCTION

This paper is concerned with the equilibrium statistical mechanics of

systems composed of classical spin .particles. Given an interaction pattern
between the particles the main problem is to find out the thermodynamic
behaviour of the system.
We investigate configuration space transformations producing thermo-

dynamic relations between spin systems. Let us illustrate the idea by a
simple, representative example. Consider a collection of tz classical spin

2 1 particles. Let r be the configuration space of the system. So r [ = 2n.
Let h : be the Hamiltonian of the system. So h(y) equals the energy

of the system if it is in configuration y. The thermodynamic average ( g B of
a function g on r equals

Here the factor - ,2014 has been absorbed into h. If A : r -~ r is a permu-
tation of the configurations we have

Thus configuration space transformations produce thermodynamic rela-

tions between systems composed of n spin 1 2 particles. The object of this
paper is to investigate such configuration space transformations in more
general situations and to discuss their interest for the equilibrium statistical
mechanics of spin systems.

Section 2 is concerned with transformations between finite spin systems.
In section 3 we extend the analysis such that infinite systems are also
included. In section 4 we specialize the discussion to lattice spin systems.

2. THERMODYNAMIC RELATIONS
BETWEEN FINITE SPIN SYSTEMS

2.1. This section is devoted to the construction of a mathematical object
that enables us to formulate simultaneously the thermodynamics of all

systems of classical spin . particles.
Vol. XXII, nO 2 - 1975. 11 1



146 J. M. BELTMAN

Let N be an infinite, countable set. Let r be the set of all mappings
y : :N2014~{2014 1, 1}. The set r can be identified with the configuration space
of an infinite, countable set of classical spin 1 2 particles, labeled by the
elements of N.

We provide r with a topology. Suppose K to be a finite subset of N and
let a be a mapping of K into {- 1,1}. To each doublet (K, a) a subset
{ y E r [ y(I) = for all i E K } of r can be assigned. Such a subset of r is
called a cylinder. Open sets off are defined as unions of cylinders. As r can
be considered as the product {- l, 1 ~N this topology is nothing but the
product of the discrete topologies of the sets {- 1, 1}. The topological
space r is homeomorphic to the Cantor set [1]. Hence r is a compact,
metric, perfect, totally disconnected topological space. As topological
space r is completely determined by these four properties [2].
Next we construct a measure IIo on r. Let the or-algebra generated by

the cylinders be the collection of measurable subsets of r. The measure of
a cylinder is defined by no({ y E [ y(I) = a(i) for all i E K}) = 2- IKI .

By ~ we denote the integral on r derived from no. All continuous

functions on r are integrable.

2.2. In this section we use the space r to describe simultaneously all

finite systems of classical spin  particles.
Consider a system of a finite number of spin 1 2 particles. The particles

of the system can be labeled by the elements of some finite subset K of N.
The configuration space of the system can be identified with the set rK of
all mappings a : K-~{2014 1, 1}. The energy of the system in the various
configurations can be described by a function hK : rK -~ ~ such that 
equals the energy of the system in configuration a. If gK is some function
on r K its thermodynamic average equals

Here the factor - £ has been absorbed in h for convenience.
From an arbitrary function fK on rK a function f on h can be derived by

definingf(y) = l K) (y E r). One easily sees that

Annales de tInstitut Henri Poincaré - Section A



147THERMODYNAMIC EQUIVALENCE OF SPIN SYSTEMS

Suppose h and g to be functions on r derived from hK and gK. From 2 . 2 .1
and 2.2.2 it follows that

A function f : r 2014~ R will be called cylindrical if there exists a finite subset K
of N such that f (y) only depends on y IK for all y E r. From the previous
considerations it follows that finite spin systems can be identified with cylin-
drical functions h on r. The thermodynamic averages for such a system
equal _

Here g is a cylindrical function on r corresponding to the quantity one
wants to average.

2.3. In this section a class of transformations of r is considered pro-
ducing relations between thermodynamic averages of finite spin systems.
Suppose A is a mapping of r into itself satisfying the following two condi-
tions.

The function f o A on r is cylindrical for all cylindrical functions
(2.3.1)

Let h, g be arbitrary cylindrical functions on r. Then

Hence, for all cylindrical functions h on r, the transformation A produces
relations between the thermodynamic averages of the finite spin systems
described by hand h o A.

Obviously, if h o A = h one has relations between the averages of the

system h. Because of these properties the transformations A are of interest
for the thermodynamics of finite spin systems.

Conditions (2 . 3 .1 ) and (2 . 3 . 2) can be brought in a more natural form.

PROPOSITION 1. - Conditions (2 . 3 .1 ) and (2. 3. 2) are equivalent with :
A is continuous, (2.3.4)

f o A = j f for all continuous functions f on r. (2. 3 . 5)

Vol. XXII, nO 2 - 1975.



148 J. M. BELTMAN

To prove proposition 1 we first give a topological characterization of
cylindrical functions.

PROPOSITION 2. - A function f : r - R is cylindrical iff f -1 x is an open
subset of r for all x E R.

Proof - Suppose f : r - [? is cylindrical. By definition there exists a
finite subset K of N such that f is constant on the cylinders belonging to K.

is the union of a number of cylinders for all x E R. Since cylinders
are open so Conversely, suppose f is a function on r with f-1x open
for all x E R. Since f-1x is open it is a union of cylinders. Consequently,
the space r can be covered by cylinders such that f is constant on each
cylinder of the covering. Since r is compact there exists a finite covering
of this type. Now f (y) depends only on y IL where L is the union of all K’s
in the doublets (K, a) defining the cylinders in the latter covering. So f is a
cylindrical function. This completes the proof.

Proofofproposition 1. Suppose A : F - r satisfies (2. 3 . 4) and (2 . 3 . 5).
Using proposition 2 condition (2. 3 .1) follows from (2. 3 .4). Since cylindrical
functions are continuous condition (2 . 3 . 2) follows from (2 . 3 . 5). Conversely,
suppose A satisfies (2. 3.1) and (2.3.2). First we show A to be continuous.
It suffices to show that the inverse image of a cylinder (K, a) is open. Let
g be the characteristic function of the cylinder (K, a). As g is cylindrical
so is g o A. Hence (g o (1) is open. However, (g o A)-1 (1) is the inverse
image under A of the cylinder (K, o(). So A is continuous. Condition (2. 3 . 5)
follows from (2.3.2) by using the argument that a continuous function
f can be approximated as closely as one wants by cylindrical functions.
That is, for each 8 &#x3E; 0 there exists a cylindrical function f’ such that
!/(7) ~/’(y) ! I  B for all y E r. The latter statement can be proven by
using the compactness of r. This completes the proof.

Using the compactness of r it follows that transformations A satis-

fying (2 . 3 . 4) and (2. 3 . 5) are surjective. However, A need not to be injective.
If, in addition, A is injective the transformation A-1 is continuous because r

is compact. Moreover, f = f o A -1 for all continuous functions f

on r. Consequently, injective transformations A satisfying (2.3.4) and
(2.3 . 5) constitute a group with respect to composition of transformations.
The set of all transformations A satisfying (2. 3.4) and (2.3. 5) constitute
a semi-group. -

Let us consider the action on continuous functions f with A
satisfying (2 . 3 . 4) and (2. 3. 5). Because A is surjective this action is injective.
In addition the action will be surjective iff A is injective. Consequently,
only for injective transformations A satisfying (2.3.4) and (2.3.5) all

thermodynamic averages of a system h o A can be expressed in those of a
system h. Here h is an arbitrary cylindrical function on r.

Annales de l’Institut Henri Poincaré - Section A



149THERMODYNAMIC EQUIVALENCE OF SPIN SYSTEMS

2.4. In this section we translate the conditions (2.3.1) and (2.3.2)
in more explicit terms. That is, in terms of « old » and « new » spin variables.
The vector space C(r) of all (real) continuous functions on r can be

provided with an inner product; ( f, f’) = The spinfunction un belong-

ing to n E N is defined by = y(n) (y E r). For a finite subset K of N we

define; QK = If K is empty we define; o~~ = 1. Obviously, the

neK

functions are cylindrical. The collection of functions forms an ortho-
normal basis in the space of cylindrical functions. That is, each cylindrical
function f can uniquely be written as a finite linear combination of 

.f = ~ (/, The constant term in this expansion equals f.
K

Let A be an arbitrary mapping of r into itself. Obviously, A is completely
determined by the functions 6n o A. Notation ; ~n = A.

PROPOSITION 3. - Suppose for each n E N a function an on r is given.
Then : There exists a mapping A : r -~ r satisfying (2 . 3 .1) and (2 . 3 . 2)
such that 7~ o A = ~n for all n e N iff the functions o-n satisfy the following
three conditions :

(i) an can be written as a finite linear combination of (JK’S.
(ii) (o-n)2 - 1.

(iii) for each non empty, finite subset K of N the expansion in spinfunc-
tions of 1 03C3’n does not contain a constant term.

nEK

Proof. - Suppose A : r -~ r satisfies (2 . 3 .1 ) and (2 . 3 . 2). Since 6n is a
finite function so is o A. Hence 6n = o-n o A can be written as a finite linear
combination of 6K’s. Property (ii) is obvious. The constant term in fl cr~
equals 

Conversely, suppose A is a mapping of r into itself defined by an o A = o~
where the functions satisfy (i), (ii), and (iii). Condition (2.3.1) follows
from (i). Let f be a cylindrical function. The function f can be written as a
finite linear combination of ~K’s; f = So

Hence A satisfies (2.3.2). This completes the proof.
Vol. XXII, no 2 - 1975.
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3. THERMODYNAMIC RELATIONS
BETWEEN INFINITE SPIN SYSTEMS

3.1. Since in statistical mechanics one is interested in the thermo-

dynamic limit we want to generalize the previous considerations such that
infinite spin systems are also included. Mathematically the interaction for
finite as well as infinite spin systems can be described as follows. For each
finite subset K of N a continuous function hK : r 2014~ M is given. The family
of functions {hK} should satisfy the following condition. For all finite
subsets K and K’ of N with K C K’ one has (hK - hK,)(y) = (hK - hK,)(y’)
whenever y = y’ IN-K. That is, (hK - hK,)(y) is independent of y K.
The physical interpretation of the functions hK is obvious. The number hK(y)
equals the interaction energy between the spins contained in K (being in
configuration y plus their interaction energy with all other spins (being
in configuration y 

Instead of thermodynamic averages or correlations functions we will use
probability measures to describe the equilibrium properties of the systems.
To define equilibrium states we require the following definitions [3]. For a
given system { hK } we construct a family (K finite subset of N) of
functionsfK : r K x r N-K -+ I~ by

Here (5, y) and (~, y) on the right hand side of (3 .1.1 ) should be regarded as
elements of r in the obvious way. For K a subset of N let ’K : r ~ rK be
the projection defined by r~(y) = ylK (y E r). Let II be a measure on r (all
measures refer to the 03C3-algebra generated by the cylinders), K a subset of N
and Jl an element of Then rK03A0I and r K03A0 are measures on rK defined
bv

Here Q is a measurable subset of A probability measure n on r is an
equilibrium state of the system { if

for all finite subsets K of N and configurations ð in rK. It is clear that

addition to hK of a continuous function hK independent of y ( K does not
influence the definition of equilibrium states of the system { 
From the work of Preston [3] it can be concluded that there exists at

least one equilibrium state. Contrary to finite systems infinite systems can
have several equilibrium states (phase transition).

Annales de l’Institut Henri Poincaré - Section A



151THERMODYNAMIC EQUIVALENCE OF SPIN SYSTEMS

3.2. In this section configuration space transformations are considered
producing relations between equilibrium states of infinite spin systems.
Suppose A : r ~ r satisfies

A is continuous, (3.2.1)

for each n E N there exists a finite subset K of N such that is

independent of y(n). (3.2.2)

The mapping A induces a transformation (also denoted by A) in the collec-
tion of systems { defined by

Here K’ should be chosen as follows. Because of property (3.2.2) there
exists a finite subset K" of N such that ~-K- Ay is independent of The

subset K’ should be chosen larger or equal to K". As one sees easily the
ambiguity in this definition caused by the infinity of possibilities to choose K’
is harmless because of the ambiguity in the definition for a sys-

tem (see 3.1). Furthermore one verifies easily that { satisfies the condi-

tions to describe a spin system (see 3.1).
Let A : r ~ r satisfy (3 . 2 .1) and (3. 2. 2). describe an arbitrary

spin system. One can imagine several relations between the equilibrium states
of the systems { and A{ hK ~ . We are able to prove the following one.

PROPOSITION 4. - Let A : r ~ r be a homeomorphism satisfying (3 . 2. 2),
{ hK ~ be a family of functions describing a spin system and II be an equi-
librium state of this system. Let II’ be the probability measure on r defined
by II’(S2) = n(AQ) with Q an arbitrary measurable subset of r.
Then II’ is an equilibrium state of the spin system described by A{ 

Proof - Suppose A { /~K} = {/4 }- Let ~, f ’K ~ be the family of functions
associated with {h’K} (see 3.1.1). Let K be a fixed, finite subset of N. Let 03B4
be a fixed element of r K. We have to show

with Q a measurable subset of r N - K. It suffices to prove (3 . 2 . 4) for Q an
arbitrary cylinder in So we may assume

with L a fixed, finite subset of N - K and v a fixed element of FL. For
convenience we introduce the symbols C1 resp. CZ for the left resp. right
hand side of (3. 2. 4). By considering suitable partitions of Q the difference
between C1 and C2 will be shown to be arbitrary small.

Vol. XXII, nO 2 - 1975.
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Because A satisfies (3.2.2) there exists a finite subset Ko of N such that

is independent of rKy (y e F). (3 . 2 . 6)

Because is a positive, continuous function on a compact space it has a
positive minimum M. Choose s e R such that

Because/~(5, .) is a continuous function on the compact space r N - K there
exists a finite subset Kl of N - K such that

for all y, y’ E with y y’ 
For the same reasons there exists a finite subset Kz of N - Ko such that

Because A is continuous (Ay)(i) depends on a finite number of y( j)’s
(see section 2). So there exists a finite subset K3 of N - K such that rK0~K2A03B3
is completely determined by rK3~K03B3 for all y E r. (3 . 2 .10)
The subset K4 of N - K is defined by

Now we will show the difference between C1 and C2 to be of order s.

First we calculate C2 . Since K4 is a finite subset of N - K the space 
can be divided into 21K41 cylinders belonging to K4. As L C K4 the cylinder
Q in r N-K is a union of cylinders Q i , ..., S2r belonging to K4. As Ki 1 C K4
from (3.2.8) it follows that

for all y, y’ E Q whenever y and y’ belong to a same cylinder 52~.
This gives the following estimate at C2

with yi an arbitrary, fixed element in S~~ and I E R with I À I  E. Next

we calculate C1. We have

Annales de l’Institut Henri Poincaré - Section A



153THERMODYNAMIC EQUIVALENCE OF SPIN SYSTEMS

Consider for 03B4 E rK arbitrary. Let us define cylinders Ca,i in r
belonging to K u K4

By definition

n(A(C5 , ;» . (3 . 2 . 1 6)
We can write

where

i) = rKoAy with y E Ca, I (3 . 2 , 17)

Notice that (03B4, i) is well defined because of (3.2.10). Because of (3.2.6)
the set Qi is independent of 6. Furthermore Qi is measurable in (it is
the union of a finite number of cylinders in Because n is an equi-
librium state it follows from (3 . 2 .16) and (3 . 2 .17) that

Because of (3 . 2 .10) the configurations of belonging to SZ are equal
on K2. Applying (3.2.9) this gives

This is true for all i. Combination of (3 . 2.18) and (3 . 2.19) gives the follow-
ing estimate

Using (3.2.20) we have

Combination of (3.2.20) and (3 . 2 . 21 ) gives

Vol. XXII, n~ 2 - 1975.
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Using (3.2.7)J [ I(6, I) I  B and I  e this gives

with [  e.

Next we will show

By definition

with K’ large enough. By definition /~ = o A for K" large enough. So

From (3 .2. 6) it follows

= y I) for all ð E rK. (3 . 2 . 26)

Using (3 . 2 .17), (3 . 2 . 26) and the definition of fKo the equality (3 . 2 . 25)
gives (3.2.24).

Because of (3.2.23) and (3.2.24) we have an estimate at C1

_ _-_

with |03B1]  E.

From (3 .2.13) and (3 .2.27) it follows C - C - (403B1 M - 03BB).rN-K03A0’(03A9).
So C -  4 + 1 . E. Since E can be chosen as small as we want

this gives C1 - C2. Thus we have proven proposition 4.
~Ve conclude this section with a few remarks. A homeomor-

phism A : T -~ I-’ satisfying (3 . 2 . 2) satisfies also (2 . 3 . 5). This can be shown

Annales de l’Institut Henri Poincare - Section A



155THERMODYNAMIC EQUIVALENCE OF SPIN SYSTEMS

by considering the equilibrium state of the system { with hK = 0 for all K.
However, it is clear that the set of transformations satisfying both (2.3 .4.)
and (2.3.5) is larger than the set of homeomorphisms satisfying (3.2.2).

It is clear that a homeomorphism A of r satisfying (3.2.2) induces an
injection of the set of equilibrium states of system { into the set of equi-
librium states of A{ If A -1 also satisfies (3 . 2 . 2) this injection is sur-
jective. If A-1 does not satisfy (3 .2. 2) it is not clear whether this injection is
surjective.

4. THERMODYNAMIC RELATIONS

BETWEEN LATTICE SPIN SYSTEMS

4.1. In this section we discuss spin systems on lattices. So N = Zv with v
some positive integer. Let Gy be the group of translations of this lattice.
A translation g E Gv induces in a natural way a transformation (also denoted
by g) in the configuration space rv; g(y) = y o g-1 (y E r,). In this definition
the configuration y should be regarded as a mapping from Zv into {- 1, 1}.
We consider only systems with translation invariant interaction. The trans-
lation invariance of a system { is reflected by the condition hK - hgK 0 g
is independent of y IK for all finite subsets K of zv and g E Gv. We do not
require hK = h9K o g because of the ambiguity in the definition of { hK} for
a system (see 3 .1 ). One easily sees that if A : satisfies (3 . 2 .1 )
and (3.2.2) and commutes with all translations (regarded as transforma-
tions of r~) then the mapping { ~ } "~ ~ { conserves the translation
invariance. For this reason we restrict ourselves to transformations of r v
that commute with all translations. A homeomorphism A of r~ that com-
mutes with all translations automatically satisfies condition (3.2.2).
So the transformations of interest are the homeomorphisms of rv com-

muting with all translations. They constitute a group Fv with respect to
composition of transformations.

Let us summarize the interest of the groups Fv for the equilibrium statis-
tical mechanics of lattice spin systems. If A E F v’ { translation inva-
riant system, II an equilibrium state then II’ defined

by 11’(0) = n(AQ) is an equilibrium state of the translation invariant

system A { In this way A induces a bijection of the set of all equilibrium
states into the set of all equilibrium states this sense
all translation invariant systems belonging to the same orbit with respect
to Fy are equivalent. A special orbit is the one to which the system

All systems in this orbit are equivalent to the system without coupling.
Given a translation invariant system { one can consider the sub-

Vol. XXII, n° 2 - 1975.



156 J. M. BELTMAN

group H of F~ consisting of all transformations A with A{ hK ~ - ~ 
The group H can be considered as the symmetry group of the system { 

If n is an equilibrium state then IT defined by rT(Q) = n(AQ)
is also for all A E H. If { has a unique equilibrium state n we have
II(AQ) = n(Q). So n is invariant under the group H. Of course all these
statements can be translated into ones about correlation functions. Orbits
and symmetry groups are related. Loosely speaking one can say that the
larger the orbit to which a system belongs the smaller its symmetry group
and vice versa.

4.2. The extent to which the group F~ and its action on the space of
translation invariant interactions is known determines the results the
foregoing analysis can give. So we need more information about Fv. Let us
consider the I-dimensional case. Taking into account the results of section 2
we see that A : r 1 -+ r belongs to F iff there exists n, m E Z with n  m
and a function f : ~ -1, 1 ~m-n+ 1 --~ ~ - 1, 1 } such that

for all y E r 1 and i E Z, A is bijective.
In the frame-work of code theory A is called a code. Such codes also

appear in related work by Ornstein [4] on Bernoulli systems. The translations
belong to Fi. The inversion C of all spins also belongs to F 1; (Cy)(i) = - y(i)
(y E rl, i E Z). Elements of F1 belonging to the subgroup generated by the
translations and C will be called trivial. It is not obvious that non-trivial
transformations exist in F 1. However, they do exist. The following results
concerning F1 are taken from a report by O. P. Lossers, J. H. van Lint and
W. Nuij [5] on the subject.
The smallest m - n + 1 for which a non-trivial transformation exists

equals 4. Consider the function

Let A f be the transformation described by f. So

1 I

(4.2.2)

By substitution one proves A) = T 2n + 2 with T the translation defined by
(Ty)(i) = y(i + 1). Hence A f is bijective and belongs to Fi .

For k &#x3E; 4 one can define functions f(s1, ..., sk) similar to (4.2.1)

Let Af be the transformation described by f. Again one can prove

Annales de l’Institut Henri Poincae - Section A
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A} = T2n+2. Hence A f is bijective and belongs to The group F 1 also
contains transformations A with Tm for all n, m eZ - {0}. The
product CA f with A f defined by (4 . 2 . 2) is an example of such a transfor-
mation. So beyond the trivial transformations there exist a large variety of
non-trivial ones.
With the foregoing transformations we can illustrate the statements in

4.1 about orbits and symmetry groups. Applying transformation (4.2.2)
to the trivial system {hK} with hK = 03A303C3i gives the system with the

t6K

formal Hamiltonian

Obviously this system belongs to the orbit of the trivial system and can be
decoupled. Consider the system with A f described
by (4.2.3) and {hK} an arbitrary translation invariant system. Because
A} = T2n + 2 the transformation A f belongs to the symmetry group of the
system A f ~ hK ~ +{~}.
The following example of a non-trivial transformation in F2 is taken

from [5]

It is not difficult to prove the equality A 2 = 1. So A is bijective and belongs
to F 2’ Applying this transformation to the trivial system {hK} with

hK = ¿ 03C3ij gives a system with the formal Hamiltonian

Here 0, a, b, c, d are shorthand notations for 2-dimensional lattice sites;

0=(f~’) ~ =(/-!,/) ~=(,-1~+1) c=(i~.7+1) 
Since this rather complicated system belongs to the orbit of the trivial
system it can be decoupled.
Vol. XXII, n° 2 - 1975.
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One might conclude from the foregoing considerations that a deeper
investigation of the groups Fy is worth while [6]. As the action of Fy on the
linear space of translation invariant systems { hK} is crucial the represen-
tation theory of F,, could serve as a mean to classify the different types of
v-dimensional lattice spin systems.
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