
ANNALES DE L’I. H. P., SECTION A

DIETER W. EBNER
On the existence of a geometrical interpretation
of spinors of the various pseudo-euclidean
spaces of dimension 3 and 4 by means of real,
irreducible tensors of rank p

Annales de l’I. H. P., section A, tome 18, no 4 (1973), p. 367-378
<http://www.numdam.org/item?id=AIHPA_1973__18_4_367_0>

© Gauthier-Villars, 1973, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1973__18_4_367_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


367

On the existence of a geometrical interpretation
of spinors of the various pseudo-euclidean spaces
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Section A :

Physique théorique.

ABSTRACT. - A geometrical interpretation of spinors is possible in the
case of the groups SO (R, 3), SO (R, 4) and SO (3, 1)°, in terms of real,
irreducible tensors of the lowest rank p = 3, 6 and 2, respectively,
but not in the cases SO (2, 1)° and SO (2, 2)°. Thus the Minkowski-
space is distinguished from the other 3 or 4 dimensional spaces, by
the fact that is admits a geometrical interpretation of spinors by means
of tensors of the lowest rank p = 2. In this way, we make precise a
conjecture stated in E. Cartan’s, Theory of Spinors, p. 132, and prove
it in this form.

1. INTRODUCTION

From a geometrical point of view spinors are rather abstract quan-
tities, because they belong to the covering group, which has not a simple
geometrical meaning. Therefore we would like to replace spinors in an
invariant way by more concrete quantities, i. e. tensors, which have
an obvious geometrical meaning.
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368 D. W. EBNER

2. DEFINITION OF TENSORS AND SPINORS

We restrict ourselves to the following cases of geometrical invariance
groups (1) :

wherein SO (k, I)° is the 1-component of the (real) pseudo-Euclidean
rotation group 0 (k, I) acting on the (real) pseudo-Euclidean space W
of dimension k -~- l and signature k - I.

is the spinor representation of Go, pri means that the first factor

of G operates identically on V. The elements of V are called " (semi)
spinors of the first kind ".
The connection between tensors and spinors can be illustrated by the

following two diagrams :

Herein 03C00 is the double covering map; GL is the real general linear
group. Tp (W) is the pth component of the tensor algebra of W.

is the pth tensor product of the identical representation T1 == id.

The elements of Tp (W) are called " real tensors of rank p ".

COMMENT 1. - The complex orthogonal group SO (C, n), n &#x3E; 2 has

a twofold universal covering group : Spin (C, n), i. e. the mapping

(1) For the definition of spinors in the general case SO (k, 1)° see e. g. Cart an [1 ],
Atiyah-Bott-Shapiro [2], Chevalley [3]. In the cases of SO (R, 2), SO (1, 1)°
and SO (R, 1) the definition of spinors is rather arbitrary.
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369EXISTENCE OF A GEOMETRICAL INTERPRETATION

Spin (C, n) - SO (C, n) is a double covering. The groups Go
listed above are subgroups of SO (C, n). The corresponding groups G
are given by G = (Go). ~c° is the restriction of 7ró on G.

COMMENT 2. - G is the universal covering group of Go in the cases
SO (R, 3), SO (R, 4), SO (3, 1)°, but the universal covering groups of

SO (2, 1)° and SO (2, 2)° are infinite-fold.

COMMENT 3. - is the simplest non-trivial representation of G.

3. THE CONCEPT OF GEOMETRICAL INTERPRETATION
OF SPINORS

We look for (in general non linear) mappings co : V 2014~ Tp (W), called
" geometrical interpretations (GI) of spinors by means of real, irredu-
cible tensors of rank p " with the following four properties : .

(GI 1) cp is continuous;
is G-invariant, i. e. the diagram (2) commutes, 

(GI 3) c~-1 (T (v)) == I v, - v ~, E V ;

(G I 4) where T’ is an irreducible,
G-invariant linear subspace of Tp (W).
Remark. - Because of (GI 2) and no (1) = 7ro (- 1) = 1 (= neutral

element of any group) it follows cp (v) = co (- v). Therefore

So, since (p cannot be injective, (G I 3) is the most we can require.

4. CARTAN-PENROSE’S FLAG AS A SPECIAL EXAMPLE

In the case Go = SO (3, 1)° = 1-component of the Lorentz group,
E. Cartan ([1], p. 131) has given explicitly such a o : V - Tp (W)
with p = 2, see formula (7 c). In the physical literature (c f. R. Penrose,
[4], p. 151) this cp (v) E T2 (W) is called the " flag " corresponding to
the spinor v ~ V. In this case W is the Minkowski space and 03C6 (v)
is, geometrically, a real null-plane tangent to the null cone of the
Minkowski space. The tangent line is called the " flag-pole ". . T’ satis-

fying (GI4) is the space of the skew symmetric second rank tensors.

Remark. - This T’ is irreducible, but not absolutely irreducible;
i. e. the complexification T’* of T’ is not irreducible.
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370 D. W. EBNER

5. THEOREM ON THE EXISTENCE
OF A GEOMETRICAL INTERPRETATION OF SPINORS

Concerning the other cases SO (R, 3), SO (R, 1), SO (2, 1)°, SO (2, 2)°,
E. Cartan ([1], p. 132) has stated : 

.

" An interpretation of this sort in terms of a real image is possible
only in the space of special relativity, but not in real Euclidean four-
dimensional space ".

In contrast to this we state the following
THEOREM 5.1. - The lowest p, for which a (P : satis-

fying (GI 1), (GI 2), (GI 3), (GI 4), exists, is

SO (R, 3) SO (R, 4) SO (3, 1)°

respectively, whereas in the cases SO (2, 1)° and SO (2, 2)° no such a

cp : V - Tp (W) exists.

Remark 1. - Admitting complex tensors E. Cartan ([1], p. 93 and 106)
has proved for all cases SO (k, t)° that there exists a 9 : V - T? (W)
with 2~=A’-)-~or2~+l=A’+/, respectively.
Remark 2. - For the cases SO (2, 1)° and SO (2, 2)9-, there exists a

~.~ VR - T (W), where VR is the space of all real spinors. (VR* = V),
which is here an invariant subspace of V.
The proof of the theorem will be given in the appendix.

6. APPLICATION TO PHYSICS

It is an old question why the world is a 4-dimensional metrical conti-
nuum with signature (- - - --E-). To put light on it, all mathematical
features peculiar to Minkowski space should be investigated.

If it is true, that everything in the world is made of spinors v E V
(c f. R. Penrose, 1971; W. Heisenberg, 1962; C. F. von Weizsacker, 1958),
and if it was an accustomed mode of thought in classical physics to
represent everything by tensors t E Tp (W) of the lowest rank p, then
if f ollows f rom theorem 5 .1 that p = 2 and W is the Minkowski space (~).

(2) We point out, however, that the spin representation is a projective repre-
sentation (as ordinarily required in Quantum Mechanics) while the tensor repre-
sentation is not.
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371EXISTENCE OF A GEOMETRICAL INTERPRETATION

7. EXPLICIT REPRESENTATIONS
OF SPINORS v E v BY REAL,

IRREDUCIBLE TENSORS t == ? (v) OF RANK p

Let us choose the covering map 03C00 in such a way that the fundamental
formulae connecting vectors x with spinors X of the second rank are,
in case of (» :

(a) SO (R, 3) :

( b) S O (R, 4) :

wherein the first factor of G = SU2 X SUz acts on the unprimed indices A
and the second factor of G acts on the primed indices B’ and

wherein G = SL (C, 2) acts on the unprimed indices identically, and it
acts on the dotted indices by the complex-conjugate transformation.
~i are the Pauli matrices.

Under these assumptions the tensor t = 9 (v) of rank p corresponding
to the spinor v E V can be chosen as follows (~) :

(a) SO (R, 3), p = 3 :

where

with given in [8 C (a)] and

(3) The indices run as follows : A, B, C, ... = 1, 2; i, k, ... = 1, 2, 3; ~., v, ... = 1,
2, 3, 4. Einstein’s sum rule is used.

(1) The following formulae are a particular choice among an infinite set of

possibilities.
(5) The tensor can be visualized e. g. by an orthonormal 3-frame (because its

fix group is trivial, see below). - ~* transforms as VA = with E_58 = 
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372 D. W. EBNER

with the same 03C8ABCDEF as in case (a).

where

with

That these formulae are invariant (GI 2) is obvious. That they are
invertible (GI 3) and that the tensor t is real and irreducible (GI 4) is
a consequence of the proof given in the appendix.

8. APPENDIX : PROOF OF THE THEOREM 5.1

A. General idea of the proof

Suppose to = cp (vo), vo E v, to E T’. Then by (GI 2) (invariance), 9 (v)
is defined for all v E V belonging to the same orbit as vo : 9 (gvo) == 03C00 (g) . 

This definition is unique if FG (vo) c FG (to) where FG (vo) and FG (to)
are fix groups of vo and to, respectively :

If cp : V --~ T’ would be injective, we would have : FG (v~) ~ FG 
But q; satisfies (GI 3) and therefore

In both cases SO (R, 3) and SO (R, 4), (1) is also a sufficient condition
for the existence of q, because the orbits of V ~ C2 are characterized by
a real number }" 0 ~ a  oo, where a, = + ~2 vi. Therefore, if

we choose an arbitrary continuous, strictly monotonic function f : R --~- R
with f(0) = 0, there is just one 9 : V - T’ given by o (~ vo) = /’(7).
XU satisfying (GI 1), (GI 2), (GI 3), (GI 4).

B. Two lemmas

LEMMA 1. - All irreducible, real representations o f the groups SO (R, 3),
SO (2, 1)°, SO (R, 4), SO (2, 2)° are absolutely irreducible i. e. their

complexifications are also irreducible.
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373EXISTENCE OF A GEOMETRICAL INTERPRETATION

Remark. - For the group SO (3, 1)°, the lemma is not true.

Proof. - According to Freudenthal [5], Theorem 55 . 8, all real irre-

ducible representations of a Lie group are absolutely irreducible, if and
only if all irreducible complex representations of this group are virtually
real. A representation is called virtually real if it is equivalent to
a real representation. All irreducible representations of SL (R, 2) and
of SL (R, 2) X SL (R, 2) are virtually real. Therefore the lemma is true

for SO (2, 1)° and for SO (2, 2)B
According to Freudenthal [5], Theorem 57.3, under certain assump-

tions, an irreducible complex representation is virtually real if and only
if ~ defined in 57.2.6 has the value + 1 (e is a sign, i. e. s = ::i:: 1).
The assumptions 57.2 of this Theorem are fulfilled for the groups

SO (R, 3), SO (R, 4), SU (2), SU (2) X SU (2), because all their irredu-

cible representations are-self-contravalent (’’).
If the tensor product of two irreducible representations is again

irreducible, e behaves multiplicatively.
For SO (R, 3), the lemma is well known. Therefore, for all irredu-

cible representations of SO (R, 3), e == + 1. The other representations
of SU (2) (= spin representations) are not absolutely irreducible.

Therefore for them, s = - 1. All irreducible representations of SO (R, 4)
are tensor products of two representations of SO (R, 3) [then :
s == (+ 1) . (-~- 1)] or of two spin representations of SU (2) [then :
s = (- 1) (- 1)]. Hence in any case, ~ = + 1. Therefore the lemma

holds true also for SO (R, 4).
LEMMA 2. - Let D be a complex irreducible representation space of

the group G. Let A and B be real, G-invariant, irreducible representation
spaces o f G, embedded in D :

Then it follows A cx B i. e. the two representation spaces A and Bare

real equivalent.

Proof. - We have dim A = dim B. Let ei : i = 1, ..., n be a base
of A and e~; i = 1, ..., n be a base of B. Both are also a base of D.
In these bases, let the representation be M (g) and M’ (g) = PM (g) P-1,
ge G, respectively, where M (g) and M’ (g) are real n . n-matrices.

(s) A representation D (g) is called self-contravalent if it is equivalent to the

contragradient representation D (g)-1 tr, For SU (2), and therefore for SO (R, 3),
this is well known. For SU (2) X SU (2), and therefore for SO (R, 4), it can be

verified immediately, because every irreducible representation of SU (2) X SU (2)
is a tensor product of two irreducible representations of SU (2).
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Let P = Q + i S, where Q and S are real matrices. Then we calculate :
(S-l Q) M = M (S-l Q). Because M (g) is absolutely irreducible, by Schur’s
lemma it follows : S-1 Q = a, 1. Therefore D is a complex multiple
of the real matrix Q, therefore M’ (g) = QM (g) i. e. the represen-
tation spaces A and B are real equivalent.

C. Proof of the theorem

(a) Case SO (R, 3) :
We define

as the fix groups of t and respectively.
By (GI2), (GI3), follows that

is a necessary condition for the existence of the mapping c~. We have

where 1 is the neutral element of SO (R, 3). But FG’ (0) = SO (R, 3).
We have to investigate all invariant, irreducible, linear subspaces T’

= 0, 1, 2 and we have to show that for no t E T’, FG (t) == { 1 }.
Equivalent T’ must be taken only once. Therefore the elements

of T’ are the scalars [with fix group SO (R, 3)], the vector [i. e.

T’ = Ti (W) = W with fix group SO (R, 2)], or the traceless symmetric
tensors of the second rank, i. e. T’ C T2 (W) = W (g) W, the components
of which we denote by iii = == 1, 2, 3. ti~ can be reduced to

diagonal from by application of an element dE SO (R, 3) : 6fJ==f,
where t = t’ = (t’ij) with t’ij == 0 for i  j and FG (t) ~ FG (t’).
Furthermore do . t’ - t’ with

is valid. Therefore FG (t’) # 1 j and FG (t) # 1 ~ Thus we have

proved : p &#x3E; 2.

Now, we prove p = 3 :
For to E T3 (W) = W 0 vV 0 W with the non-vanishing components
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375EXISTENCE OF A GEOMETRICAL INTERPRETATION

totally symmetric and traceless (i. e. irreducible) and we have

FG (to) == { 1}. This can be shown in the following way : Let us

define

then we have po (d . t) = d (po (t)), V d e SO (R, 3), t e T:3 (W) (invariance
ofpo).

So we have : FG (t) c FG (po (t)). Let us look at y = e GL (W)
as an element of GL (W). Then all eigenvalues of y are different.
Therefore the eigendirections of y are uniquely determined. Therefore
FG (po (to» can consist of four elements only : identity and three rotations
by the angle 7r with the three eigen directions as axes. But the rota-
tions will not to let fiw. Therefore FG (to) = 1 !.

(b) Case SO (R, 4) :
In this case G = SU (2) x SU (2) acts on V : ~ V byg v = pr2 (g) 5,

c

veV, g e G. Then we have also a natural action of G on Tp (V (~) V~,
on Sm (V) B8) Sn (V), etc. Sill (V) means the mth component of the sym-
metric algebra of V. It is well known (see e. g. E. Cartan [ 1], p. 129)
that there exists a continuous, bijective, linear, G-invariant mapping,
given by (7 b), :

which is the spinor representation of complex vectors.
The image H = XO (Ti (W)) is an R-linear, G-invariant subspace of

V 0 V. G acts, canonically, on T, (H). Therefore /o induces a conti-

nuous, bijective, linear, G-invariant mapping

which is the representation of real tensors by spinors of double rank.
We have to show that in the cases p = 0, 1, 2, 3, 4, 5, there exists no
: : V - Tp (W). Let us define :

and

as the fix groups of h and v, respectively. We find
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Then, by (1), we have as a necessary condition for the existence of

cp : FG’ (v) = FG (x (q (v)), ’t/ v E V. Let T’ be any G-invariant,
G-irreducible linear subspace of any such Tp (W) and define H’ = / (T’)
for which

is valid. Then we have to show, that there exists no h F H’ with

By lemma 1, H’* is irreducible. Therefore for suitable rn, n, holds :

because the right hand side of (5) is a complete system of representants
of the equivalence classes of all irreducible, complex representation spaces
of G. If there is an h e H’ fulfilling (4), there must be n = 0 in (5)
and it follows : m ~ 5 and m = even.

So, we have either :

and it remains to show that there exist no h e H’ with

It well known that Sz (V) ~ Ti (R3) [cr. (7 a)], where SU (2) acts
SU’ (2)

on T~ (R3) by means of the covering mapping SU (2) - SO (R, 3).
In the same way, we have S; (S2 (R3) - R)* where " S2 (R3) - R) "
mean the traceless symmetric second rank tensors. By lemma 2 it
follows that we have either

In case (a), we have already shown that there exists no (R:)
(p = 1, 2) fulfilling (6).
Now, we have to show the existence of a cp : v -~- Ts (W). ime have

by (2) : Te (W) ~ To (H) contains a G-invariant, irreducible, R-linear

subspace H’ with
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377EXISTENCE OF A GEOMETRICAL INTERPRETATION

So, by lemma 2, we have :

and we know from the case SO (R, 3) that there exists a h = ho E H’
fulfilling (6) and therefore fulfilling (4).

(c) Case SO (3, 1)° :
The proof is already given by E. Cartan [ 1] (cf. chap. 4).
(d) Case SO (2, 1)° :
Here is G = SL (R, 2). Let T’ c Tp (W), 0 L p  oo, be any G-inva-

riant, R-linear, irreducible subspace of Tp (W) :

is a G-invariant subset of V. In the representation theory of SL (R, 2),
it is well known that

because the right hand side of (7) is for n = 0, 1, 2, ... a complete
system of representants of real, irreducible, G-invariant representation
spaces of G. Because T’ is also a representation space of Go, n must
be even. Suppose that (p : V - Sn (VR) is a geometrical representation,
the fix groups of v and q (v) must be identical or more precisely :

Using coordinates for v = vo = 0 1 the fix group of the left hand

side consists of the set of matrices :

Denote the components of ~ = (p (vo) E Sn (VR) by A~ = 1, 2
where is totally symmetric in its indices. If ~ is fix under all
transformations (9), it follows that = 0, exept that ~~1-1 ~ 0.

R. The fix group of À E C is the same as the fix group
of vo. Therefore cp (2- vo) = f (À) ~ with f (À) E R. It follows that

f : C - R would be injective and continuous. But such an f does not
exist.

(e) Case SO (2, 2) ° :
In this case G = SL (R, 2) x SL (R, 2) and T’ ~ Sn (VR) Q9 S"2 (VR)

because the right hand side is for n, m = 0, 2,1, ... a complete system
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of representants of real, irreducible, G-invariant representation spaces
of G [G acts on Sn (VR) by pr1, and on S,n (VR) by pr2]. The condition
for the fix groups is formally the same as (8).

The fix group = 11) is (R, 2). It follows :

m = 0. Because T’ is a representation space of Go, n is even and the
problem is reduced to the case (d) of SO (2, 1)’.
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