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Model of linearized deviations
in the quantum theory of gravity

Jan TARSKI

II. Institut fur Theoretische Physik der Universitat Hamburg.

Ann. Henri Poincaré, ,

Vol. XX, n° 1, 1974.

Section A :

Physique , théorique. ,

ABSTRACT. - Linearized deviations from two kinds of hypersurfaces
of a de Sitter universe are considered. Ground state functionals of these
deviations are described. The approach is the one used by Kuchar in his
study of the linearized gravitational field.

RESUME. - On considere deux sortes d’hypersurfaces de l’univers de
de Sitter et leurs deviations linearisces. Les fonctionnelles fondamentales
de ces deviations sont decrites. On aborde ce probleme par la methode
employee par Kuchar dans son etude du champ gravitationnel linearise.

1. INTRODUCTION

Since the attempt of DeWitt [1] [2] to give a systematic presentation
of the quantum theory of gravity, various simplified models have been
investigated. These are of two kinds. First, one can suppress some, or
even nearly all, of the degrees of freedom. Examples can be found in f71
[3]_[7]. 

L j,

The second possibility is to study the linearized deviations (of the metric
tensor) from a chosen background space. For the case of the Minkowski
background one finds an elaboration of the usual theory of the massless,
spin 2 free field. Still, the problem turned out to be rather subtle, and
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96 JAN TARSKI

was fully treated only in 1970 by Kuchar [8], where various obscurities
of an earlier study [9] we clarified.
One can increase the sophistication here by using a curved space rather

than a flat space as background. An early investigation of this kind is that
of Lichnerowicz [ID], who confined himself to the determination of propa-
gators and commutators on a curved space.
The present article describes an analysis of the linearized deviations from

hypersurfaces of a de Sitter universe as background. In particular, two
families of space-like hypersurfaces, indexed by a time parameter, are
considered. Members of one family are curved, closed, and the metric is
time-independent, while those of the other family are fiat, open, and the
metric is time-dependent.
The present study, like [8], depends in an essential way on the decompo-

sition of tensor fields. Such decompositions can be exhibited in a rather
simple way for Einstein spaces, and our hypersurfaces are of this kind.
One then finds a natural separation of variables in the functional diffe-
rential equations, and Gaussian solutions for the ground-state vectors are
easily found. (The problem of decomposing tensor fields on a general
space continues to be investigated by various authors.)
Our analysis provides an additional perspective for various interesting

observations which were made in [8]. It brings, moreover, into focus the

following problem, which we do not pursue. Extend the present study
by admitting hypersurfaces which would interpolate between the two

families, and which would consequently give an example of a change in

topology.
In sec. 2 we review various useful formulas bearing on the de Sitter

universe and on the Einstein equations. Section 3 contains the decompo-
sition of tensor fields, and we give also geometric interpretations of some
of the terms. In sec. 4 we give the functional differential equations for
state vectors, and construct the ground state functionals, for the two kinds
of hypersurfaces. Section 5 contains a brief discussion of inner products
for state functionals. Finally, in appendices we point out some simple
connections between the present work and the recent geometric approach
to the Einstein equations, and also some group-theoretic properties of the
de Sitter universe.

The work here described stretched over a long period of time. The
author would like to thank Professors S. Deser, K. Kuchar, H. Leutwyler
and A. Lichnerowicz for useful discussions at various stages of this work.

A substantial part of this work was done while the author was associated

with Facultes des Sciences in Paris and in Amiens. This project was com-

pleted during the tenure of a grant from the A. v. Humboldt-Stiftung The
author gratefully acknowledges the hospitality and the suppcn I of the

institutions with which he was associated.
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97MODEL OF LINEARIZED DEVIATIONS IN THE QUANTUM THEORY OF GRAVITY

2. THE DE SITTER UNIVERSE
AND THE COSMOLOGICAL CONSTANT

We first recall a few basic formulas for the geometry of the de Sitter
universe S; a fuller discussion with references can be found in the treatises
of Synge [77] and of Tolman [12]. We will suppose that S is represented by
the following hyperboloid (with C real and nonzero),

imbedded in the space M5, with the metric

Consequently, the metrics of space-times will have the signature + 2014 2014 2014.

For the Ricci tensor, we use = + 

We recall that an Einstein space is one where ([l3], p. 136)

The number of dimensions and the signature of the metric can be arbitrary.
Then S is an Einstein space of constant scalar curvature 4R, where explicitly,

In general, we will indicate the four-dimensional tensors by Greek
indices (when they are used), and by the prefix 4, while the three-dimen-
sional tensors will be indicated by Latin indices and without prefix.

Let us turn to the parametrization and to the hypersurfaces of S. We
introduce the coordinates p, 8, oc, and T by

The metric of S then becomes

where

This metric is stationary. For a hypersurface at r = const. we find

i. e. again an Einstein space (cf. the formulas in [77], p. 271 ). Such a hyper-
surface is a three-sphere, and p is restricted to 0  p  C-1. See also
Appendix B.

Let us make a further change of variables,

Vol. XX, n° 1 - 1974.



98 JAN TARSKI

and then go to the Cartesian coordinates. The metric becomes

This metric is not stationary, and each hypersurface t = const. is an infinite
flat space.
We will refer to the hypersurfaces of the two kinds as C-surfaces and

F-surfaces (C for curved, F for flat), respectively. I. e., let A be a constant,

and we set 
_ ._ _

The subscript A will usually be suppressed.
The universe S satisfies the Einstein free field equations with a cosmo-

logical constant T (i. e. + = 0), given by

We will therefore suppose the same constant for the quantized theory.
Indeed, this constant brings about only a minor change in the dynamical
structure of the field equations. We introduce, following [7] and [8],

and the extrinsic curvature tensor is

with the trace

A comma indicates a partial derivative, and V, the covariant derivative

(here, on a three-space).
The Lagrangian with ~f’ ~ 0 takes the form,

It follows, cf. 1 that the canonical momenta retain their usual form,

The supermomentum densities ;~t likewise are not changed,

while the superhamiltonian density v now becomes

We see that for a general cosmological constant u,

Annales de l’Institut Henri Poincaré - Section A



99
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The new constraint equations are

We note that the arguments relating the constraints to the variational

principles [l4] remain valid also if r -# 0. We now take, as in [7], Eqs. (2.18)
and their quantum analogues as the basic equations of the theory.

3. TENSOR FIELDS AND SMALL DEFORMATIONS

Linearized deviations from given metrics are the object of our investi-
gation. A field of deviations can be considered as a tensor field, the tensors
being of second rank, covariant, and symmetric.

For a flat space, one has the familiar decomposition of such a tensor
field [8] [15] :

The parts and kTij satisfy

and the decomposition is given explicitly by [with ~-2 = (03A3~2j)-1]

We now turn to the problem of decomposing tensor fields on more gene-
ral spaces. Various results bearing on this problem can be found in [M]-[7P].

Following [IO] [l3] [lb], we introduce the Laplacian å, whose action
on a p-fold covariant tensor field a is a follows :

We set, furthermore,

Then

and, in case of an Einstein space and a vector J31 and a two-tensor /32,

The following result is now central [16]. Consider a (smooth) field of

symmetric covariant two-tensors (1, on a compact Einstein space of dimen-
sion n, with the metric tensor g and the scalar curvature R. One can decom-

pose 7 as follows : r rr _ _.

Vol. XX, n° 1 - 1974.



100 JAN TARSKI

where 7~ is determined by a scalar function " 6L is the Lie derivative of g
with respect to a vector field ~ (cf. [73], p. 130), and cr" is harmonic. One
has, explicitly,

Orthogonality refers to the L2 inner product defined by the volume element

and the four terms in (3.8) are mutually orthogonal.
Let us now suppose that the operator Ll acts on the scalar fields, on a

compact manifold with a positive-definite metric. Then it has the following
properties [20] : (a) It is symmetric and non-negative, hence can be assumed
self-adjoint, and (b) zero is an isolated eigenvalue with multiplicity one.
Thus zero corresponds to the constant functions.
Note that for a negative-definite metric, Ll will be non-positive.
In view of the relations Og = 0 and (3.6), one can write

where aHTT is traceless and satisfies (3.12). However, one can show that
the properties (a) and (b) remain valid for 4 when it acts on tensor fields
such as cr [21]. Thus 0, and (3.12) can be strengthened to

The relation ( 1. nul (A) can also be strengthened. If [4 - R/(n - 1)K=0,
then tr aT = 0, aT would be its own TT-part, and by orthogonality, 0.

(This conclusion is also implicit in [16].) One can therefore suppose that

Further details about the spectrum of 0 may be found in [20].
The foregoing remarks imply in particular the orthogonal decomposi-

tion of scalar functions f,

W e will now use this relation to decompose the tensor field fg on a compact
Einstein manifold. We observe that if ð is restricted to scalar functions,
then (ð - 1 exists. Indeed, otherwise we would have a function f2
with (ð - R/n)f2 = 0. Consider 6 = df~~f2. We would have 6 = aT = 6L,
in contradiction with the asserted orthogonality 6’’ .1 We conclude

that

Annales de l’Institut Henri Poincaré - Section A



101MODEL OF LINEARIZED DEVIATIONS IN THE QUANTUM THEORY OF GRAVITY

where

The three parts of a tensor, and will now be interpreted geo-
metrically.

Let us consider deformations of coordinate systems, and of C- and
of F-surfaces. Let ç be a vector field on a C-surface. Such a vector field
induces an infinitesimal change of coordinate vectors, x ~ x + ~x~ and
the (infinitesimal) change induced on a tensor field 0’ is given by 
Thus, if we take for 03C3 the deformation h of the metric tensor, we see that hL
corresponds to a change of coordinates. Furthermore, the term hH corres-
ponds to a change of the de Sitter constant C.

In order to interpret we first change to Gaussian coordinates

in (2.5-6), as follows. We select one particular C-surface, and we require
that this surface correspond to a constant time that g and on this
surface remain unchanged, and that N = 1, in these coordinates. (See [22],
Sec. 10; [23], Part III, § 3; and Appendix A.) We denote the new time
variable by to, and we make a small deformation of the To-variable and
of the chosen C-surface,

where

We observe that, to the first order in 1",

see (2. 12a). Consequently

The expression (~...)r is like yB but we must provide the term 
where now n = 3. However, we know that it can be reduced to the parts T,
L, and H, see (3 .16). The factor yt in 7r characterizes 03C0 as a density, so that

is a tensor 03C0tens, which we can decompose. We conclude that 1t of

( 3 .19b) satisfies _ _ _ _ _

and can be given in terms of 1, cf. (3.15-16),

For an F-surface, the situation is analogous to the conclusions in [8].
The change of coordinates x -+ x + ~ induces a contribution hL to the
deformed metric. Furthermore, a deformation of the F-surface by the
function f(jc) yields (7T 2014 given by

Note that for an F-surface, 03C0 = 03C0(0) ~ 0 before deformation.

Vol. XX, n° 1 - 1974.



102 JAN TARSKI

We close this section with some useful formulas for the deformations
of geometric objects resulting from a slight change in the metric tensor,

(see [10], p. 39 ff.). For the contravariant metric tensor, (gik) --+- + 
one finds that to the lowest order in h,

Similarly, for the affine connection,

The result for the Ricci tensor is,

where

and for the curvature scalar,

If the background metric is g = ( - ~), then (3 . 27) becomes, cf. [8]
and (3.3a), 

-

In the case of a compact Einstein space, hTT and h" do not contribute to R’,
but the situation with hL is less clear. We write therefore

4. FUNCTIONALS OF LINEARIZED DEVIATIONS

In the gravitational theory the and the are canonically conjugate.
Thus, in the metric representation of the quantized theory, one takes
the gjk as multiplicative operators, and then the should be differentia-

tions,

This relation and (2.16-18) now determine the quantum operators ~j
and v, and the basic constraints on state vectors become

We now follow [8] and expand the variable functions g~~ and in the
small parameter s:

Annales de l’Institut Henri Poincaré - Section A



103MODEL OF LINEARIZED DEVIATIONS IN THE QUANTUM THEORY OF GRAVITY

Here ~~ and have fixed values, i. e. those of the C- or the F-surfaces.
In view of (4 .1 ) we will set = i - ! ~/~(Eg~ 1 ~), and the derivative is expected
to yield a quantity of order E. We also write

It is shown in [8] how for each order in E some of the quantities g~~~, can

be chosen arbitrarily, and the others are then determined by the (classical)
equations x’ = v = 0. An analogous procedure for the quantized theory
is also indicated there. In principle, one could adapt those procedures to
deviations from the C- and the F-surfaces, but the details would be more
involved. In order to shorten our presentation, we will restrict ourselves
primarily to the true gravitational degrees of freedom, in the lowest order.
We will ignore, in so far as convenient, the geometrical deformations
within the de Sitter universe.
One also knows from [8] the suitability of the extrinsic time represen-

tation, in which the relations (4 .1 ) or (4 . 4) are inverted for the hT-part of
the tensor field cf. (3 .1-3). In particular, pT is taken as the multipli-
cative operator, and then (component-wise)

Such a representation will also prove convenient here.
We now consider a C-surface, where

with

and moreover

To the deviation fields h, p we apply the decomposition (3.8). The
constraints (2.18) are necessarily satisfied in the zeroth order in ~, and for
the first order one finds (note that ~ p = 

Equation (4. 8a) implies that = 0, and that 03A8 is independent of hL
(Cf. [7] [8] [17].) We recall also that the tensor field lzL constitutes an indepen-
dent variable, related. to the change of coordinates. We will therefore
suppose that 0.
Next we consider v(1), to which only hT now contributes. We use (3 . 29),

we set

and we find

Vol. XX, n° 1 - 1974.
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where

In view of (3.14~), (~ = 0, and hence = 0. In the representation (4 . 5),
this means that 03A8 is independent of pT. This latter is an independent variable,
which is related to the deformation of a C-surface, cf. eq. (3 . 21 ). We will
suppose pT = 0.
We recall, in this connection, that the eigenfunctions of 0394 with the eigen-

value R (0)/2 do not contribute to hT, and consequently to likewise not.
This appears to be related to the invariance of the dynamical components
of the metric under conformal transformations, but we forego a detailed
analysis. See [l6] [19], and also eqs. (3.16) and Appendix B.
The equations (4.8) say nothing about the harmonic parts. We will

suppose that

This of course corresponds to keeping C fixed.
We have now reduced the problem to the case

These components, i. e. the dynamical ones, are restricted by the Hamil-
tonian constraint in the second order. It is easy to see what one will get.
Second order quantities will give a term like the one in (4.9b), i. e. propor-
tional to 82g(2)T, or to (2’ and there will be quadratic terms in hTT and pTT,
since we suppose the reduction to (4 .11 ). One obtains the form

where the (quadratic) form Q contains derivations. One can get Q explicitly
by following eqs. (3.24-27) and by modifying the covariant derivatives
and the contravariant metric tensor.
The term in (4.12) proportional to (2 is essentially a time derivative,

i. e. eqs. (3.21), (4. 5), and (4.9a) determine a linear operator B such that

For the ground state we set = 0, and the resulting equation (modified
by renormalization terms, cf. [8]) has a solution of the following form,

We do not determine the kernel K.
In the case of deviations from an F-surface, we can be slightly more

explicit. Various formulas of [8] carry over directly. However, there is an
essential difference, in that one no longer has = 0, but rather,
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The constraints = 0 are not affected, so that = 0, and we may
again suppose that 0. The Hamiltonian constraint in the first order

then becomes a functional differential equation for hT, or equivalently
for pT [we presuppose here one lower and one upper index in (3.3~);
- ~ - Z iCv 21:

One can use either the metric or the extrinsic time representation. In each
case the solution is a Gaussian. If we e. g. take (3.22) into account in the
following way,

then

The following problem now arises. One can describe the time evolution
of ’P in terms of the variable function pT, or 1, and also in terms of t. One
would expect that, if t’ is a small constant, then

This however seems to be inconsistent with (4.18), O. The difficulty
is clearly related to the question of domain of ~2. A more careful treatment
of the boundary contributions, if f does not approach zero at infinity,
should clarify the situation.

Let us still consider the second order Hamiltonian. We will set, as

before, 
_

Note that (4. 20a) is consistent with (4.16). One then finds

One solution of this equation is the following,

where

Here can be obtained by reinterpreting (4 . 17-18), i. should be
a second-order quantity, determined by 7r~. As to the equation for 
it can be solved by a Gaussian functional of the form

This functional has a kind of « minimal » t-dependence, coming only from

Vol. XX, n° 1 - 1974.
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the explicit t-dependence of the metric. One may think of as the ground-
state functional on an F-surface.

We close this section by suggesting two problems. First, we pointed out
that the linearized deviations from the Minkowski space yield a usual
free-field theory. We expect therefore that the deviations here described
should be in agreement with a spin-two field in a de Sitter universe. Such
fields are described in [24] [25], and a comparison of these works with ours
might be of interest.
The second problem is the determination of stability of C-surfaces, if

the cosmological constant is assumed in the theory. The stability for the
case T = 0 has been the object of several recent investigations [26].

5. REMARKS ON THE INNER PRODUCT

Let us consider more general solutions to the two Hamiltonian cons-
traints. We should like to try to introduce inner products for the respective
state vectors, as one does in case of the (Schrodinger) wave mechanics.
Such inner products can be given in terms of Gaussian functional integrals,
defined with the help of the ground state functionals.

In a set-up like the present one, it is natural to require invariance of the
inner product under slight deformations of the surface in question. This
type of invariance was discussed (apparently, for the first time) in [7]. The
arguments of this reference are adapted from the Schrodinger theory,
and they carry over directly at least to the case of C-surfaces. We will
include a few details, in view of the novelty of the subject.
We now consider a C-surface as background, we suppose hL = 0, etc.

as before, and we keep the second-order term in the Hamiltonian

constraint. Now, in the extrinsic time representation, = 0 becomes

We will label the two components of at each point by hJT, j = 1, 2,
and to keep things simple, we will ignore the questions of continuity of
each h~ T. We then express the inner product as follows,

We can define the integral by first choosing const. = 1 in eq. (4.14) for the

ground state functional ’h~°~, and then by taking ’ll~°~2 as the weight factor
for the integral, with as a generalized measure, invariant under
translations [27]. (This will yield the vacuum sector of the theory.)

Annales de l’Institut Henri Poincaré - Section A
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In order to examine the deformations r(p), we start with an equation
of continuity implied by (5 .1 ),

Note, first, that we have here a kind of point-wise conservation property,
like the point-wise conservation of the densities of energy and of momentum.

Second, eq. (5.3) remains valid if we make the replacement

It follows that the derivative with respect to :r in (5 . 2),

is equivalent to a sum of derivatives with respect to the h JT, and the latter
vanish in view of the invariance of the ~~h~ T) under translation.

(It appears that these heuristic manipulations could easily be made

rigorous, but we omit further details.)
The same ideas can also be applied to the F-surfaces. One can take ~

as the weight factor for the functional integral, since is a phase factor,
irrelevant here. Furthermore, the conservation law is now determined

by (4 . 21 ), and becomes

where B’ is a linear operator. (Cf. the expressions in [7].) We admitted here
a formal manipulation of the infinite quantities coming from 
Eq uation (5.6) now leads by an analogous argument to

Vol. XX, nO 1 - 1974.
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APPENDIX A

SOME CONNECTIONS TO THE GEOMETRIC APPROACH
TO EINSTEIN’S EQUATIONS

There appeared recently some thorough studies of the (classical) Einstein equations,
from the point of view of the space of metrics and diffeomorphism groups [22] [23J. We
would like to indicate a few simple connections of the present investigation to this geometric
or global-analysis approach, in view of the current interest in the latter.

Let us first consider changes of topology. The transformations (2.8) leading from the
C-surfaces to the F-surfaces necessarily have singularities. For contrast, in the cited works
the functions are usually assumed to be and the problem of changes in topology does
not arise. A corresponding extension of these works should be of interest.
We next recall that the cosmological constant T in the Einstein equations required a

modification of the Hamiltonian. Thus, following [22], we select a srnooth function of

position N, and write the new total Hamiltonian as

Here M is a compact manifold, to which we associate the space .A of metrics g. The quan-
tity R(g), and Ric (g) below, are the scalar curvature and the Ricci tensor associated with g,
respectively. Finally, T is the kinetic energy associated with the DeWitt metric on ~,
and its form is implied by the expression (2.17~) for v (whose integral gives H).
We find that with reference to the DeWitt metric,

where Hess indicates the double covariant derivative, VV. The calculations are just as
in [22], p. 552. Most, perhaps all, of the discussion of this reference can now be adapted
to the new situation. In particular, Corollary 10. I, which we used with 0 in Sec. 3,
remains valid.

Finally, we should like to give an interpretation of linearized quantum deviations.
The remarks that follow apply to linearized deviations from a classical path quite gene-
rally, and do not depend on the details about ~l.

In general, a curve (g(t), g(t)) can be identified with a curve in the tangent bundle T~.

Suppose that this curve is determined by Einstein’s equation (with T 
= 0 or not, but without

lapse nor shift, i. e. N = 1, Ni = 0). Then along this curve, v(g, g) = 0.

Now, the linearized Hamiltonian operator, to first order in the deviations (g’, g’) from

(g(t), g(t)), can be identified with an element of the bundle 

We write g’ = h, and for g’ we take the functional derivative i-103B4/03B4h. Then the basic equa-
tion of linearized quantum theory is

where a fixed reference point (g(t), g(t)) is assumed. The functional ’ is defined on 
If t varies, one finds a flow on a subset of ~, which induces transformations on subsets

ofT* and of One can see directly that the relation (A.4) is preserved under the

Annales de /’Institut Henri Poincaré - Section A
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flow. Indeed, for some to, the solution to (A. 4) will be a Gaussian, cf. (4.17), with the coeffi-
cients in the exponent given by the components of g(to) and of g(to). As t varies, both v’

and 03A8 will retain the same functional form, with ( g(t), g(t)) replacing the values at fo-
Thus (A. 4) will remain valid.

(We have ignored here special cases, like those treated in the text, where the deviations
had to be examined to the second order.)

Vol. XX, n° 1 - 1974.
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APPENDIX B

GROUP-THEORETIC ASPECTS
OF THE DE SITTER UNIVERSE

We recall the following expression for the curvature tensor of the universe S [11],

We see that this tensor is a covariant constant. Such a situation is characteristic of symmetric
spaces.
The available extensive theory of symmetric spaces presupposes a positive-definite

metric [28]. However, as is emphasized in [29], the equations of Riemannian geometry do
not depend on the signature of the metric. The global questions like that of completeness,
on the other hand, can be answered directly for a specific space like S. We expect therefore
that various conclusions of [28] can be adapted to the present circumstance.
We now take C = 1 in order to avoid irrelevant distractions, and following loc. cit.,

Chapter IX, we express S as a quotient space, .

Then the tangent space at a point of S can be identified with that subspace of the Lie algebra
of S( 1,4), which is spanned by the generators

The first generator yields time-like geodesics, while the last three, space-like. These three
generators also constitute a Lie triple system (toe. cit., p. 189), and thus generate totally
geodesic submanifolds of S. These submanifolds are three-spheres, and the C-surfaces can
be obtained in this way. The F-surfaces, on the other hand, are not totally geodesic sub-
manifolds.

Let us now imbed a C-surface in R4, with center at the origin. We use the spherical
coordinates (q, p) on R4, where q is the distance from the origin, and p, see (3 .17b), deter-
mines an angle. The Laplacian ð on the C-surface, when acting on the scalar functions, is
related to the operator O2 on R4 by

This relation can be used to determine the eigenvalues of A.
The spherical functions on S3 are the elements of the representation matrices of SO(4) [30].

We denote these functions by

(m, l, n integers), and the 03A8 satisfy

Equations (B . 4) and (B . 6) now yield

In particular, since R (0) = - 6 and there are d = 3 dimensions, we see that

This last relation is invariant under a change of scale, " and 0 extends also 0 to other dimensions.

[Cf. eq. 0 (4.9c) and o the subsequent discussion.]
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