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On the validity of Huygens’ principle
for second order partial differential equations

with four independent variables.
Part I : derivation of necessary conditions (*)

R. G. McLENAGHAN

Department of Applied Mathematics.
University of Waterloo. Waterloo, Ontario, Canada

Ann. Inst. Henri Poincaré,

Vol. XX, n° 2, 1974,

Section A :

Physique ’ théorique. ’

ABSTRACT. 2014 Five necessary conditions are obtained in tensorial form
for the validity of Huygens’ principle for second order linear partial diffe-
rential equations of normal hyperbolic type in four independent variables.
They are derived from Hadamard’s necessary and sufficient condition by
expanding the diffusion kernel in a Taylor series in normal coordinates.
The transformation laws for the elementary solutions and diffusion kernel
under the trivial transformations are given and the invariance of the

necessary conditions under these transformations is investigated. The
conditions are employed to determine the self-adjoint Huygens’ differential
equations on symmetric spaces.

RESUME. - Nous donnons, sous forme tensorielle, cinq conditions
necessaires de validite du principe de Huygens pour les equations aux
dérivées partielles lineaires hyperboliques du second ordre a quatre varia-
bles independantes. Ces conditions resultent de la condition necessaire et
suffisante de Hadamard et sont obtenues en developpant en serie Ie noyau
de diffusion dans un systeme de coordonnees normales. On donne les
regles de transformation des noyaux elementaires et du noyau de diffu-
sion pour les transformations triviales et on etudie 1’invariance des condi-

(*) Supported in part by a grant from the National Research Council of Canada.
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154 R. G. MCLENAGHAN

tions necessaires pour ces memes transformations. Ces conditions sont
utilisees pour determiner, sur les espaces symetriques, les equations auto-
adjointes satisfaisant Ie principe de Huygens.

1. INTRODUCTION

In this paper we consider second order linear partial differential equa-
tions of normal hyperbolic type for an unknown function ..., x")
of n independent variables. Such an equation may be written in coordinate
invariant form as follows :

where gab are the contravariant components of the metric tensor of a pseudo-
Riemannian space V n of signature ( + - ... 2014) and ;a denotes the covariant
derivative with respect to the pseudo-Riemannian connection. The coeffi-
cients Aa and C as well as Vn are assumed to be of class Coo.

Cauchy’s problem for the equation ( 1.1 ) is the problem of determining
a solution u of ( 1.1 ) which, on some fixed initial manifold S (1 ), assumes
prescribed values and prescribed values for the normal derivative. These
values are called Cauchy data. Cauchy’s problem for ( 1.1 ) was first solved
by Hadamard [l4] who introduced the concept of a fundamental solution.
Alternate solutions have been given by Mathisson [21], Sobolev [2~],
Bruhat [2], and Douglis [7]. Hadamard’s theory is local in the sense that
it is restricted to geodesic simply convex neighbourhoods of The global
theory of Cauchy’s problem has been developed by Leray [18]. The consi-
derations in the present paper will be purely local.
Of particular importance in Cauchy’s problem is the domain of depen-

dence of the solution. In this respect the equation ( 1.1 ) is said to satisfy
Huygens’ principle (or be a Huygens’ differential equation) if, for any Cauchy
problem, the value of the solution at any point Xo depends only on the data
on the intersection C ~ (xo) n S of the past characteristic conoid with the
initial manifold S. The best known Huygens’ differential equations are
the wave equations

where n ~ 4 is even (see for example Courant and Hilbert [6], p. 690).
Hadamard in his lectures on Cauchy’s problem [l4] posed the problem,

as yet unsolved, of determining all Huygens’ differential equations. He

e) Assumed to satisfy &#x3E; 0, where /(x~, ..., x") = 0 is the equation of S.
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155VALIDITY OF HUYGENS’ PRINCIPLE

showed that for such an equation it is necessary that n ~ 4 be even. Further-
more he established that a necessary and sufficient condition for the validity
of Huygens’ principle is the vanishing of the coefficient of the logarithmic
term in the fundamental solution. Hadamard wondered if every differential

equation might be transformed into the wave equation ( 1. 2) by one or a
combination of the following transformations, called triviat transformations,
which preserve the Huygens’ character of the differential equation (2) :

(a) a transformation of coordinates,
(b) the multiplication of both sides of ( 1.1 ) by a non-vanishing

factor (this transformation induces a conformal transformation
of the metric : gab = 

(c) replacing the unknown function by ~,u where ~,(x) is a non-vanishing
function. "

This is often referred to as « Hadamard’s conjecture » in the literature.
The conjecture has been proved in the case n = 4, ga~ constant, A° and C

variable by Mathisson [22], Hadamard [15] and Asgeirsson [1]. However,
it has been disproved in general by Stellmacher ([29] [30]) who provided
counter examples for. n = 6, 8, ... and by Gunther [13] who produced a
family of counter examples in the physically interesting case n = 4. These
examples arise from the metric

ds2 - 2dx0dx3 - a03B103B2dx03B1dx03B2 (03B1, 03B2 = 1, 2), ( 1. 3)
where a03B103B2 are functions only of x0 and the symmetric matrix is positive
definite. The above metric may be interpreted physically as a solution
of the Einstein-Maxwell equations for exact plane waves in the General
Theory of Relativity.
Gunther [11] has derived after lengthy calculations the following four

necessary conditions for the validity of Huygens’ principle:

where Rabcd is the Riemannian curvature tensor, Rbc = gadRabcd is the Ricci
tensor, R = gbcRbc is the curvature scalar,

(2) Two equations related by trivial transformations are said to be equivalent. An equa-
tion equivalent to the wave equation is said to be trivial.

Vol. XX, n° 2 - 1974.



156 R. G. MCLENAGHAN

and

is the Weyl conformal curvature tensor. These conditions are invariant
under the trivial transformations. However, as Gunther [11] has pointed
out, they are not sufficient to characterize the Huygens’ differential equa-
tions. For example when Rab = 0 the equation ( 1.1 ) is equivalent to

D u = 0 with no further conditions on the gab.
/- The present author [23] has derived the following additional necessary
condition for the case n = 4 and Rab = 0:

where TS( ) is the operator which forms the trace-free symmetric tensor
from a given tensor. This condition implies [23] that the only Huygens’
differential equation in four independent variables with Rab = 0 are those
arising from the metric ( 1. 3).

Recently Wunsch [32] has considered differential equations which are
infinitesimally close to the wave equation for n = 4. He derives necessary
and sufficient conditions for such an equation to satisfy Huygens’ principle
to second order. From these conditions, he singles out the one with four
free indices. He then constructs a tensor which he requires to be conformally
invariant and to reduce in the second order approximation to the expres-
sion with four indices in the aforementioned condition. Arguing that the
full necessary condition must be unique he gives a further necessary condi-
tion fo( the self-adjoint equation

to satisfy Huygens’ principle. This condition may be written

Wunsch’s derivation of ( 1.14) depends on the conformal invariance of
the tensor on the left hand side. However, it seems to the author that a

complete proof of this important property has not been given.
In this paper we derive the complete fifth necessary condition for the

validity of Huygens’ principle for the general equation ( 1.1 ), verifying
Wunsch’s result in the case Aa - 0. The invariance of the condition under
the trivial transformations is proved in § 6. The derivation of the necessary
conditions is based on Hadamard’s necessary and sufficient condition
extended to COO equations and is a generalization of the method employed
by the author in [23] to treat the case Rab = 0. This method is based on the
Taylor expansion of the diffusion kernel in normal coordinates about

l’Institut Henri Poincaré - Section A



157VALIDITY OF HUYGENS’ PRINCIPLE

some fixed point xo, using an appropriate choice of the trivial transfor-
mations to simplify the calculations. It seems that we are able to shorten
the derivation of the conditions ( 1. 4) to ( 1. 7) found by Gunther.

It is not known if the first five necessary conditions characterize the

Huygens’ differential equations. However, in a symmetric space they
characterize the self-adjoint Huygens’ differential equations. Helgason [16],
p. 68 observes that if Vn is symmetric the evidence available seems to indicate
that Hadamard’s conjecture might hold for the equation Du = 0. We
show, however, the Hadamard’s conjecture is not true in this case.

2. THE NECESSARY AND SUFFICIENT CONDITION

In the modern version of Hadamard’s theory for the equation ( 1.1 )
(see for example Friedlander [10]) the fundamental solution is replaced
by the scalar distributions where Xo is a fixed point of V4 and x is
a variable point in a simply convex set Q containing Xo. These distribu-
tions, called elementary solutions, satisfy the equation

where

is the differential operator adjoint to F[u] and is the Dirac delta

distribution. It has been shown [19] that these elementary solutions exist
and are unique for Coo equations. Furthermore [10] for n = 4 they decom-

pose as follows :

In the above V is a Coo function on Q defined by

where the integration is along the geodesic joining Xo to x, r(xo, x) denotes
the square of the geodesic distance from Xo to x and s is an affine parameter.
Let denote the interiors of the future and past pointing characte-
ristic conoids Then ± are functions on defined as
follows:

and

The functions are thus solutions of a characteristic initial value pro-
blem [10]. The distributions 5~(r(xo, x)) are defined as

Vol. XX, n° 2 - 1974.



158 R. G. MCLENAGHAN

where ~( ) represents the one dimensional Dirac delta distribution.

x) denote the characteristic functions on 
Let S be a non-compact space-like 3-manifold in the convex set Q.

Then it may be shown on taking account of (2 . 3) and the results of Lichne-
rowicz [19] that a weak solution (3) of Cauchy’s problem for ( 1. 1 ) in the
future of S is

where * is Hodge’s operator. It is clear from the above formula that Huygens’
principle will be valid x) = 0 for any Xo and x E D-(xo) since u(xo)
will depend only on the Cauchy data on the intersection C"(xo) n S.
Conversely if Huygens’ principle is true one can show that ~’(~o, x) = 0.
Thus a necessary and sufficient condition for the validity of Huygens’
principle for the retarded Cauchy problem is

Similarly it may be shown that

is a necessary and sufficient condition for the validity of Huygens’ principle
for the advanced Cauchy problem. A necessary and sufficient condition
for the validity of Huygens’ principle for both the advanced and retarded
Cauchy’s problem is

In view of (2. 10) it is clear that the validity of Huygens’ principle is equi-
valent to the elementary solution E Q(x) having support on the characteristic
semi-conoids C:t(xo). The condition (2.10) is the generatization to Coo equa-
tions of Hadamard’s necessary and sufficient condition [14].

1 t can bc shown [23] that the condition (2. 10) is equivalent to

where [ ] denotes the restriction of the enclosed function to

The function [G[V]] is called the diffusion kernel. This form of the necessary
and sufficient condition is more useful than (2. 10) both for the derivation
of necessary conditions [15] and for showing that an equation satisfies

e) If the data is then (2.7) is a genuine solution.

Annales de l’Institut Henri Poincaré - Section A



159VALIDITY OF HUYGENS’ PRINCIPLE

Huygens’ principle [13]. This is due to the fact that one has an explicit
form for V :

where

is the discriminant function and = det (gab(x)).
It should be pointed out that the condition (2 .11 ) is also valid when

the coefficients of the differential equation ( 1.1 ) are merely sufficiently
differentiable (see Chevalier [4] and Douglis [8]).

3. THE TRIVIAL TRANSFORMATIONS

We now turn our attention to the transformations (a), (b) and (c) defined
in the introduction. Appropriate choices of these transformations will

simplify our expansion of the diffusion kernel. Excluding consideration
öf (a) for the moment, we consider the effect only of (b) and the transfor-
mation Hadamard calls (be) defined as follows :

(be) Replacement of the function u in ( 1.1 ) by ~,u (~,(x) 5~ 0) and simulta-
neous multiplation of the equation by ~,-1.
This transformation leaves invariant the pseudo-Riemannian metric.
The transformations (b) and (be) transform the differential operator F[uj

into a similar operator F[u] with different coefficients Ãa and C and a
different (conformally related) pseudo-Riemannian metric:

One has the following relations between the coefficients of F[M] and F[n]:

It has been shown by Cotton [5] (4) that the necessary and sufficient
conditions for ( 1.1 ) to be equivalent to the wave equation ( 1. 2) are

(4) See also Gunther [12].

Vol. XX, n° 2 - 1974.



160 R. G. MCLENAGHAN

These conditions are invariant under the trivial transformations, since,
on account of (3 . 2), Hab and ~ transform as follows :

We shall now derive the relation between the elementary solutions for
equivalent operators. We first note that the transformations (b) and (be)
of F[M], (3.1), induces the following transformation for the adjoint ope-
rator G[u]: - 

- --

If are the elementary solutions of GM, then

where bxa(x) = is the Dirac delta distribution on Vn . Combin-
ing (3.6) and (3.7) we have

Thus by uniqueness of the etementary sotutions we haue

where ~o = ~,(xo), in particutar when n = 4

Equation . enables us to derive the transformation laws or ,
1/’I. and [G[V]]. Using the decomposition of given in (2 . 3) we have

We must first find the relation between ~(r) or equivalently
between c5( f) and b(r). Since r = 0 if and only if f = 0 we set

where the ai are functions of Xo and x to be determined. From the fact
that rand r satisfy respectively the equations

we find, on substituting for f from (3. 12) in the second equation in (3. 13)
and equating coefficients of equal powers of r, the following differential
equation for al : 

an

Annales de 1’Institut Henri Poincare - Section A



161VALIDITY OF HUYGENS’ PRINCIPLE

This equation has the regular solution at s = 0

where one integrates along the null geodesic XoX with respect to an affine
parameter. Since -

one has in view of (3.12) and (3.15)

Thus we may conclude from (3.11) that

and

From (3.17) and (3.18) the transformation law for the diffusion kernel
may be deduced. Differentiating (2.6) yields

For the transformed operator one has equivalently

where 0161 is an affine parameter along the generators of C(xo) = C(xo) (s)
related to s along a fixed null geodesic by

In view of this and the transformation laws (3.17) and (3.18) equation (3 . 20)
becomes

Noting (3.19) we finally get

which is the transformation law for the diffusion 
We may immediately deduce from (3 . 21 ) that the property of being a

(5) The null conoids are identical since null geodesics are preserved under conformal
transformations.

Vol. XX, n° 2 - 1974. 12
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Huygens’ operator is invariant under trivial transformations since

[G[V]] = 0 if and only if [G[V]] = 0.
We consider now only the transformation (bc) which has the property

of preserving the pseudo-Riemannian metric. In this case one can show
using (2.4) and (3.2b) that

In contrast to (3 . 17) the above relation holds at every point in some normal
neighbourhood of Xo, not just on C(xo).
We are now in measure to specify how the trivial transformations will

be chosen. Consider first the conformal transformation (b). We note that
under a conformal transformation the tensor Lab, defined in ( 1. 9), trans-
forms as follows :

where ~a = ~,a. Let Xo be any point of V 4’ Then following Gunther [11] (6)
we can choose the derivatives at Xo such that

where L~ = and so on. We assume from here on that this trans-
formation has been carried out and omit the tildes. Consequently at Xo
one has

We now specify the choice of the transformation (he). Following Hada-
mard [15] we set for the same point Xo as above

(6) See also 0 Szekeres [31].

Annales de Henri Poincare - Section A



163VALIDITY OF HUYGENS’ PRINCIPLE

Consequently ~o = ~(x~) = 1 and (2. 12) and (3.22) imply

It is equivalent to state that ÃQ given by (3 .2b) (with ~ = 0) satisfies

for all x E Q which implies in turn that

It should be emphasized that the transformation (3.26) depends in general
on the choice of the point xo. From here on it is assumed that the trans-
formation (3.26) has been made, implying that V has the form (3.27).
With this understanding the bars are dropped from the transformed
quantities.

Finally it remains to choose the transformation (a) namely the system
of coordinates in which to carry out the calculations. We choose a system
of normal coordinates (xa) about the point Xo admissable in the convex
set Q. These coordinates are defined by the condition [26]

In normal coordinates V takes the simple form [26] (7)

It is easy to show from (3.30) that

and

where

Consequently, if one defines

one has

From (3 . 30) we see that V(xo, x) ~ 0 for x ~ 03A9. Thus [o-] = 0 if and only

(~) ~ signifies equality only in a system of normal coordinates.

Vol. XX, n° 2 - 1974.
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if [G[V]] = 0 and we conclude that Huygens’ principle is valid if and
onlv if

In view of (3.17), (3 . 21 ) and (3 . 34) the quantity [7] transforms as follows :

4. THE TAYLOR EXPANSION OF 6

Our objective now is to obtain a covariant Taylor expansion for G[V]
or rather 6 about an arbitrarily chosen point xo. We shall determine the
expansion in terms of a system of normal coordinates (xa) with origin Xo.
This expansion may be obtained from (3.33) and (3.35) once the expan-
sions of gab, gab, Aa and C are known. In [23] the methods of Herglotz [17]
and Gunther [11] are used to obtain the following covariant expansions
for gab and g~ to sixth order and fourth order respectively :

where x‘d = xcxd and so on. Assuming that the conformal transforma-
tion (3 . 24) has been made, one obtains from (3 . 33), (4 .1 ) and (4 . 2) the
expansion of y to fourth order:

Annales de l’Institut Henri Poincaré - Section A
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We shall consider the construction of a covariant expansion for Aa.
Expanding in normal coordinates about xo one has to pth order

We are assuming that the transformation (bc) has been made as a specified
in (3.26). Consequently (3.28) is true. Now in normal coordinates [26]

Thus (3.28) becomes

which is the same as that obtained by Hadamard [15] in the flat space
case. Combining (4.4).and (4.6) yields

Since this must hold for all x E Q, one has at Xo (8)

0

It is a consequence of the conditions (4 . 7) and the symmetry of ~

in the indices a1 ... ap that

Thus from (4.4) and (4.8) one has to fifth order

It remains to replace the partial derivatives in (4.9) by covariant derivatives.
We shall achieve this by expanding Habxb covariantly. Let

(8) These are the relations obtained by Mathisson [22] and Gunther [77] from (3 . 2b)
by a suitable choice of the derivatives of log A at xo. However, there true origin seems to a
consequence of the choice (3.26).

Vol. XX, n° 2 - 1974.
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Then the following recurrsion formula is valid in normal coordinates :

where p = 0, 1, 2, .... The object will be to find the relations for p  4
p o

between the 1 and the Hp+ 1 = This is achieved by expand-
p

ing the VH to fifth order for p = 0, ... 4 :

and using the recurrence relation (4 .11 ). For each p = 1, ..., 4 the left
and right hand sides of (4 .11 ) are expanded to fifth order by substituting
from the appropriate formulae (4.13) to (4.17). The required form is
obtained on noting that

and that

On equating terms of the same order on opposite sides in the equations
just described the following four sets of equations are obtained :

Annales de l’Institut Henri Poincare - Section A



167VALIDITY OF HUYGENS’ PRINCIPLE

for p = 2:

for p == 3:

for p = 4:

These four sets of equations may now be solved for the Hp+ 1 in terms
p

of the The solutions are

From (4.9), (4.20) and the above we may construct the following covariant
expansion for Aa :

According to (3.34) we actually require we shall also need AQAa.

Vol. XX, n° 2 - 1974.



168 R. G. MCLENAGHAN

Using (4.2) and (4.26) we obtain to fourth order the following expansions,
assuming the conformal transformation (3 . 24) has been made :

On account of (3.24) we have to second order

Finally the expansion of the scalar C is to second order

The required covariant Taylor expansion for 6 may now be obtained
from (3 . 35) upon making the appropriate substitutions from (4.27), (4. 29),
(4.3) and (4.30).

5. DERIVATION OF NECESSARY CONDITIONS

Five sets of necessary conditions for the validity of Huygens’ principle
expressed in covariant form will now be obtained from the condition (3 . 36)
and the covariant Taylor expansion for 6 constructed in § 4. The follow-
ing derivation is similar to that employed by the author in [23], the basic
method being the same as that used by Mathisson [22], Hadamard [15]
and Gunther [11]. We shall proceed as follows : Huygens’ principle is

assumed for ( 1.1 ) and an arbitrary point Xo is chosen. Consequently
[7(xo, x)] = 0 or (y(xo, x) = 0 Vx E C(xo), which implies the following condi-
tions hold at xo(see [23], p. 144) :

Annales de Henri Section A



169VALIDITY OF HUYGENS’ PRINCIPLE

where TS( ), one recalls, denotes the operation which forms the trace
free symmetric tensor from the enclosed tensor (9). From the Taylor series

0 0 0 0

expansion for 6 we are able to evaluate cr, 6,Q ... in terms of AQ,
0 0

Hab; C and their covariant derivatives. Beginning with (5.1~) we obtain
a condition, invariant under the trivial transformations, expressed in

terms of the above quantities. The condition must hold for all x = Xo E V4
since xo may be chosen arbitrarily. The first condition and the subsequent
ones obtained in a similar way from (5. .1 b), (5. Ic), ... are used to simplify
the ones which follow. In every case we give the conditions in a form
invariant under the trivial transformation.

It is hoped that a relatively small number of these necessary conditions
will be sufficient to characterize the coefficients modulo the trivial trans-

formations, of all the Huygens’ differential equations. This was the case
for the equations considered by Mathisson [22] and by the author [23].
We shall now derive the conditions which arise from the successive

powers of xa in 6.

1. Order of magnitude : [0]

From (3.35), (4.3), (4.27), (4.29) and (4.30) we find that

Thus, in view of (5.1~), the first condition is

with our special choice of the trivial transformations (see § 3). We desire
an expression of this condition in a form invariant under the trivial trans-

0

formations. Hence we are looking for an invariant which reduces to C

(9) For an arbitrary tensor one has explicitly

The are obtained by solving the - equations which result from contracting

both sides of the above successively with gala2, g~3°4, . , . ~ .,.~’z~~- ~ az~~.

Vol. XX, n° 2 - 1974.
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when the special trivial transformations have been made. Such a quantity
is the Cotton invariant ~ defined in (3. 3c) which obeys the transformation
law ~ = e ~ 2 ~~. Under the special trivial transformations one has in view
of (4.27), (4.28), (4.29) and (3.25)

Thus, in general, the condition (5.2) is at xo

Since Xo has been chosen arbitrarily, we obtain the first necessary condition

which is, in effect, the condition ( 1. 4) obtained by Gunther.

I I . Order of magnitude : [ 1]

The condition (5.3) permits a simplification of the quantity (1. Noting
this in (3.35) one obtains the new value for

From (4.3), (4.27), (4.28) and (5.4) we obtain

Thus from (5 .1 b) one has at Xo

for the special choice of trivial transformations. Now is vector which

obeys the transformation law

under a general trivial transformation, where ;k denotes the covariant
derivative with respect to gab. Thus (5.5) is the general form of the condi-
tion at Xo. Since Xo may be chosen arbitrarily we recover the second neces-
sary condition of Günther (1.5) which must be valid ’Vx E V4.

l’Institut Henri Poincaré - Section A
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III Order of magnitude : [2]

From (4.3) we have to second order

As a result of the special conformal transformation (3.24c)

Taking account of this and (3.25) in (5.7) and expanding the symmetriza-
tion brackets yields

The last four terms on the right may be simplified using the symmetries of
the Weyl tensor allowing us to write

On account of the identity

valid when n = 4, we obtain finally

Next we turn our attention to By expanding the symmetrization
brackets in the second term on the right of (4 . 27) one obtains, if (5.7) and
the symmetries of Hab and Cabcd are taken into account,

We recall that Ricci’s identities are

Vol. XX, n° 2 - 1974.
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for an arbitrary second rank tensor Xab. Applying these identities to on

the right-hand side of (5.11) and noting ( 1. 5) one has to second order

Combining (5.10), (5.13) and the first term on the right of (4 . 28) with (5 . 4)
we have to second order

Consequently (5.1c) becomes

which on account of (3.25) may be rewritten as

We note that (5.14) is valid at Xo for the special choice of trivial transfor-
mations. It remains to find the form of the condition invariant under these
transformations. We remark that under a trivial transformation

while

However, in view of (3.23) the tensor

called the Bach tensor (see [27], p. 313), transforms as follows :

Furthermore at Xo for the special conformal transformation

Thus the general form of the condition (5.14) at Xo is

Again since Xo may be chosen arbitrarily we recover the condition (1.6)
which is the third necessary condition found o by Gunther and o is valid o

’r/XEV4.

Annales de l’Institut Henri Poincaré - Section A
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I V . Order of magnitude : [3]

We obtain the third order contribution to y - ~ 3 R from the second 0
term on the right of (4.3). Expanding j the symmetrization brackets yields

To obtain (5.18) the following identities are required :

The first of these identities follows from the cyclical identity

satisfied by the Riemann tensor while the second is a consequence of

Bianchi’s identitites

The first seven terms on the right-hand side of (5.18) may be considerably
simplified by applying the Ricci identities. Furthermore, on taking account
of the contracted Bianchi identities,

one finds that (5.18) reduces to

Further simplification occurs when condition III, (1.6), is taken into
account. It may be put into the following form in terms of the Riemann
tensor and its contractions :

Vol. XX, n° 2 - 1974



174 R. G. MCLENAGHAN

where

Differentiation of (5.26) and symmetrization yields at Xo on account of
the special trivial transformations

Finally we shall need to take into account the identities (5.9). Writing
them in terms of the Riemann tensor and its contractions one obtains

where

Differentiation of (5.28) and symmetrization yields at Xo on account of
the special trivial transformations

Noting (5.27) and (5.29) the equation (5.25) simplifies to

where the exact form of M’ ,e is irrelevant.
We next consider the contribution to 6 from Expanding the symme-

trization brackets in the third term on the left-hand side of (4.27) yields
on taking account of ( 1. 5) and (5 . 23)

The right-hand side of the above may be put in the desired form by applying
Ricci’s identities to the first two terms and taking into account the condi-

tions (3 .24b) and (3.25) noting in particular that Rgc;d = - "3 One

obtains

Finally by combining (4 . 28), (5 . 30) and (5 . 31 ) with (5 . 4) we find
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Therefore, in view of (5. Id), we have the condition

which is valid at Xo for the special choice of trivial transformations. Now
it may be shown that under a general trivial transformation

Thus the tensor on the right-hand side of (5 . 33) is an invariant under the
trivial transformations and consequently (5.32) is the general form of the
condition at xo. Noting again that Xo may be chosen arbitrarily we reco-
ver ( 1. 7) which is Gunthcrs fourth necessary condition.

V. Order of magnitude : [4]

Lengthy calculations are required to simplify the fourth order contribu-
tions to 6. For this reason we shall break the work down into a number
of parts which will be treated separately. The procedures used here are an
extension of those used to obtain the first four conditions. Consequently
we shall only indicate the steps required and give the final result in the
different steps of the calculation.
We shall first consider the contribution to 03C3 of fourth order from
2

y - 3 R. This involves the third and fourth sets of terms on the right-
hand side of (4.3). We shall work out the contribution from each set of
terms separately. We start by considering the two terms

If the symmetrization bracket is expanded and the Ricci identities are
applied systematically one obtains

The fourth order derivatives can be transformed to second order derivatives
by means of condition III. If one differentiates (5.26) and symmetrizes,
one obtains at Xo, on account of the special trivial transformations, the
relation
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On account of this the expression (5 . 35) may be written as follows :

We now consider the terms

Writing out the symmetrization bracket one gets on account of (5.19)

The following identities derived by applying the Ricci identitites to the
Riemann tensor will aid us in simplifying (5 . 38) :

We shall also need the following identity which is obtained from (5.28)
by differentiating twice and symmetrizing:

If one makes the appropriate substitutions from (5.39), (5.40), (5.41) and
(5.42) and takes into account (5.20) (with p = 0 and q = 2) and (5. 23),
the expression (5.38) takes the form
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We next examine the undifferentiated terms

This expression takes the following simpler form after one expands the
symmetrization bracket and takes into account the symmetries ofithe Weyl
tensor and the cyclical identity (5.21):

We now turn our attention to the terms

When one writes out explicitly the sum implied by the presence of the
symmetrization brackets and employs the identities (5. 19), (5.20) (with
appropriate choices of p and q) (5 . 23) and the conditions (3 . 25), the expres-
sion (5.46) simplifies to

Finally on account of (5.8) the contribution to Cy - 3 R ) [4] from theterms 3

IS

We may now combine the results of (5.36), (5.43), (5.45), (5.47) and (5.48)
to obtain

where
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The following relations allow us to re-express (5.49) in terms of the tensors
Cabcd and Sabc :

.

Taking account also of (3.25) one finds that (5.49) takes the form

where the Nef are quantities whose exact form is unimportant.
We next consider the fourth order contribution to 03C3 from Expand-

ing the symmetrization brackets in the last term on the right-hand side
of (4 . 27) yields, when ( 1. 5) and the Ricci identities have been taken into
account,

If now one substitutes for Rabcd and from ( 1. 11 ) and (3 . 25), the rela-
tion (5 . 54) assumes the following form :
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On comparing (5.55) with the derivative of the fourth necessary condition
( 1 . 7), one sees that required contribution from A°,Q is

Finally on combining (5.53), (5.56) and (4.28) with (5.4) we obtain

where the N’ef are quantities whose exact form is not important.
The following identities proved in [23] are required to complete the

derivation of condition V:

When these identities are taken into account, (5.1~) becomes on account
of (5.57)

This is the fifth necessary condition which must hold at Xo for the special
choice of trivial transformations. To find the general form of this condition
we must find a fourth rank tensor which is invariant under the trivial trans-
formations and which reduces to the left-hand side of (5.60) at Xo when
the special trivial transformations are made. As shall be proven in § 6 the
following is the only such tensor :

Under a trivial transformation it transforms as follows :
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Thus, on account of (5.60), (5.61) and (3 . 25), the general form of condi-
tion V at Xo is 0

Finally, since Xo has been chosen arbitrarily, we conclude e 
necessary condition for the validity q/ principle for the general 

equation (LI) with M = 4 is

where Hcdef is given by (5 . 61 ).
The condition (5 . 63) reduces to Wunsch’s condition ( 1 . 12) when AQ = 0

is assumed. It is remarkable that Wunsch’s result agrees with ours when
one considers that he was led to it by studying Huygens’ differential equa-
tions infinitesimally close to the wave equation while we obtained it as a

consequence of Hadamard’s necessary and sufficient condition for the

equation ( 1 .1 ).
It also should be noted that (5 . 63) reduces to the condition ( 1.12) obtained

by the author when Rab = 0. This is because Rab = 0 implies Hab = 0
on account of ( 1. 6).

6. INVARIANCE OF THE NECESSARY CONDITIONS
UNDER TRIVIAL TRANSFORMATIONS

In this section we wish to justify our procedure of obtaining the necessary
conditions using the special choice of trivial transformations (3.24) and
(3. 26). In particular we wish to establish the invariance (5. 62), under trivial
transformations, of the tensor Habcd which appears in condition V. We shall
also exhibit a second fourth rank conformally invariant tensor.

In order to justify our procedure it is sufficient to show that each necessary
condition may be expressed by the vanishing of some tensor which is

invariant under the trivial transformations. This is a consequence of the

transformation law (3.37) for 6. If a fixed point Xo is chosen and both

sides of (3 . 37) are expanded in normal coordinates (M = 0 is not assumed),
one obtains the following relations valid at Xo ( 10) :

The above relations are obtained by noting that normal coordinates (xa) with respect
to the metric gab are related to normal coordinates (x°) with respect to gQb on C(xo) by the
following formula:

~=~-~a~~,
where ~i is given by (3 .15).
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The succeeding formulae in the above series have a similar form : the highest
derivatives of 6 on the right hand side are followed by terms linear in the
lower derivatives. From (6.1~) we note that 6 is invariant, modulo the
factor e-203C6, under the trivial transformations. If 6 = 0, then from (6.1&#x26;)
we have 03C3,a = so 03C3,a is an invariant vector under the trivial trans-

formations. Similarly if 03C3 = 6,a = 0, (6. Ic) implies 
and we conclude that is invariant under the trivial transformations.

In general if 03C3 = 6,a = TS(03C3;ab) = ... = TS(03C3;a1...ap) = 0, we shall have

It should further be remarked that if the

quantities are simplified by using the previous conditions
assumed now to be valid in a neighbourhood of xo, then the simplified expres-
sion for remains invariant under the trivial transformations
since the preceeding conditions are themselves invariant under the trivial
transformations. Thus we may conclude that each necessary condition may
be expressed by the vanishing of a tensor which is invariant under the trivial
transformations.
The above result justifies the use of a special choice of trivial transfor-

mations at Xo to simplify the calculations. When the special trivial trans-
formations have been made at Xo, the necessary conditions appear in a
reduced form which are not always invariant under the trivial transforma-
tions (see for example (5.2), (5.14) or (5 . 60)). It thus remains to extend such
a condition to the invariant form. It should be pointed out that such exten-
sions are unique. To make things more precise consider, for example, the
derivation of condition V. With the special choice of trivial transformations
this condition is given at Xo by (5.60). The tensor on the right hand side
of (5.60) is not invariant under trivial transformations (this will be seen
later in the section). Thus one must find a tensor Hcdef which is invariant
under the trivial transformations and which reduces to the left hand side
of (5.60) at Xo when the special trivial transformations have been made ( 11 ).
The tensor satisfying these conditions is unique for suppose is
a second such tensor. Then their difference H’cdef will
be invariant under the trivial transformations: = However

0394cdef = 0 since Hcdef and both reduce to the same tensor at Xo
when the special trivial transformation is made. Therefore = 

since xo has been chosen arbitrarily.
It now remains to verify the invariance of Hcdef under trivial trans-

formations. It should first be remarked that can be broken up into

(11) This conformally invariant tensor is of fourth order in the gab and of third order
in the Aa. Thus, by an obvious extension of a result of Szekeres [31], it must be composed
of Hab and their first and second covariant derivatives and the tensors Lpb and gab.
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three sets of terms: (i) terms involving only gab and its derivatives (ii) the
terms (iii) the rest of the terms involving the Hab ’s. We
shall denote these terms respectively by the tensors Hcdef and

Explicitly we have 
1 2

Each one of the above tensors is separately invariant under the trivial trans-
formations. This is easily seen to be the case for since from (3 . 2a)
and (3.4~h) one has

The verification of the invariance of Hcdef involves a straightforward
but heavy calculation. We shall require the transformation larw for the
Christo ffel symbols under conformal transformations [27] :

By repeated use of (6.6), (3. 4b) and (3 . 23) one obtains the following trans-
formation formulae :

From these formulae and (6.4) it is easy to show that

We now prove the conformal invariance of the tensor The basic

formula is that giving the conformal transformation of From (3 . 4a)
and (6.6) one obtains

It follows from (6.11) that the conformal transformation law for Sabc is
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when one notes that for n = 4 Bianchi’s identities have the form

Using {3 . 2a), (3 . 4a), (3 . 23), (5 . 9), (6 . 6), (6.11), (6 .12) and (6 .13) we find
the following transformation formulae for the various terms on the right
hand side of (6.2):

Employing the formulae (6.14) to (6.20) one finds that

To show that is a conformally invariant tensor we must prove that
the second term on the right hand side of (6 . 21 ) vanishes. The fact that it
does follows from two further identities valid when n = 4 that may be
derived by the method of Lovelock [20]. This method for producing iden-
tities follows from the fact that in an n-dimensional space the generalized
Kronecker delta vanishes identically. Thus when n = 4 the expres-
sion

vanishes identically. If one expands the Kronecker delta in (6.22) using
the definition
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and takes the trace-free symmetric part, one finds, on account of (5.9),
the identity

similar procedure, when applied to the expression

yields the further identity

The identities (6.23) and (6.24) guarantee the vanishing of the second term
on the fight hand side of (6.21) which thus becomes

This establishes the conformal invariance of the tensor 7f now

that invariant under trivial since

It is worth pointing out that one can construct a second fourth rank
conformally invariant tensor from the transformation formulae (6.14)
to (6.20). This tensor is

Under conformal transformations it transforms as follows:

The tensor and Hcdef appear to be unrelated and provided explicit
examples of the polynomial conformal tensors studied by du Plessis [9]
and Szekeres [31 ] .

7. DETERMINATION OF THE SELF-ADJOINT HUYGENS’
DIFFERENTIAL EQUATIONS ON A SYMMETRIC SPACE

In this section we apply the conditions I to V to determine the self-

adjoint Huygens’ differential equations on a symmetric V 4’ A pseudo-
Riemannian space V4 is symmetric in the sense of Cartan if

(7 . 1 )

These spaces, in the case of Lorentzian signature for n = 4, have been
determined by Cahen and McLenaghan [3]. They may be classified accord-
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ing to the Petrov type ([24] [25J) of the Weyl tensor Cabcd. In [3J it has been
shown that symmetric V4 ’s are of Petrov type N, D or [-] (conformally
flat). We shall consider each of these cases separately.

Type N: In this case there exists a coordinate system (v, z, z, u) in which
the metric of symmetric V4 has the form

where a and 03B2 are real constants. If one defines

one has

We shall also need the following relations which follow from (7.1)
and (1.11):

Now it follows from (7.4), (7.5) and o (7.7) that condition III becomes in
a type N symmetric space

This implies that

from which it follows on account of ( 1. 8) that there exists a function A
such that Aa = A,. Thus on account of condition I a Huygens’ equation
on a type N symmetric space is equivalent to the equation

Now it follows from (7. 4), (7. 5), (7. 7) and (7. 8) that conditions IV and V are
identically satisfied. Furthermore, it is impticit in the work of Günther [13] (12)
that (7.9) is a Huygens’ differential equation on a type N symmetric space.
Since Cabcd ~ 0, (7 . 9) is not equivatent to the wave equation (1 1. 2). This shows
that Hadamard’s conjecture is not true for the equation (7 .9) on a symmetric
.space. Thus the conclusion of Helgason [16], p. 68 i.s false.

(12) This is because (1.3) is the metric of a symmetric space if and only if a12 = 0,
all = sin2 ((a + b)1/2x0) and a22 = sin h2((a - b)1/2x0) with b I  a constant and sui-
table restrictions on x°. This has been remarked by the author [23] for the case Rab = 0.
The metrics (I 1 . 3) and (7 . 2) are related by a coordinate transformation with a = a and
~3=2b.
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T ype D : In this case there exists a coordinate system (u, z, z, v) in which
the metric takes the form

where R, the curvature scalar, and 03B2 are constant.
In this case we restrict ourselves to the self-adjoint equation (1.13).

Condition I tells us immediately that C = - R, while condition III reduces
to

on account of (7.7). We need to determine Cabed and Lab for the metric (7.10).
To achive this we introduce the null tetrad ma, ma, na) defined as follows :

It is easy to see that

with all other inner products being zero. One can now show that

+ complex conjugate. (7.15)

Using (7.13), (7.14) and (7.15) one can show that (7.11) implies ~R 
= 0

from which we have R = 0 or 03B2 = O. If R = 0, (7.15) implies that Cabcd = 0

which is inconsistant with our hypothesis that our space be of Petrov

type D. Thus we must have jg = O. On account of this and (7.14) condition V

reduces to

Employing i (7 .13) and o (7 .15) one finds that (7.16) implies R = 0 which
is impossible. We conclude from t~e above that the differential equation

cannot satisfy Huygens’ principle on a ’ Type D symmetric space.

Type [2014]. In this case 
’ the symmetric space is conformally flat. According j
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to Cahen and McLenaghan [3] canonical forms for the metrics are (7.2)
with ex = 0, (7.10) with R = 0 and the following:

As for the case of a type N symmetric space, condition III implies H~b = 0.
Thus in view of (1 1. 4), a Huygens’ differential equation on a conformally
flat symmetric space is equivalent to the self-adjoint equation (7. 17) which,
on account of (3.3), is equivalent to the wave equation. This shows that
Huygens’ principte hotds for the self-adjoint equation (7 . 17) on a conformally
flat symmetric space but not for the pure equation Qu = 0 unless the curvature
scalar vanishes.

In a subsequent paper further consequences of the conditions I to v
will be discussed.
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