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Gauge transformations
of second type and their implementation.

II. Bosons
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31 ~ chemin J. Aiguier, 13274 Marseille, Cedex-2 (France)
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Section A :

Physique theorique.

ABSTRACT. A necessary and sufficient condition for implementation
of some local gauge transformations in a class of irreducible representations
of the C. C. R.-algebra (« Weyl algebra ») is proved. Not all of the pure
states induced by these representations are unitarily equivalent to « physi-
cally pure » states ; it is shown that a state of the class we consider is unitarily
equivalent to a physically pure one if and only if a certain property (charac-
terizing the « discrete » states) holds. Unlike the fermion case, they are
quasi-free states which are not discrete. The discrete quasi-free states

are all equivalent to the only Fock state of this class.

I. PRELIMINARIES

A The Problem.

In the following paper we consider gauge transformations of the second
type over a free Bose system. More precisely if 03C0 is a Weyl representa-
tion { I ) of the C. C. R.-algebra 0 then it is equivalent to deal with a family

(*) Attache de Recherches. C. N. R. S., Marseille.
(**) This work is a part of a « These de Doctorat d’Etat » presented to the Faculte des

Sciences de Marseille-Luminy, June 1974, under the number A.O.9921.
(***) Universite de Provence. Centre Saint-Charles, Marseille.
(1) See further and [1] for the definition.
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298 J. F. GILLE AND J. MANUCEAU

of creation and annihilation operators on an Hilbert space ~ ;
the gauge transformations of the second type we consider are

with ~0 on the real line.
Such a transformation is induced by an automorphism 03C403B8 of the C. C. R.-

algebra 0394 ~ A(H, 7), which is described in the next paragraph. As in [3]
we look for irreducible representations of 0394 for which the evolution () H 03C403B8
is implemented by a (strongly) continuous unitary representation of the
real line () r-+ Ue. Such are the head lines of the programme sketched by
Dell’Antonio in [4]. We solve fully the problem in the case where the gene-
rator of 1:8 is diagonalizable.

B The Boson C*-algebra and some
of its Gauge transformations of second type.

Let (Ho, (7) be a separable symplectic space, i. e. a real vector space

equipped with a regular, antisymmetric, real bilinear form, which turns Ho
into a locally convex topological space whose topology is defined by the
semi-norms : . 

, 
. 

, 

We suppose from now, except mention of the contrary, that Ho is complete
for this topology; we call Ho 03C3-complete.

Let A(Ho, 6) be the algebra generated by finite linear combinations
of E Ho, such that :

and

with the product law :

and the involution :

Let cr) be the set of non-degenerated representations 03C0 of LB(Ho, r)
such that the mapping:

is strongly continuous.
Let ~(Ho, 0") the set of states of A(Ho, r). We define a norm on LB(Ho, 7)

b : ___

It is a C*-algebra norm [1 A].
The closure of r) with respect to this norm will be denoted

~o = A(Ho, r) and we shall call it the C. C. R.-algebra (Some call it the

« Weyl algebra » [2]).
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299GAUGE TRANSFORMATIONS OF SECOND TYPE AND THEIR IMPLEMENTATION. II.

Suppose A is a densily defined linear operator on H c Ho such that :

i ) dim (ker A) is not odd,
I A I is a diagonalizable operator in a symplectic base (where

A = Jo I A I in the polar decomposition).
We choose a complex structure J of Ho such that

We shall write :

where PHk are the orthogonal projections on Hk and Hk a two-dimensional
real subspace of H, which is invariant by J, such that Ho = @ Hk and
H =EÐ Hk (From now we denote by Q the Hilbert sum and by 3 the
direct sum). We remark that some 03BBk are possibly not different.

J defines a 6-permitted hilbertian form s on Ho (or H)

It is with that scalar product we use Ho as an Hilbert space. A is the infini-
tesimal generator of a one-parameter strongly continuous orthogonal
group {T03B8)03B8~R on Ho. By [1, (4.1.1)], we can define an automorphism 03C403B8
of Ao with z~(~,~) = 

IMPORTANT REMARK.

Let ð = A(H, a~) ~ Ao. H is invariant by A and J there,f’ore 
and ze can be restricted to an automorphism of ð. Atj arguments and compu-
tations in the sequel are about ð.

II THE CLASS
OF REPRESENTATIONS WE CONSIDER

Let :

Let 1t~ E 0") be an irreducible representation of A~ into the separable
Hilbert space Let 03C9k be such that 03C9k(03B403C8) = e-1 2s(03C8,03C8) with 
03C9k is a pure state of 0394k [1, (3.2.1) and (3.2.2)] to which corresponds, in the
Gelfand-Naimark-Segal construction, the representation called the

Schrodinger representation, and the cyclic vector 03B6k E 

Vol. XX, n° 3 - 1974.



300 J. F. GILLE AND J. MANUCEAU

It is well-known, since von Neumann [5], that 03C0k and 03C0’k are unitarily
equivalent, i. e. there exists a unitary operator Uk on ~k such that

Let 7T = X ~k and 7r’ = (X)?~ 7c and 7r’ are representations of A

into H = Recall that each 03A9 = X being a vector 

determines an incomplete tensor product with ~(Q)

the equivalence class of Q for the relation ~

The are invariant subspaces of 7c’ and the restriction of ?r’ to those
subspaces, denoted by ~ are irreducible and therefore 7r’ is the direct

sum of the set of the 7:0.

Let U = It is a unitary operator on H [6, lemma 3.1, def. 3 .1 ].
~=~

Clearly :

So every irreducible subrepresentation 7~ of 7r’ is unitarily equivalent to
the subrepresentation 03C0U03A9 of 03C0. Therefore we can restrict our study to the
consideration of the irreducible subrepresentations of 7r.

PROPOSITION II. 1 (cf. [3]) (2). is unitarily equivalent to 03C003A9’ if and
only if Q and Q’ are unitarily equivalent.

Proof. 2014 Recall that Q = ~03A9k and Q’ = ~ Ok are weakly equiva-
lent ( 1 -  + oo . Suppose that Q and 0’ are weakly

equivalent. By [6, def. 6 . 1.1 and lemma 6 .1.1 ], one can find for each
k a vk~R such that

(2) This proposition was previously stated by Guichardet [16] for the fermions, and
independently by Klauder, McKenna, and Woods [17] for the bosons. We keep our demons-
tration because of its connection with Powers’ methods.
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301GAUGE TRANSFORMATIONS OF SECOND TYPE AND THEIR IMPLEMENTATION. II.

Conversely, if Q and Q’ are not weakly equivalent, let us denote :

and

Let Uk E be a unitary operator such that Uk03A9’k = Qk and let

Let also

Let us denote:

As a product of irreducible representations is an irreducible repre-
sentation [8] hence is a pure state [9, Lemma 2 . 4] implies that :

Nevertheless :

LEMMA II .1.1 (3). - Let

Then and , (~2 are 
, two equivalent pure , 

We give the proof of this lemma in our Appendix.

(3) We are indebted to R. T. Powers for the proof of Lemma (II.1.1) which is crucial
for the sequel of the proof. See also [18, Prop. 13] which provides a more general but far
less easy proof of Lemma (11.1.1).

Vol. XX, n° 3 - 1974. 21



302 J. F. GILLE AND J. MANUCEAU

Hence Wo and cvn- are not unitarily equivalent. II

III. THE THEOREM

Let us denote by Ak the field operator, defined by

We shall write the corresponding creation and annihilation operators, as :

we choose { } an orthonormal basis of Hk and we shall use:
and 

Recall that ~ is a cyclic vector corresponding to the state ~

and that (03B6nk)n~N, with 03B6nk = 1 n(a+k)n03B6k, defines an orthonormal basis 
It follows that the Q~ ’s of Sect. II can be written:

From now, we shall denote ~3k == ak 12.

A. Statement.

A one-particle evolution z8 is implementable for the representation 03C003A9
and only if the following condition holds (III . A. 1):

Annales de Poincaré - Section A
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If this occurs, a strongly continuous one-parameter group of unitary
operator (we shall call such groups SCOPUG),

exists such that :

B Proof.

B . 1. SUFFICIENCY

Suppose

It is well-known that ([7], (4.3) and [7~], (5.1)):

with a strongly continuous unitary representation of M into such
that :

with

where 03C81k E Hk 
Let us build 

Ue is a unitary operator on ~f [6, Lemma 3.1, Def. 3.1].
We set:

Changing into implements ie.

We choose ~ such that :

We get :

Let us consider :

Vol. XX, n° 3 - 1974.



304 J. F. GILLE AND J. MANUCEAU

From our hypothesis

fbrsma!!0’s,

converges to a real number different from 0 and c We note
now V8 its restriction to Hence:

holds. Nevertheless, { Ve is ~ot a group in the general case. A theorem
of Kallmann [11] provides us the existence of such a SCOPUG { We 
in with : 

’

B.2. NECESSITY

Condition (I II . A. 1) is equivalent to the both following conditions :

Suppose (I II . A. 1) is false. Then either (III. B. 2 .1 ) or (I II . B. 2 . 2) is false.
Let us recall the two lemmas which prove that in the both cases 38 E IR
such that

LEMMA III . B . 2 . 3 (See [3, lemma 2 .1 ] ). - Let U  rk  1, and let

Let v be a bijective enumeration of fBJ3, = m. Let us write r~, = 

and m = 03BBk(j - 1). If (III. B . 2 .1 ) is false, we get therefore :

Annales de l’Institut Henri Poincare - Section A



305GAUGE TRANSFORMATIONS OF SECOND TYPE AND THEIR IMPLEMENTATION. II.

such that :

LEMMAIII.B.2.4 (See [3, lemma 2 . 2]). - If f : (~ --+ ~, f (0) = 0,
f’ differentiable at 0 and f’(0) = 1, uk ~R, (uk)k~N bounded, rk  0, dk E N,
then:

The proof is obvious. 
"

Let us return to the proof of main theorem. Let 0 E R such that

Let us denote as in the proof of (II. .1 ) :

is an irreducible representation, therefore is a pure state.
We have :

with

Nk is a « number of particles » operator as in (III.B. 1).
On the other hand, by a theorem of Glimm and Kadison [12], an

a) exists such that :

Vol. XX, n° 3 - 1974.
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Hence :

and [7~ corollary, p. 84]

So:

A theorem of Powers and St0rmer [9, lemma 2 . 4] shows us that :

We apply lemma (II. 1.1) with :

Obviously :

Therefore :

Now :

Therefore :

and:

So, lemma (II. 1.1) enables us to assert that ccy and ccy o z~ are not unitarily
equivalent ; hence there is no unitary operator such that :

ze is not implementable for the representation II
Annales de l’Institut Henri Poincare - Section A
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IV . OTHER PROPOSITIONS AND REMARKS

is an additive subgroup of [R [3, IV. 2].

2. If

We shall say that representation no is a discrete one. Theorem (III. A)
implies that every one-particle evolution is implementable for all the dis-
crete representations. The corresponding state will be too called a
discrete one.

3. We have not the corresponding property of [3, (IV. 3 .1 )] to conclude
that, if 1tn is not a discrete representation and if { ~ has neither 0 non
infinite as accumulation points, then ~~ = (Z the additive
group of the relative integers) because = ~.k(j - can have oo as
limit point even does not. Cf. [4].

4. Physically pure states, quasi-free states and connected questions.

4.1. DEFINITION. A state Wo defined by

will be called a « physically pure » one iff 03B1nk = 0 

4.2. PROPOSITION. - There exists a physically pure state 03C903A9, unitarily
equivalent to Wo iff 03C903A9 is a discrete

Proof. - Suppose Wo is unitarily equivalent to a physically pure state 03C903A9’
with

Recall that ccy and are unitarily equivalent iff (II. .1 ) :

Vol. XX, n° 3 - -1974.
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hence :

Now,

and:

So:

and:

i. e., (On is a discrete state.

Conversely, if

Let:

Then :

Annales de l’Institut Henri Poincaré - Section A
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In each Mk we can choose an m(k) and we have :

We can take:

to see that:

and so a physically pure state is unitarily equivalent to ccy. tt

4 . 3 . LEMMA . Let

then Wn is a Fock 03C903A9k is a ’ Fock state ~k ~ N.

Let ccy be a Fock state, ccy is a primary state ; hence ~ [7~]:

with  a a-allowed hilbertian structure on H.
If rp E Hk, a real scalar product sk exists on Hk such that :

Jk the only complex structure on Hk such that sk turns out to be non nega-
tive = Therefore for every k ~ N, 03C903A9k is the Fock state on 0(Hk, y).
Conversely, if is the only Fock state in 0394k = 4(Hk, 6) for every k ~ N,
~pk E Hk, = = - 0’ o Jk. We take J a complex structure
of H such that = Jk and we get = with
S = - 0’ o J.

4.4. COROLLARY. - Among the states of the type there is only one
Fock state.

Let Wn be a physically pure state ;

Vol. XX, n° 3 - 1974.
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being the Laguerre polynomial of degree m(k) as an easy computa-
tion shows.
The only Fock state of the type Wn is constructed with S2k = 03B6k ~k ~ N.

The Wn ’s unitarily equivalent to the Fock state are such that

4.5. DEFINITION. A quasi-free state on å is a state OJ for which

with s’ a 03C3-allowed hilbertian structure on H and X in the algebraic dual
ofH.

4.6. COROLLARY. 2014 Let 03C903A9 be a quasi-free state and

the following assertions are equivalent :

ii) c~Q is a discrete state.
iii) c~ is unitarily equivalent to the Fock state D~=~.

- iii) =&#x3E; ff) is obvious by Proposition (4.2).
f) =&#x3E; ~’)

and = ay is pure, hence 03C9s’ is pure and so is the Fock
state c~S [15].
We can easily see that

Annales de l’Institut Henri Poincare - Section A
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Indeed :

If

is continuous. So [1~ (4.4.4)] is unitarily equivalent to the Fock state cvs.
ii) =&#x3E; i)
If ron is a discrete quasi-free state, we have

Therefore m(k) = 0 Vk E N - L, L finite and ( 1 - 03B20k)  oo which

implies that exp (-|ck|2/2) converges and is different from 0. In

other words: _

4.7. REMARK. 2014 In the opposite of the fermion case [3, IV. 4 . 3] there
are non discrete quasi-free states ; they are constructed with x no continuous.

Vol. XX, n° 3 - -1974.
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APPENDIX

LEMMA II. 1. 1. - Let

If and (J)2 are ’ two unitarily equivalent pure ’ states of A, then:

Proof (R. T. Powers). - By [12], if Cùt and 03C92 are unitarily equivalent, there exists an
Me â such that uu* = u*u = Iå and VxeA, = Let I &#x3E; ~ &#x3E; 0. ~n ~ N,

with ~b - u~  e. Since  exists. Let u’ = Then 
and u’*u’ = u’u’* = Io. And ’

and, for any e’ &#x3E; 0, one can choose E &#x3E; 0 such that {) (bb*)~ -  E’ because y H- ( yy*)~
is continuous. So : 

,

Let o/, such that :

Now:

because, for y E ~~ :

Hence :
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