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Section A :

Physique theorique.

SUMMARY. 2014 The system of perfect general relativistic magnetohydro-
dynamics with a generalized thermodynamical differential equation is
examined; the discontinuities, characteristic equations, associated rays,
velocities of propagation and suitable hypotesis of compressibility are
determined. The exceptional waves are pointed out.

RESUME. 2014 On examine Ie systeme de la magnetohydrodynamique rela-
tiviste avec une equation thermodynamique generalisee dans Ie cas d’un
fluide ideal de conductivite infinie. On etudie les discontinuites en deter-
minant les equations des caracteristiques, les rayons associes, les vitesses
de propagation et on donne des hypotheses de compressibilite. En outre
on remarque les ondes exceptionnelles.

1. INTRODUCTION

As is well known, the general relativistic magnetohydrodynamics, in
the case of a perfect fluid with an infinite conductivity, is constructed on
the basis of the following equations :

(I) the equations of conservation for the energy tensor; ~ 

,

(*) This work was supported by the « Gruppo Nazionale per la Fisica Matematica »
of C. N. R. (Italy).
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246 ANTONIO GRECO

(II) the Maxwell equations;
(III) the state equation;
(IV) a thermodynamical differential equation.

Usually, in (I) the energy tensor is assumed as the sum of the dynamic
energy tensor of the fluid and of the energy tensor of the electromagnetic
field; in (III) the fluid is assumed to be adiabatic, or, equivalently, that
the proper material density (number of particles) is conserved; in (IV) the
thermodynamical differential equation used in classical hydrodynamics
is assumed to be valid in a proper frame.

The consequences of this scheme, which later-on will be named « usual
scheme », have been exstensively discussed as far as the structure of funda-
mental differential system, the existence and unicity of solutions, the dis-
continuities, the characteristic equations, the hypotesis of compressibility
and other espects are concerned. The bibliography is very large and here
we recall only a fundamental work of Y. Choquet-Bruhat [1] and a recent
exhaustive Lichnerowicz’s monography [2].
Now, as observed by Lichnerowicz [3], the above scheme is only a first

approximation. As a matter of fact, the energy tensor and the thermody-
namical differential equation adopted do not take account of a possible
influence of the electromagnetic field on the internal structure of the fluid.
Recently, a more comprehensive scheme, which accounts for an interaction
between the fluid and the electromagnetic field, have been proposed by
Maugin [4], who has deduced its system from an action principle, making
use of a thermodynamical differential equation proposed by Fokker [5]
in 1939.

In this paper, after stating the notations at the end of this section, in
section 2 the fundamental system obtained in [4] will be recalled together
with some useful consequences. In sections 3, 4, 5, and 6, following the
outline given by Lichnerowicz [6], infinitesimal discontinuities, characte-
ristic equations, possible exceptionality of corresponding waves and asso-
ciated rays will be discussed. In section 7, finally, velocities of propagation
and reasonable hypotesis of compressibility will be determined. The research
carried out leads to the following facts:

a) the well known first condition of compressibility y &#x3E; 1 (y = c2frp) is
again sufficient to ensure the spatial orientation of the waves, but in the
expression of y the index of the fluid is replaced by the socalled modified
index, which accounts of the considered interaction between the fluid and
the electromagnetic field;

b) the derivative of the proper material density with respect a new
thermodynamical variable, necessary to describe the interaction, cannot
take arbitrary values : there is a condition of integrability which bounds
its variation ;
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247GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS

c) of course all velocities of propagation, except for the entropy waves,
are changed with respect to the usual scheme;

d) one has, only formally, the same expression for the velocities, that
are yelded by the usual scheme, with the substitution of the index of the
fluid with the modified index. The interaction is again effective and reflects
also on the form of the energy tensor;

e) the entropy waves and the Alfven waves remain exceptional without
any restrictive hypotesis, as in both the non relativistic and the usual rela-
tivistic cases;
/) the usual scheme is obtained in the particular case of vanishing magne-

tization, e. g. ,u = 1.

NOTATIONS. - The space-time is a four dimensional manifold V4,
whose normal hyperbolic metric ds2, with signature + - - 2014, is expres-
sible in local coordinates in the usual form ds2 - the metric
tensor is assumed to be given of class cl, piecewise C2; the four-velocity
is defined as M°" = which implies its unitary character = 1 );
Vex is the operator of covariant differentiation with respect to the given
metric. These notations are different from those used by Maugin, but our
formulas are converted in its notations by simply making the substitutions

and changing all the signs.

2. FIELD EQUATIONS

As said in introduction, Maugin has deduced the system of general rela-
tivistic magnetohydrodynamics from an action principle; in its deduction
he used the following thermodynamical differential equation

proposed by Fokker in 1939 for a polarized-magnetized fluid.
In eq. ( 1 ) E is the relativistic internal energy, which partly accounts also

for interaction between the fluid and the electromagnetic field, T and S
are the proper temperature of the fluid and its specific entropy respectively,
p is the thermodynamical pressure, r the proper material density (number
of particles), is the polarization-magnetization two-form and is
electric field-magnetic induction two-form.

In the case of infinite conductivity, 03C003B103B2 and are expressible as

Vol. XX, n° 3 - 1974.
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in which = - ge03B103B203B303B4, E03B103B203B303B4 = - bein g the Levi-

Civita’s alternation symbol; b« is the magnetic induction and 03B1 = b03B1 - h03B1
is the magnetization, ~ being the magnetic field. As is well known, b«
and h03B1 are given by [2] :

GYa being the electric induction-magnetic field two-form.
Of course one has

The relations (a) are a direct consequence of the general decomposition
of 03C003B103B2 and given by Grot-Eringen [7], and of the hypotesis of infinite
conductivity.

. Supposing that the magnetic induction depend linearly on the field and
that the fluid is homogeneous and magnetically isotropic, we have

and eq.(l), taking into account the relations (a), (b) and (c), becomes

Introducing now the specific magneto-entalpy and the
modified index of the fluid, which, in the case considerate, are respectively
given by (*) " ,

and taking into account eq. (2), without making, as Maugin has done,
a restrictive hypotesis on the functional dependence of E by S, r and h2,
we find :

In these conditions the energy tensor takes the form :

(*) The expressions of i and/given here ~ follow from the formulas (59) and o (111) of [4]
taking j into account the relations (a), (b) and , (c).
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249GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS

and the field equations are : the conservation equations for the energy tensor

the conservation equation of the proper material density

and he Maxwell equations, which, in this case, are

At this stage, contracting eq. (7) first with u~ and then with h~, by virtue
of relations (b), (c) and unitary character of we have :

Eq. (5), with T"a given by (4), becomes

Contracting this with ua and taking into account eq. (9), we obtain the
so-called continuity equation :

Utilizing now eq. (3) we find :

So, eq. (6) implies that the flow is locally adiabatic :

This same result is obtained by Lichnerowicz [6] in a different scheme.
We observe that Maugin assumes eqs. (6) and (1 i) as independent constraints
on the motion of the fluid. Here the one is a consequence of the other and
of the remaining field equations.

After this, taking into account eqs. (9) and ( 10), we write eq. (5) in the form

and, contracting this with h~, by virtue of eqs. (b) and (8), we obtain

Vol. XX, n° 3 - 1974.
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3. DISCONTINUITIES

We now suppose that p, S, u" and h03B1 are of class Co, piecewise C 1; that
the discontinuities of their first derivatives can take place across an hyper-
surface E of local equation = 0, ~p of class C2; that these disconti-
nuities are well determined as differences of the limiting values, of the
derivatives of p, S, u" and obtained approaching the same point of E
by the two sides in which E divide V4; that these limiting values are tensor-
functions defined on E and that the above derivatives are uniformly conver-
gent to these functions, when one tends to the points of E on either side.
In these hypotesis [6], introducing the operator of infinitesimal disconti-
nuity 5, we study in which conditions the tensor-distributions 5p, 5S, ~u"
and supported with regularity by E, are not simultaneusly zero. At
the same time we obtain the differential equations (i. e. the characteristic
equations) which may be satisfied by the functions For this it is suffi-
cient to make the replacement -+ == in the differen-
tial equations obtained in section 2. So, from eq. ( 11 ) we have :

and from eqs. (8), (9) :

respectively. Eqs. (12) and ( 13) give

and

while, from eqs. (6) and (7) we deduce :

4. ENTROPY WAVES

From eq. ( 14) we see that 5S may be different from zero if U = 0. In

this case we deduce from eqs. (15)-(20) 5p = ~h2 = = = 0, from

eq. (3) T~S, and, assuming that S, p and h2 are the independent
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thermodynamical variables, we have ~r = where the prime denotes
partial differentiation with respect to the subscripted variable.
We have so the so-called entropy waves or material waves, and, since

0 is a consequence of U = 0, as we can see e. g. from eq. ( 19),
are exceptional waves [8]~ [9]. The associated rays are the trajectories on E
of M°". There are not differences between these results and those obtained
in the usual scheme; in order words the considered interaction between
the fluid and the electromagnetic field do not affect the behaviour of
these waves.

5. HYDRO DYNAMICAL WAVES

Excluding now the above case, i. e. supposing U #- 0, we have from
eq. ( 14) bS = 0. So, from eqs. ( 15) and ( 16) we obtain

Contracting eq. ( 17) with and taking into account eq. (15), we find

in which G = whereas from eq. (19), being aS = 0, we have

Substituting ~h2 from eq. (21 ) in the last two equations and in eq. ( 18),
we obtain the following linear homogeneous system in the distributions

It follows that the distributions and can be different
from zero only if the determinant

Vol. XX, n° 3 - 1974.
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is zero. In this case 5r, ~f; 5p, ~h2, and are all known in terms

of one of them, e. g., 5p.
Expanding the determinant we find

in which

Now, from eq. (3), we have

and the consequent condition of integrability of eq. (3) gives

Therefore, vanishing the last term of N4, the differential equation of the
hydrodynamical waves is :

The associated rays are the trajectories of the vector field

with

As is tangent to the hypersurface E of local equation = 0

if satisfies N4 = 0, introducing the components of u" and h03B1 tangen-
tial to E, defined respectively by

we can express as a combination of v03B1 and f. In fact, replacing in 
and h03B1 given by (23), taking account of N4 = 0, we find

Concluding this section we remark that N4 = 0 is only formally reduced
to the corrisponding equation obtained in the usual scheme. The interaction
is again effective and is evidenced by the presence of the modified index.
This fact is not at all evident a priori, because the energy tensor is given
by (4) also being" = 0, and therefore remains different from the energy
tensor usually adopted. This latter is obtained only in the case  = 1,
which does not account for interaction; in fact in this case the magnetiza-
tion ma is zero.
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6 ALFVEN WAVES

We now suppose U ~ 0, N4 ~ 0, and we look if there are hypersur-
faces E on which the distributions an given by the formulas (23):

can be different from zero. As N4 ~ 0, = - bp = 5/!~ = 0,
and from eqs. ( 17) and (20) we deduce:

Therefore and can be different from zero only if supported by
the hypersurfaces E of local equation = 0, with solution of

We have the so-called Alfven waves and it is possible to prouve, with
the same arguments used in [9], that are exceptional waves. Moreover,
as N2 split in two factors : 
with úJ = we have two types of Alfven waves as in the
usual scheme. The respective associated rays are the trajectories of the
vector field A" and B~, which, being A"A" = &#x3E; 0, are
time-like vectors.

7. VELOCITIES OF PROPAGATION

We recall that, given a regular hypersurface E, of local equation = 0,
its velocity of propagation V, with respect the four-velocity field, is defined
by

and, if E is spatial-Iike, i. e. G  0, it is X  1 (i. e. V2  c2).
After this, we first consider the Alfven waves, N2 = 0, and we introduce

the useful parameter

We have:

So, the velocity of propagation of Alfven waves is given by

Vol. XX, n° 3-1974. 18
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We consider now the hydrodynamical waves. Introducing h2n in N4 = 0,
we obtain

which, after moultiplication by (1 1 - X)2~G2, can be expressed in terms
of X as

The values of N4(X) for

It follows that the condition

is sufficient for

Therefore, if condition (24) is supposed to be verified, N4(X) has generally
two zeros, X = V2s/c2 and X = VF/c2, between 0 and 1, separated by VA/c2.
In this manner we retrouve the slow and the fast hydrodynamical waves,
and, to ensure their spatial orientation, as said in introduction, the well
known first compressibility condition y &#x3E; 1 is again sufficient with the
only replacement, in the expression of y, of the index of the fluid with the
modified index. 

’

Finally we consider the hydro dynamical waves in the following two
limiting cases.

First : is orthogonal to the spatial direction of propagation of the waves,
i. e. H = 0, hn = 0. N4(X) = 0 is then reduced to

so that Vs = 0 and

Second: ~ is along the spatial direction of propagation of the waves,
i. e. h2. In this case N4(X) = 0 becomes :

We have in this way the two solutions X = V2A/c2 and X =1/y, the smaller
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of which gives Vs, the greater VF, and the hydrodynamical waves whose
velocity of propagation is VA are also Alfven waves.
Concluding we observe that, as said in introduction, except for the entropy

waves, all velocities of propagation are changed with respect to the usual
scheme, but the essential features of spatial orientation of the waves and the
progressive disposition of the velocities, 0 ~ c2, are

respected if condition (24) is imposed. Moreover the entropy waves and
the Alfven are exceptional without any restrictive hypotesis. We recall
that this fact is also true both in the non relativistic case and in the relate
vistic usual scheme.
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