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ABSTRACT. — The conditions of finite predictivity for classical relativistic
two-body systems are investigated by means of the Cauchy-Kowalewsky
theorem. Local existence theorems are given permitting the construction
of solutions by Cauchy data on surfaces in phase space. The asymmetric
electromagnetic interaction through the advanced field of a particle and
the retarded field of the other one is recovered as a particular case.

1. INTRODUCTION

In classical relativistic dynamics, equations of motion for interacting
point particles are generally difference-differential equations and very
little is known about their solutions.

For instance, Feynman-Wheeler electrodynamics yields such equa-
tions for a couple of charged particles. In this example, although confi-
guration space is of finite dimension, there is no evidence for a finite num-
ber of degrees of freedom, because phase space (i. e. the space of initial
data determining the motion) has most likely infinite dimensions. However,
it is also possible to consider interactions of a simpler kind, requiring that

(') Permanent mailing address: Université Paris-7, Laboratoire de Physique Théo-
rique et Mathématiques, Tour 33/43, 1° étage, 2, Place Jussieu, 75221 Paris, Cedex-05.
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270 PH. DROZ-VINCENT

the equations of motion take the form of an ordinary differential system.

In this case, phase space has only a finite number of dimensions and
we shall say that the dynamical system is finitely predictive. ‘

It is clear that finitely predictive mechanics is a special case of Action-
at-a-distance theories. Even if too simple with respect to the actual inte-
ractions present in the Nature, finitely predictive dynamics is at least
mathematically tractable and is to be mastered first, before one attacks
the general and very intricate case of infinitely dimensional phase spaces.
Indeed, finitely predictive dynamics developed slowly and the early lite-
rature devoted to this subject has a non covariant form [/] [2] [3].

Standing for manifest covariance we suggested in previous papers [4]
an equal use of all proper-times. Thus we are dealing with multi-time
systems.

In the present article we are mainly concerned with the two-particle
case, but the general framework of our formulation is valid in the N-par-
ticle case in an obvious way. For two particles, finitely predictive equations
of motion have the form of a differential system as follows:

dx dv ¢ ')
—=v — = &(x, v, X", v
dt dt (
(1.1)
dx’' , av’ £ ' o)
= — = &(x,v,x",v
dat’ dt’
where it is required that the solutions have the form
(1.2) x = x(1), x' = x'(t')

in order to finally find the world lines (?).

Things can be put into geometrical form by saying that solving (1.1)
is equivalent to finding in the 16-dimensional space (where coordinates
are x, v, X', v’) the family of 2-dimensional surfaces tangent to both vector
fields

Il

X =v.0+ &.0/ov
X =0v.0 +¢&.0/o

Conditions (1.2) add that each such integral surface is obtained by carte-
sian product of the curve x = x(z), v = v(z), by the curve x’ = x'(t'), v’ = v'(),
these curves being the lifts of the world lines into the individual phase spaces
useful for one-particle physics.

The well-known Frobenius theorem states that (1.1) is integrable, iff X

(3) The momenta v, v/, are not constrained. The masses defined by m=v.0o,M=0v-0
will be constant provided v-v and - v’ are first integrals. In this case the canonical para-
meters 1, T are related to the true proper-times through t = s/m, v’ = s'/m’. When pos-
sible the indices are dropped, for instance v-v stands for v*v,, etc. Greek indices = 0, 1, 2, 3,
and ¢ = 1.

Annales de I'Institut Henri Poincaré - Section A



LOCAL EXISTENCE FOR FINITELY PREDICTIVE TWO-BODY INTERACTIONS 271

and X’ form a two dimensional LIE algebra. Therefore, we must have, in
terms of LIE brackets

(1.3) X, Xl =aX + pX'.
In order that condition (1.2) holds a stronger condition arises:
(1.4) X, X]=0.

Proof. — Consider X and X’ as differential operators acting on phase
functions. Then we have obviously
Xx* = v* Xx* =0
Xv*=0 X'x*=0
Hence
X, X']x* =0
But from (1.3) we also have
[X, X']x* = av*

Thus o = 0. A similar argument shows that § also vanishes. Hence
we get condition (1.4) that we derived by a different approach in [4].
As already shown, the explicit form of (1.4) is

(00 + E-OW)E* =0
- + & )E* =0

Equation (1.5) is trivially satisfied by any system involving no interac-
tion. In this case ¢ depends on x, v only, while £ depends on x’, v’ only.

The explicit construction of non-trivial systems is uneasy because of
the non-linearity of (1.5).

Our present goal is to solve the Cauchy problem in order to exhibit
local solutions [5]. These solutions will not be trivial provided the initial
data involve interaction. Of course, not all the solutions of (1.5) satisfy
the additional condition of mass constancy:

(1.6) Ev=¢80v=0.

For simplicity, we shall discuss (1.5) alone. Then the discussion will
be generalized in order to deal with (1.6) also.

(1.5)

2. THE CAUCHY PROBLEM

There is no compelling need to require the full Poincaré symmetry
from the beginning (3), but we shall look for translation invariant solutions,

() The natural representation of the Poincaré group acting on the 2-body phase space
has the following generators:

P=0+¢, N=M+M
M=xAd+ v A dfov, M =x"Ad + v A djov

where
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272 PH. DROZ-VINCENT

just for convenience, the assumption of translational invariance giving
rise to drastic simplifications.
Accordingly, ¢ and ¢ will depend on r,v,v’ only, with r = x — x’ (*).
For the Cauchy problem, phase space is therefore replaced by the
12-dimensional space E of the triplets (r, v, v').

CAUCHY PROBLEM. — Assume that ¢ and & are given and analytic on
some 11-dimensional surface S. Determine the eight unknown quantities
&, & outside (S) within some neighborhood. Since for any differentiable f.

0. f =0offor,  0yf= —df/or
The restriction of Equation (1.5) to E is
(v-0/0r + E-0/ov)E* =0
(= v'-0/or + & 0fov')er =0
The most naive attack is to take the hyperplane r® = 0 as surface (S).
Then, considering the evolution in terms of the preferred coordinate r°,
one is led to a straight-forward conclusion of local existence. We do not

give nore details because the plane r® = 0 is not invariant under the Poin-
caré group. We prefer to start on the surface

@2.1)

rer=u?

u? being possibly negative as well.

Keeping in mind that our initial surface in E is physically meaningful
as a set of possible initial elements defining the two-body motion, we are
led to discard space-like velocities by setting

vov>0 and v-v >0.

Moreover, we consider v and v’ future oriented. Thus we are now dealing
with the surface

2.2) (Z)=H, x Qx Q

with the following notations:

H,, is the hyperboloid (possibly degenerated into a cone) of mass pu.
H, (resp. H,)is the sheet of future (resp. past) oriented r. Q is the domain
of future no -space-like velocities. Naturally, when p > 0 we have to choose
a sheet of H,,. It is convenient to choose as new coordinates

p, % 0~

(where p = r-r) instead of r° r,v%v*. Note that the transformation
from r* to p,r is singular on the hyperplane r® = 0. Provided we keep

(*) Indices being dropped as often as possible, r is not to be mistaken for | r-r|*/%.
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LOCAL EXISTENCE FOR FINITELY PREDICTIVE TWO-BODY INTERACTIONS 273

off a neighborhood of this hyperplane, Equation (2.1) can be transformed
in terms of the new coordinates.
The identity

(2.3 o/or* = 2r,0/0p + di0/or
implies o
(2.4 v-0/0r = 2v-rd/dp + v'd/or
4 0'-0/0r = 2v"-rd/op + vV ofort
Inserting (2.4) into (2.1) we get

20-ro&" jop ~ 0

20" -ro&*fop ~ 0

modulo the Cauchy Data (C. D.) which are the &, £ and their derivatives
with respect to r, v% v*.

Thus 8&#/0p and 9E*'/0p are determined in terms of the C. D. except
on the points of E where either v-r or v’'-r vanish.

i) Case u* < 0.

Besides the fact that H, intersects the hyperplane r® = 0, (Z) is cha-
racteristic on infinitely many points, because r, being space-like, can be
orthogonal to either v or v’ for some choices of the velocities in Q. The
trouble is that we cannot discard all these points. For instance, the case
of v and v’ parallel to each other and both orthogonal to a space-like r,
represents two particles mutually at rest when their initial positions are
considered. Finally, there is no obvious answer to the Cauchy problem
when p? < 0.

ii) Case u* > 0.

From (Z) let us consider only one sheet, for instance, (X7) = H,) x Q x Q
which corresponds to choosing x anterior to x’. First, (£~) does not inter-
sect the hyperplane r® = 0. Moreover, (£7) is nowhere characteristic,
because on (X7) the vector r is always time-like, hence can be orthogonal
neither to v nor to v’. Then Cauchy-Kowalewsky theorem applies.

If ¢ and &' are given and analytic on (X£7) we have an analytic solu-
tion of (2.1) in some neighborhood of (X7) [6].

iii) Case p = 0.

Now (Z) = Hypy x Q x Q and H(0) is the null cone. Let us choose its
sheet Hp,, for instance. Then, we consider, instead of (Z), the one-sheet
surface Hp, x Q x Q To avoid singularity we must now subtract
from H{, a neighborhood of the vertex, say w. We must also avoid having
either v or v’ null and colinear to r, because we cannot let v-r or v’ - vanish.
So we require po>C and vov' >
for some fixed (, arbitrarily small but anyway positive. By all these res-
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274 PH. DROZ-VINCENT

trictions (Z) is finally replaced by a surface () such that: (£;) has only
one sheet.

The transformation from p, r' to r° r* is not singular on it. (£ ) has every-
where a normal and is never characteristic, because v and v’, being strictly
time-like, cannot be orthogonal to r which is null. Thus, for £ and &’ analyti-
cally given on (X;) we have a unique analytic solution of (2.1) in some
neighborhood of (£;) [6].

3. MASS CONSTANCY

As previously mentioned, the mass constancy condition (1.6) is not
contained in Equation (1.5). But if we require that ¢ and ¢’ have the form
(3.1) =005, & =00y,

where ¢,4 and ¢;; are skew symmetric in the indices, then (1.6) is auto-
matically satisfied. Therefore, let us assume that ¢ and &' have this form
and take ¢ and ¢’ as unknown quantities to be determined in such a way
that (1.5) should be satisfied. Inserting (3.1) into (1.5) we get

v¥(v-0/0r + (v- @) 0/0v)pss = 0
V(= v"-0/0r + (V" ¢"): 0/0V")Pyp = O
as the condition to be satisfied by ¢ and ¢’.

Since all we want now is to exhibit some solutions, let us consider the
sufficient condition

3.2)

(v-0/or + (v-¢)-0/v)py = 0
(= v'-0/0r + (V- @")0/0V )P,y = O

Again we can mak use of (2.4) and it turns out that the Cauchy Problem
for ¢ and ¢’ with Equation (3.3) is the same as for ¢ and ¢’ with Equa-
tion (2.1). The discussion carried out in Section 2, is still valid for the
« fields » ¢, ¢’. Therefore, (3. 3) has local solutions on the domains discussed
above.

(3.3)

CoROLLARY. — If ¢ and & have the form (3.1) on the initial surface (X7)
or (£,), this form is preserved by evolution, in some neighborhood.
This follows immediately from unicity.

4. THE ASYMMETRIC SOLUTION

The most general kind of electromagnetic interaction is not likely to
exhibit finite predictivity [7]. Nevertheless, it is reasonable to ask whether
some special case of motion under electromagnetic forces is finitely pre-

Annales de I’Institut Henri Poincaré - Section A



LOCAL EXISTENCE FOR FINITELY PREDICTIVE TWO-BODY INTERACTIONS 275

dictive, some connection between electromagnetic interactions and fini-
tely predictive systems being possible after all.

Schild’s solution [8] and Driver’s one dimensional motion support
this possibility. In the present approach we look for the C. D. appropriate
to electromagnetic interpretation. Due to the propagation and invariance
properties of electromagnetism, it is convenient to take a part of the sur-
face (x — x’)*> = 0 as initial surface. In a perturbative treatment of Equa-
tion (1.5) L. Bel, A. Salas, and J. M. Sanchez [9] determine series solutions
by requiring that, when (x — x’)?> = 0 the expressions of ¢ and ¢’ coincide
with those given by Lienard-Wiechert formulae. We somehow follow
this line in the context of Cauchy Problem, but we insist that particular
attention is needed here, because the surface (x — x')? = 0 has two sheets.
Only one sheet at once can be considered in order to apply the Cauchy-
Kowalewsky theorem. Let us for instance, take the surface £, described
in Section 2. On X_, x’ always lies in the future of x.

On this surface, x” always lies in the future of x (i. e., x— x’ is past oriented).
The possibility of inserting Lienard-Wiechert expressions into the Cauchy
data arises as follows:

Consider the two world lines occuring in the two-body problem, pick up x
on the one and x’ on the other. As usual, introduce retarded and advanced
positions x , etc. In general x_, is not a function on phase space, because
it depends on x’ and instead of simply x, on the world-line passing through x.
However, in the special case where x — x’ is null and past-oriented, then x .,
coincides with x. Moreover, in this case, x/;, coincides with x’.

As a result, all we can do is to use the retarded field generated by a charge
at x and acting on x’, with the advanced field generated by a charge at x’
and acting on x. This asymmetric combination of Lienard-Wiechert for-
mulae is unusual and unsatisfactory in many respects. Actually, such a
combination has been already introduced by Rudd an Hill [/0] in the
non-covariant formalism, and also Staruszkiewicz within a covariant one
parameter framework very specific of the model [//]. We are going to
incorporate this Rudd-Hill-Staruszkiewicz (R. H. S.) solution into the
multi-time formalism, not explicitly, but as defined by initial data.

The law of retarded action from x, with charge e, to x’ with charge ¢,
yields

@.1) & = eV Flhy
and the advanced action from x’ to x yields

4.2) & = ev?F?

aadv.

where the general Lienard-Wiechert formulae give F.,, and F.4v.. Actually,
these formulae give F’ and F as some expressions of r, the charges, the
velocities and the accelerations, to be taken when r2 = 0.
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276 PH. DROZ-VINCENT

Let us consider, for instance, the field F which depends on ¢’, r, u’ and
also the acceleration of the charge e’. Writing explicitly u'? instead of the
unity at some place in the conventional formula makes it homogeneous,
that, is, invariant when u’ is replaced by Au’, while the acceleration of
charge ¢’ is multiplied by A%. Now one can as well write v’ instead of u’
and & instead of the acceleration. Finally one gets
Fret. adv. = £ e { (r,v,)—a(v,z —r é')" AV

@3 +(r-v)ir Al

where it is understood that r? = 0, and a similar formula for F’ say (4.3").
Therefore, on the surface X, we have

Fu. = P(r, v, ')

Fre. = Q(r,0,)

P and Q being defined by (4.3) (4.3’). Inserting (4.4) into (4.1) (4.2) yields
¢ = R(r,v,0")

& = S(r,v, )

4.4

@.5)

where R and S are defined by solving (4.1) (4.2) with respect to the
unknown ¢ and &’. Without solving explicitly, which is possible but invol-
ved, one can assert that R and S exist uniquely at least when the coupling
constant e-e’ is not too large. Indeed, (4.1) (4.2) is a linear system in &, £
Its determinant A, is a polynomial in ee’, and whatever r,v.v" are, A = |
when ee’ = 0. Thus the absolute values of its roots are always strictly
positive. For any given compact subset £~ of £, these functions have
an inferior bound, hence one can find « > 0 such that A never vanishes
for | ee’ | < a, r,v, v’ being taken on £~.

Taking (4.5) as initial values on $- and applying the results of Sec-
tion 2, now provides a unique solution of (1.5). Note that working on
the other sheet £} (where x’ is anterior to x) compells us to use F,4-and F
and yields the same system up to the notations, that is labelling x’ the
absorber and x the emettor instead of the reverse.

So long as one considers the whole system in phase space, the two bodies
are discernable only by the property of either receiving or emitting photons.
Exchanging the charges is irrelevant and the masses are not a priori fixed,
being first integrals. ’

It is clear that the R. H. S. solution is all we can afford as electromagnetic
by means of the Cauchy theorem. Both the fully retarded law and the
Feynman-Wheeler combination would imply that we consider the case
« x anterior to x’ » and the reverse case together, thus setting the Cauchy
problem on a two-sheet surface, which is far out of the range of conventio-
nal methods.

Annales de I'Institut Henri Poincaré - Section A



LOCAL EXISTENCE FOR FINITELY PREDICTIVE TWO-BODY INTERACTIONS 277

5. CONCLUSION

When we have specified CAUCHY DATA on a part of the surface (x — x’)?> =0,
the physical interpretation was in terms of photons emitted by one particle
and absorbed by the other.

It is clear that, instead of electromagnetic interaction, one can invoke
other processes describing the motion of an emettor and an absorber of
mass-less particles. (In particular, since neutrinos have two possible heli-
cities, an asymmetric model involving neutrinos is a little bit more realistic
than the one constructed with photons. We may also note that the absorber
and the emettor are likely to be particles of different kinds, and not two
electrons as it is simply assumed in the R. H. S. solution).

In any case, the need to choose a sheet of the surface (x —x’)? = u? leads
to asymmetric models only.
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