
ANNALES DE L’I. H. P., SECTION A

C. M. EDWARDS
Alternative axioms for statistical physical theories
Annales de l’I. H. P., section A, tome 22, no 1 (1975), p. 81-95
<http://www.numdam.org/item?id=AIHPA_1975__22_1_81_0>

© Gauthier-Villars, 1975, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1975__22_1_81_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


81
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physical theories

C. M. EDWARDS

The Queen’s College, Oxford.
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Vol. XXII, n° 1, 1975,

Section A :

Physique théorique.

ABSTRACT. - In the usual partially ordered vector space approach
to the theory of statistical physical systems the set of states of the sys-
tem under consideration is represented by a norm closed generating
cone V + in a Banach space V with base norm. In this sense the Banach

space V can be said to represent the system. With any such system is
associated a classical system which is represented by the Banach space
Z(V*)*, the predual of the centre Z(V*) of the dual space V* of V. The
set of questions or propositions associated with the system is represented
by the set E(~) of extreme points of the weak* compact convex set ~,
the order unit interval in the order unit space V*. The set of classical pro-
positions is therefore represented by the set Et~~) of extreme points of
the order unit interval ~~ in Z(V*). In this case E(.2c) forms a complete
Boolean algebra. In the standard model for classical probability theory
the set ~ of propositions forms a Boolean a-algebra not necessarily
complete. A new set of axioms for statistical physical systems is introduced.
It is shown that the associated classical systems are precisely those which
arise in classical probability theory.

RÉsuMÉ. - Dans l’approche conventionrielle par les espaces vectoriels
partiellement ordonnés à la théorie des systèmes physiques statistiques,
l’ensemble des états du système est représenté par un cone V + qui engendre
un espace V de Banach avec une norme de base. Dans ce sens, on peut dire
que I’espace V représente le systeme. Avec tout système de cet ordre on
peut rapproclier un système classique qui est représenté par l’espace
Z(V*)* de Banach, le predual du centre Z( V*) de I’espace V* qui est le
dual de V. L’ensemble des questions ou des propositions du système est
représenté par I’ensemble des points extremaux de l’ensemble 2
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82 C. M. EDWARDS

convexe compact par rapport à la topologie a(V*, V), l’intervalle d’unité
d’ordre dans l’espace V*. L’ensemble des propositions classiques est donc
représenté par 1’ensemble E(2c) des points extremaux de l’intervalle 2c
d’unité d’ordre dans Z(V*). Dans ce cas E(9~) est une algèbre Boolean
complet. L’ensemble des propositions suivant la tlieorie classique des
probabilités forme une a-algèbre Boolean, qui n’est pas nécessairement
complet. On introduit un ensemble nouveau d’axiomes qui décrivent des
systèmes physiques statistiques. On démontre que les systèmes classiques
associés sont precisement ceux qui apparaissent dans la théorie classique
des probabilités.

I . INTRODUCTION

In the operational approach to the theory of statistical physical systems
as formulated in [3] [4] [6] [7] [12] [14] [19] the set of states of a system
is represented by a norm closed generating cone V+ in a certain partially
ordered Banach space V, the norm in which is a base norm in the sense that

and

The dual space V* of V with dual cone V* + is a GM-space [25] (F-space [23])
with unit e defined by Xl’ The

set of operations on the system is represented by the set of positive norm
non-increasing linear operators on V or alternatively by the set ~* of
weak* continuous positive nor non-increasing linear operators on V*

the mapping T - T* being an isometric affine isomorphism from ~
onto ~*. The set of simple observables (e~ f f ects [19], tests [12]) is represented
by the set fl = V* + n (e - V* + ) and the simple observable measured
by the operation T is T*e. The set of extreme simple observables (decision
effects [19], question) is represented by the set of extreme points of
the weak* compact convex set 2. The method of obtaining this descrip-
tion from physical axioms is discussed in detail elsewhere [4] [6] [19].

Recall that the ideal centre C(V) of V consists of linear operators T on V
for which there exists A &#x3E; 0 such that ~,x ± Tx e V+, Vx e V+. C(V) is a

uniformly closed commutative subalgebra of the algebra £(V) of bounded
linear operators on V, relative to the cone t)(V)+ of positive operators
in 0(V) and the operator norm, C(V) is a GM-space with unit 1, the identity
operator, and for T, A result of Kadison [16]
shows that there exists a compact Hausdorff space Qv such that C(V)
is algebraically and order isomorphic to the algebra C(Qv) of real-valued
continuous functions on Qv. Further C(V) is boundedly complete (i. e.
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83ALTERNATIVE AXIOMS FOR STATISTICAL PHYSICAL THEORIES

uniformly bounded increasing nets in C(V) have least upper bounds
in C(V)) which implies that Qv is stonean and £?(V) is separated by its
positive normal linear functionals which implies that Qv is hyperstonean [1] ]
[2] [5] [13]. Hence the set of idempotents in 0(V) forms a complete
Boolean algebra uniformly generating Ð(V). J(V), the set of split
tions, is the set of extreme points of the set 0(V)~ n (I 1 - 0(V)~). The
ideal centre 0(V*) of V* has identical properties to those of 0(V) and
the mapping T - T* is an algebraic isomorphism and hence a normal
order isomorphism from C(V) onto Ð{V*). In particular its restriction
to Y(V) is a complete Boolean algebra isomorphism onto 5o(V*). The
centre Z(V*) of V* is the image of C(V*) under the mapping T* - T*e.
Z(V*) is a weak* closed subspace of V* and the mapping T* 1-+ T*e is
a normal order isomorphism from C(V*) onto Z(V*). In particular its
restriction to ~(V*) is a complete Boolean algebra isomorphism onto the
complete Boolean algebra E(.,2c) of extreme points of the weak* compact
convex set ~~ = Z(V*)+ n (e - Z(V*)+). Moreover Ð(V), C(V*) and Z(V*)
are all weak* isomorphic to the dual space of the Banach space V/N where

Denote by ~* the sets n C(V), n C(V*) respectively and
notice that ~, ~* are weak* compact convex sets such that

Elements T of are operations on the system which have the property
that 1-T is also an operation. Hence every state x possesses a decompo-
sition into states Tx, ( 1 - T)x. Therefore the effect of such an operation
is to divide any state according to a well-defined classical prescription.
Therefore ~~ or is referred to as the set of classical operations on the
system. Each of these sets is affine isomorphic and weak* homeomorphic
to the set f2c of classical simple observables tests). It follows that
the classical part of the system can be described by replacing V by V/N.
Elements of ~(V), ~(V*) or E(9~) are regarded as classical questions (pro-
positions) associated with the system. Alternatively they can be regarded
as superselection rules for the system. In the case N = { 0 ~ or equiva-
lently Z(V*) = V* the system must be regarded as being itself classical.

In the standard model for classical probability theory the set of pro-
positions forms a Boolean 6-algebra 2 and it is usually supposed that
there are enough a-additive positive measures on 2 to separate points.
This is not consistent with the conclusion arrived at above that the set
of classical propositions forms a complete Boolean algebra. Two points
of view are now possible. The first would be to suppose that in actual
physical situations it is always possible to enlarge the Boolean a-algebra
of classical equations in such a way that it becomes a complete Boolean
algebra. Investigations based on assumptions of this kind have been
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84 C. M. EDWARDS

made by Neumann [21]. The second point of wiew, which is adopted here,
is that the original axioms used to produce the model described above
were not the best possible and that an alternative set of axioms may more
accurately reflect the real situation. The main purpose of this paper is
to list such a set of axioms much in the spirit of [20] [24]. The principal
result is that the classical part of a system obeying the new set of axioms
forms a classical system in the sense in which it has been understood
hitherto. That is the set of classical propositions forms a Boolean a-algebra.
The conventional model for quantum mechanics also provides a model

satisfying the new axioms. The only conclusion to be arrived at in this
case is that the set of positive trace class operators on a Hilbert space H
should more properly be regarded as defining a-normal rather than nor-
mal linear functionals on the W*-algebra .2(H) of bounded linear ope-
rators on H.

In § 2 certain preliminary results concerning the centres of a class of
GM-spaces are proved. In § 3 the axioms and a discussion of their plausi-
bility are given. Also in § 3 the main theorems are stated and their impli-
cations are examined. In § 4 a few remarks are made abQut classical sys-
tems and their interactions with arbitrary systems. Proofs of the main
results are given in § 5. In § 6 the situation in which the set of states of
the system is supposed to possess a « physical » topology [15] is examined.
It t is shown that in this case the Boolean o-algebra of classical proposi-
tions is 6-isomorphic to the Borel sets of some Borel space.

2. PRELIMINARIES

A partially ordered Banach space W with norm closed cone W + is
said to be a GM-space with unit e E W + provided that the closed unit
ball in W is ( - e + W +) n (e - W+ ). Such a space is said to be mono-
tone a-complete if every uniformly bounded monotone increasing sequence
{ c W possesses a least upper bound in W. An example of such a
space is the self-adjoint part of a monotone a-complete C*-algebra with
identity. If W, W’ are two such spaces a positive linear mapping T : W -~ W’
is said to be a-normal if for each uniformly bounded monotone increasing
sequence { W, = lub Tan.

THEOREM 2.1. - Let W be a monotone 6-complete GM-space with
unit e the set K" 0.( a-normal linear .functionals on which satisfies the condi-
tion that a E W, .a(a) &#x3E; 0, Yx e K"‘ implies that a e W + . Then,

(i) The ideal centre W is monotone Q-complete and the set C’‘
o/ 03C3-normal linear .functionals on D(W) satisfies the condition that

TeC(W), 0, ~g~C  implies that 

Annales de l’Institut Henri Poincaré - Section A



85ALTERNATIVE AXIOMS FOR STATISTICAL PHYSICAL THEORIES

(ii) The set ~(W) Qf idempotents in D(W) ,form.s a Boolean 6-algebra
unif orml y generating 

(iii) // then T is a-normal.

(iv) The mapping T - T e , from D(W) into W is a-normal.

Proof: - C D(W) be monotone increasing and suppose
that  oo, for all n. Then { T" + /(1 }  C(W)~ is monotone

increasing and II Tn + k jj ~ 2k  co, for all n. In order to prove mono-

tone a-completeness it is therefore sufficient to assume that {T~} c C(W)B
For a E W +, { is a uniformly bounded monotone increasing. sequence
in W +. If Ta = lub Tna since K" separates points in W simple limit argu-
ments show that T is a positive linear operator from W + to itself which
therefore extends to a positive linear operator on W. Moreover, since
for a E W+, Ta = lub Tna it follows that 0  T  kl, for all n and
hence that TeO(W)B Further if S e D(W)+ and for all n, S then

for all a E W +, Sa which implies that Ta  Sa, T  S. Therefore
T = lub Tn and hence C(W) is monotone a-complete.

Notice also that by choosing a = e above (iv) has been proved. For x E K"
define gx(T) = x(Te), Then, using (iv) it follows that x H gx
maps K" into C". If 0, ’Ix E K" then Te E W + and
since the mapping T - Te is bipositive on C(W), This

completes the proof of (i).
By standard properties of ideal centres there exists a compact Hausdorff

space Qw such that is algebraically and hence isometrically order
isomorphic to C(Qw). It follows that C(Qw) is monotone a-complete and
hence that ~W is basically disconnected [13]. Therefore the set of idempotents
in C(Qw) forms a Boolean a-algebra which uniformly generates C(Qw).
The same therefore applies to 0(W) completing the proof of (ii).

Let and let { c W + be a uniformly bounded monotone
increasing sequence with least upper bound a. If T  0, then

{ are uniformly bounded monotone increasing sequences.
If b = lub Tan, c = lub (kan - Ta") simple limit arguments show that for
x E K’B x(ka - b) = x(c) and hence that ka - b = c. But since T, k 1 - T
are positive, Ta, kan - ka - Ta which imply that b  Ta,
ka - b  ka - Ta and hence that Ta = b as required.

Notice that an example of a space W satisfying the conditions of Theo-
rem 2.1 1 is the self-adjoint part of a Baire* algebra with identity [18] [22].
The next result which follows immediately from the properties of the

mapping T - Te summarises the structure of the centre Z(W) of W.

THEOREM 2.2. - Let W be a monotone a-complete GM-space with
unit e the set K" of a-normal linear functionals on which satisfies the condi-
tion that a E W, 0, implies that a E W+. Then,

(i) The centre Z(W) of W is monotone a-complete and the set K" ofa-nor-
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mal linear functionals on Z(W) satisfies the condition that z E Z(W), 0,
Vg E K~ implies that z E Z(W)+.

(ii) The set E(.~~) of extreme points of the convex set

forms a Boolean a-algebra.

3. THE AXIOMS

The main features of previous axiomatic approaches are maintained
here. There are two basic sets, f2 the set of simple observables (effects,
tests) and K the set of states. Elements of K are thought of as equivalence
classes of ensembles of the system under consideration and elements of 2
are thought of as equivalence classes of operations on the system. For
a E f2, x E K, let p(a, x) be the stength of the state produced by an operation
T corresponding to a on the state x. Notice p(a, x) is only defined up to
multiplication by a positive constant which is supposed to be fixed once
and for all. There follows a statement of the axioms along with some dis-
cussion of their physical’motivation. It will be supposed that ~, K are
abstract sets and that p is a mapping from 9 x K to the set of non-nega-
tive real numbers.

AXIOM 1. - For a 1, a2 E ~, p(a2 , x), Vx e K implies that

a 1 = a2 . For p(a, = p(a, x2), Va E!2 implies that x 1 = x2 .
This axiom merely describes what is meant by « identical » for states

and simple observables.

This axiom asserts the existence of absurd and certain events. The uni-

queness of 0, e follows from Axiom 1.

there exists x E K such that

This axiom asserts that countable mixtures of states exist.
Notice that from Axiom 2 the convergence of the sum for every a E f2
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is ensured if the sum converges with a = e. Again the element x E K defined
in Axiom 3 is unique by Axiom 1.

If T is a filtering operation designed to measure a the axiom asserts
that a filtering operation Ti can be constructed the effect of which on
any state x is to produce a state the strength of which is diminished in the
ratio a : 1 compared with that produced by T. The uniqueness of a follows
from Axiom 1.

there exists a ~ 2 such that

Suppose that Ti , T2 are operations corresponding to al, a2 respectively
and suppose also that the effect of T2 on any state x is to produce a stronger
state than that produced by the operation Tl on x. The axiom asserts the
existence of an operation T the effect of which on x is to produce a state
the strength of which is the difference between the stengths of the states
obtained by operating with T2 , Tl on x. The uniqueness of a follows from
Axiom 1.

there exists a ~ 2 such that

If 03B1  1, Axiom 6 follows immediately from Axiom 4. Suppose that a  1

and that Tl is an operation corresponding to a 1. Suppose also that under Tl
the strength of a state x is decreased by a proportion not exceeding a. The
axiom asserts the existence of an operation T the effect of which on any
state x is to produce a state the strength of which is a multiple 1/a of that
of the state produced by The uniqueness of a follows from Axiom 1.

there exists a E ~ such that

Vol. XXII, n° I - 1975.



88 C. M. EDWARDS

This is the analogue of Axiom 3 for simple observables. Suppose that
is a sequence of operations such that Tn corresponds to an, Suppose

also that the strength of the state obtained by mixing the states obtained
by applying each operation T" to any state x is less than the strength of x
itself. The axiom then asserts the existence of an operation T the effect
of which on any state x is to produce a state the strength of which is equal
to the strength of the mixed state obtained by combining the states obtained
by applying each T" to x. Again a is unique.
The first main result is the following.

THEOREM 3.1. - Let!2, K, p satisf y Axioms I, 2, 4-7. Then there exists
a monotone a-complete GM-space W with unit e the set K~‘ a-normal
linearjunctionals on which satisfies the condition that a E W, 0, dx E K~
implies that a E W + and a bijection 03C6 from 2 onto W + n (e - W + ) satisfying,

Then,

From now on it will be supposed that 9 and W + n (e - W + ) are iden-
tical. For x E K, the mapping a 1-+ p(a, x) on .~l clearly extends to a a-nor-
mal linear functional 03C8(x) on W. It follows from Axiom 1 that the mapping 03C8
is an injection from K into K~‘.

THEOREM 3 .2. - Let ~, K, p satisf y Axioms 1-7. Then, under the condi-
tions of ’ Theorem 3 . 1 there exists a bijection t/J from K onto a weak* dense
subcone K  defined for x E K, a ~ 2 by

satisfying the condition that if ~ ~ x" }, x c: K, ~ c: R+ are as in Axiom 3
. then

where ~ ~ . ~ ( is the norm in the dual space W.

In the sequel it will be supposed that K and are identical and for
a x E K, p(a, x) = x(a).

Annales de l’lnstitut Henri Poincaré - Section A
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Notice that the set B = { x : xe K, x(e) = 1 } is a base for the cone K.
Let V = K - K and for x E V define

The first part of the next result follows immediately from [10].

THEOREM 3 . 3. - Under the conditions Theorem 3 .2 with 9, K res-
pectivel y identified with let V = K - K, B = { x: x E K, x(e)=1 }
and 118 be the base semi-norm on V defined above. Then ~ ~ . ~ liB is a

norm on V with respect to which V is complete. Further, the mapping a 1-+ a’

defined Jor x E V by a’(x) = x(a) is a a-normal isometric order isomorphism
W onto a monotone a-closed weak* dense subspace W’ oJ’ V *.

In the sequel Wand W’ will also be identified. Then, K can either be
regarded as a subcone of the cone of a-normal linear functionals on the
monotone a-complete GM-space W with unit e or alternatively as a generat-
ing cone for a complete base norm space V. In this case W must be regarded
as a monotone a-closed subspace of the dual space V* of V.

In the preceding discussion the presence of « operations » has been
tacitly assumed. The final axiom describes the properties of operations.

Then, there exists a mapping T’ : K -~ K such that

The set ~ of mapping T satisfying the conditions of Axiom 8 is said to
be the set of operations on the system. Clearly each T has a unique
extension to a norm non-increasing a-normal linear operator on W.
The axiom ensures that the adjoint T* of T leaves K invariant. T’ is merely
the restriction of T* to K. The next result describes the image of J under
the mapping T - T’.

THEOREM 3 . 4. - The mapping T t-+ T’ defined for x E V, a E W by
, T’ x(a) = x(Ta)

Vol. XXII, n° 1 - 1975.
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is an isometric affine isomorphism ,from 9 onto the set 9’ norm non-

increasing positive linear operators T’ on the complete base norm space V
the adjoints T’* of which leave W invariant.

It is now possible to give a complete discussion of classes of opera-
tions as in [6]. However the main purpose of this paper is to examine

only one class of operation. An element T is said to be a classical

operation if and only if

Let denote the set of classical operations and let ~~ be the image
of ~~ under the mapping T - Te. f2c is the set of classical simple obser-
vables (effects, tests). Notice that alternatively the set of classical ope-
rations can be identified with the set ~’ of elements of f!jJ’ satisfying the
condition

For x 1, x2 E K define x 1 ~ x2 if and only if

Clearly", is an equivalence relation on K. The set K~ of equivalence classes
of elements of K under", is said to be the set of classical states of the system.
The results of § 2 show that ~~ is the set Z(W)+ n (e - Z(W)+).

Moreover K~ can clearly be identified with a cone of a-normal linear
functional on Z(W). Most of the following result is an immediate conse-
quence of Theorem 2.2.

THEOREM 3.5. - Under the conditions of Theorem 3.2 let Kc
be defined as above and let the mapping p~ be defined by

where x ~ is the equivalence class containing x E K. Then, 0, e E ~~ and
Axioms 1 -7 are satisfied with ~, K, p, 0, e replaced by Kc, Pc, 0, e respec-
tively.

Recall that in [6] the set of extreme points of 2 is identified with
the set of extreme simple observables or questions. The next result follows
immediately from Theorem 2.2.

COROLLARY 3 . 6. - Under the conditions of Theorem 3 . 5, the set 
of ’ classical questions is a Boolean 6-algebra the points of which are sepa-
rated by the set of a-additive positive measures on 
The system described in Theorem 3.5 is said to be the centre of the

original system. The question arises of which set of operations on the
system described by Z(W) and Kc is relevant. The assumption made here
is that every operation on the centre must arise from an operation on the
whole system. In this case the set of operations on the centre is defined
to be the set of restrictions to Z(W) of those elements of J which leave Z(W)

Annales de l’lnstitut Henri Poincaré - Section A
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invariant. It is not clear when this set is the set of all norm non-increasing
a-normal linear operators on Z(W). However the set does contain the
restrictions of elements of r!Jc to Z(W).

In the case Z(W) = W the system is said to be classical. It follows that
the centre of any system is classical.

4. CLASSICAL SYSTEMS

Recall that a compact Hausdorff space Q is said to be basically dis-
connected if and only if the closure of every co-zero set in Q is open.

Alternatively Q is basically disconnected if and only if the algebra C(Q)
is monotone (7-complete. Q is said to be 03C3-hyperstonean if Q is basically
disconnected and the set K 1 of 6-normal linear functionals on C(Q) satisfies
the condition that f E c(Q), 0, dx E K 1 implies fJ 0. The set 2
of closed and open sets of a or-hyperstonean space forms a Boolean a-algebra
the points of which are separated by the set of positive a-additive measures
on ~f. Conservely, given any Boolean 6-algebra ~f the points of which
are separated by the set of positive a-additive measures on I then the
Stone space Q of j5f is a-hyperstonean and I can be identified with the
Boolean 6-algebra of closed and open sets in Q. The results of § 3 imply
that there is a bijection from the set of classical systems onto the set of
u-hyperstonean spaces.

Next the interaction between a classical system described by a a-hyper-
stonean space Q and an arbitrary system is considered. Let !21 1 be the

0  f (cv)  1, ~03C9~03A9} and let !2, K, p, 0, e satisfy
Axioms 1-7. Then the interaction is described by a mapping tf called

an instrument [3] [4] from ~ 1 to 9 satisfying
(i) ~ is bilinear.

(ii) ~(1~~)==~.
(iii) satisfies the condition that

then,

(iv) If { an }, a E ~ satisfy the conditions of Axiom 7 then

Essentially conditions (iii), (iv) mean that 6 is 03C3-normal in each variable.

Vol. XXII, n° 1-1975.
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In particular each element f~21 defines an operation on the system.
Notice that the instrument 6 gives rise to an observable j2/. Again follow-
ing [3] [4] an observable A is a mapping from 12} to 2 satisfying,

(i) sf is linear,
(ii) s#’( l~) = e.

(iii) C f21 1 satisfies the condition that

then,

The instrument ~’ gives rise to the observable j~ defined by

In particular if J5f is the Boolean a-algebra of closed and open sets in Q,
S gives rise to the a-additive measure A on If defined by

where xM is the characteristic function of M.
It is possible to go on to examine when two instruments can be composed

along the lines of [4]. Using the results of [26] it can be shown that instru-
ments corresponding to a fairly general class of classical systems can be
composed.

5. PROOFS

Proof of Theorem 3. 1. Using Axioms 1, 2, 4 and the finite form of
Axiom 7 it follows easily that !2 is an abstract convex set and can therefore
be embedded into an abstract convex cone C. The embedding i is then

an affine isomorphism from !2 into C. Further, from Axiom 2, i(0) = 0,
the vertex of the cone C and 

.

Again using standard techniques C can be embedded as a generating
cone W + for a real vector space W. The embedding j is an affine isomor-
phism from C onto W + such that j(0) = 0. Let § = j o i be the embedding
of fl into W. It follows from Axiom 5 that relative to the cone W +,

and only if p(a 1, x) ~ p(a2 , x), VxeK. Let ~(e) also be
denoted by e. Then clearly W + n (e - W + ) but an application of
Axiom 6 is required to show that the reverse inclusion also holds. A further
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93ALTERNATIVE AXIOMS FOR STATISTICAL PHYSICAL THEORIES

routine verification shows that e is an Archimedean order unit for W.
The associated order unit norm I I is defined for a E W by

_ _ .. ... "

To show that W is a GM-space with unit it remains to show that W is
complete for then W + is automatically closed. However, Axiom 7 ensures
that contains the least upper bounds of monotone increasing sequences
in Since 

. I

it follows that W is monotone a-complete and therefore by a standard
argument (see [9]) complete. This completes the proof.

Proof of Theorem 3 . 2. Axiom 3 ensures that is a cone in W *
and since ~ is a positive mapping Axiom 1 ensures that ~(K) is weak*
dense in W * + and hence in KA x c c R + are as in
Axiom 3 then

as n - 00. This completes the proof.
Proof. of Theorem 3.3. The dual space of V can be identified with

the space Ab(B) of bounded affine functions on B endowed with the supre-
mum norm and the natural ordering. Clearly the mapping a H a’ defined
for x E B by a’(x) = x(a) is an order isomorphism from W into Ab(B).
It follows that the mapping is isometric and a-normal with monotone
a-closed range weak* dense in V*.

’Proof of Theorem 3.4. By Axiom 8 the mapping T H T’ is an iso-
metric affine isomorphism from ~’ into However, for S E S*W c W
and since S* is weak* continuous it follows that the restriction of S* to W
is a-normal. This completes the proof.

6. THE CASE W = A(B)~
In [15] it was suggested that the set K of states of the system should

possess a physical topology to describe the lack of accuracy in measurements.
By requiring that all the information about a particular physical system
could be obtained in a finite number of measurements it was shown in [14]
that the physical topology extended to V could be assumed to be locally
convex Hausdorff and that K could be assumed locally compact. Equi-
valently the base B could be assumed compact.
Vol. XXII, n° 1 - 1975.
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Let B be a compact convex set regularly embedded in a locally convex
Hausdorff topological vector space V, let A(B) be the space of continuous
affine functions on B and let Ab(B) as before be the space of bounded affine
functions on B. Then V can be identified with A(B)* and Ab(B) can be
identified with A(B)**. Ab(B) is monotone a-complete and hence a smallest
monotone a-closed subset of Ab(B) containing A(B) exists. This set is a

subspace A(B)" of Ab(B) called the monotone a-envelope of A(B). With
the supremum norm and the natural ordering A(B)" is a monotone

a-complete GM-space with unit Further the set of a-normal linear
functionals on A(B)P can be identified with A(B)*+. Hence by choosing
W = A(Bf and K = A(B)* + a possible model for a physical system is
obtained. The main result of [8] shows that Z(A(B)") is a-normally and
algebraically isomorphic to the algebra F~(r) of bounded ~-measurable
functions on a space r equipped with a ~-algebra ~ of subsets. Various
choices of r are available. Let A(B) denote the set of non-zero minimal
elements of the complete Boolean algebra 9~(A(B)*) and let

Notice that GP(B) is the union of the family ~ PA(B)* (") B : P E Á(B)} of
disjoint subsets of B. Further, for T E D(A(B)*), P E A(B), the function 
is constant on PA(B)* (") B. The basic result is the following. The proof
is given in [8].

THEOREM 6.1. - There exists a 6-algebra ~ of subsets of A(B) and
a a-normal algebraic isomorphism 03C0 from Z(A(B)") onto the algebra 
oJ~ bounded ~-measurable functions on A(B) defined for z E Z(A(B)~) by

Hence the Boolean 6-algebra E(~c} of extreme points oj’ the convex set

~~ = Z(A(B)~)’’ n (Is - Z(A(B)’‘)+) is 6-isomorphic to ~.

The conclusion is that in this special case the centre of the system is

described by means of a Borel space. Notice that in Theorem 6 .1 A(B) could
be replaced by GP(B). In fact if E(B) denotes the set of extreme points of B,
and if A(B) denotes the subset of A(B) consisting of elements P such that
PA(B)* n E(B) ~ 0 then either A(B) or E(B) could also replace A(B)
in the theorem.
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