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Charged dust spheres in general relativity

P. A. VICKERS

Queen Elizabeth College, London, W. 8

Ann. Inst. Henri 

Vol. XVIII, n° 2, 1973,
Section A :

Physique théorique.

RÉsUMÉ. - Les equations d’Einstein-Maxwell sont etudiees afin d’en
deduire une solution pour une distribution non-statique, en symetrie
spherique, de poussière chargee (a conductivite nulle), et la solution

generale est presentee sous une formulation implicite. Les solutions
sont raccordees avec la solution de Reissner-Nordstrom, et les equations
gouvernant l’effondrement sont examinees. On utilise alors les resultats
afin de deduire une solution interieure generale pour une sphere statique
de poussière chargée, en coordonnees de courbure.

1. INTRODUCTION

In 1968, A. Hamoui [1] presented two particular new solutions of
the Einstein-Maxwell equations corresponding to a non-static spheri-
cally symmetric distribution of charged dust. In this paper the general
solution is presented in an implicit form.

In section 2 Maxwell’s equations are used to obtain an expression for
the ratio of charge to mass densities. This ratio is found to be a func-
tion of the comoving coordinate r only. The ratio is then used in section 3
to express the metric coefficients in terms of the curvature distance R
and three arbitrary functions of r. The equation of motion of matter
is obtained and is shown to reduce to Tolman’s equation [2] in the
absence of charge. In section 4 the solutions are matched over a boundary
to the Reissner-Nordstrom solution. The mass defect of a charged
sphere is shown to be given by an arbitrary function of r as in the case
of pure dust.
The analysis of the external gravitational field of a charged spherical

body by J. Graves and D. Brill [3] showed that the Reissner-Nordstrom
metric has an oscillatory character. The collapse of uniformly charged
spheres has been investigated by V. de la Cruz and W. Israel [4] and
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138 P. A. VICKERS

by I. Novikov [5]. They found that after each shell of matter crossed
its inner horizon it can avoid a central singularity by re-expanding into
a region of space-time different from the one in which the collapse origi-
nated. In section 5, I examine the general solution to find the condi-
tions on the parameters that will allow a gravitational bounce for a
particular comoving layer. 

&#x3E;

Finally, in section 6, I use the results to obtain a general static pressure-
free interior solution (in curvature coordinates) for a Reissner-Nordstrom

particle. The solution includes arbitrary 2014 ratio although only solu-
tions with e2 == m2 are free of singularities.

2. THE CHARGE TO MASS DENSITY RATIO

In comoving coordinates the most general form for a non-static line
element representing a spherically symmetric distribution of matter is

where a, y and R are functions only of t and of the comoving coordinate r.
It will be assumed that R (r, t) &#x3E; 0 for all r ~ 0.

The four velocity of matter is the unit timelike vector

The energy-momentum tensor for charged dust is

where p is the energy density and the Maxwell tensor Eab is defined
in terms of the skew tensor F ab by

while Fab satisfies the equations (1) :

and

(1) Commas and semi-colons denote partial and covariant differentiation, while
dots and dashes denote partial differentiation with respect to t and r respectively.
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139CHARGED DUST SPHERES IN GENERAL RELATIVITY

where Jk = s uk is the convection current, s being the density of electric
charge. In the case of spherical symmetry the only non-zero compo-
nent of is F 1. == F 14 (r, i).

k = 1 in equation (2.6) gives

where E is an arbitrary function of r, while k = 4 implies that

which expresses the conservation of charge inside a sphere comoving
with the fluid.
The conservation of the energy-momentum tensor and the relation-

ship = Fbc Jr. give [6] :

and

Equation (2.10) with 6=1 gives

and (2.9) gives, on integration,

M’ being an arbitrary function of r. M is then, by definition, the inva-
riant mass contained within coordinate radius r. We now have by (2.8)
and (2.12) :

so that the ratio of charge to mass densities is a function of r only.

3. THE FIELD EQUATIONS

The non-trivial field equations for the metric (2.1) are :

ANNALES DE L’INSTITUT HENRI POINCARE



140 P. A. VICKERS

The last equation may be rewritten in the form

Now, using (2.11) and (2.13), this field equation becomes

which may be integrated to give

where r (r) is an arbitrary function of integration. y is then obtained
from (3.7), (2.11) and (2.13) :

where

Equation (3.1) can now be integrated to give

where F = F (r) is again a constant of integration. This equation reduces
to Tolman’s equation when no electric forces are present (E = 0) [2].

The density is given by (3.3) :
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An alternative expression for p may be obtained from (2.12) and (3.7) :

Comparison of these equations shows that the five functions of
r (F, K, E, r, M) are related by

as well as (2.13). Thus the solutions depend on only three independent
arbitrary functions of r.
The remaining field equation (3.2) is identically satisfied. In fact

it can be shown in general that, given spherical symmetry and comoving
coordinates, the T~ equation will be automatically satisfied as a conse-
quence of the Bianchi identities if the Ti, T~ and T~ equations are.

The cosmological constant A could have been included in the analysis.

This would only have changed (3 . 10) - the term + would have

to be added to the right hand side of this equation.

4. THE BOUNDARY CONDITIONS

If we consider a charged dust sphere of radius r = rb = const. then
the exterior field is given by the Reissner-Nordstrom metric

with

where m and e are the gravitational mass and total charge of the sphere.
I use Darmois’ conditions [7] at the boundary B which require that

the first and second fundamental forms should be the same whether
obtained from the interior or exterior metrics. Equivalence of the g22’S
on B imply that on B r = R (rb, t) while the give, on B,

The equivalence of the second fundamental forms on B then gives the
equation of motion of the boundary :
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where all functions are calculated at r = rb. With the help of (3.7),
this can be rewritten as

Using (3.10) this implies that

and

Since the gravitational mass reduces to F(rb) in the cases where the dust
is uncharged (K == 0) and when the total electric charge is zero, it seems
reasonable to assume that F is nonnegative as is done in section 5.

We are now in a position to interpret equation (3.13) - it gives the
relationship between the active gravitational mass m and the invariant
mass M :

and only in the case where r = 1 can the two be equal. This expres-
sion also holds for uncharged dust where r determines not only the
mass defect but also the total energy of the system and the geometry
of 3-spaces t = const. [8]. These interpretations are not possible here.

It can be shown that regularity [9] at the centre r = R (0, t) = 0

requires that F (0) = E (0) = 0, r2 (0) = 1 and K (0) = const.

5. GRAVITATIONAL COLLAPSE

In this section the solutions are examined to find the conditions

necessary for a particular comoving particle (with to avoid a

central singularity. The differential operator e ~ is intro-

duced so that Dt R is then the proper velocity of the fluid [10]. The

equation of motion for the interior (3.10) can now be rewritten as

where f = f2 - 1. When the proper velocity in zero (5.1) will then

give two positive finite roots if and only if

The comoving particle will then oscillate between these two values of
the curvature distance. The only circumstances other than (5.2)
under which the collapse of a comoving particle will not result in a singu-
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143CHARGED DUST SPHERES IN GENERAL RELATIVITY

larity at R = 0 is when either

or

These particles, falling inward, come to rest at a certain minimum radius
and then rebound out to infinity.

Cross-sections 6 = const., 03C6 = const. of the extension
of the Reissner-Nordstrom metric in the case 0  e2  m2.

Heavy lines represent irremovable singularities.
- - - - and -.-.- represent the history of oscillating
and " bouncing " comoving particles respectively.

It is interesting to note that I. Novikov [5] has shown that the matter
density of any uncharged layers (K = 0) will become infinite (R’ = 0)
during the collapse due to the crossing of dust particles.

It is well known, however, that if m2 an external observer sees
the surface of the sphere collapse asymptotically on to the gravitational
radius r+ = m + (m2 - e~)1~’, thus an external observer never sees

the re-expanding sphere. The paradox is resolved by the extension
of the Reissner-Nordstrom manifold given by J. Graves and D. Brill [3]
for e2  m2 and by Carter [11] for e2 = m2. After crossing its inner
horizon, r - = m - (m2 - e~)1~’, the sphere bounces and re-expands
into another asymptotically flat region of space-time different from the
one in which the collapse originated. This can be shown using (4.5)
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if e2 L m2. It then follows from this equation that the comoving par-
ticle (5 . 2) oscillates between a maximum greater than r+ and a minimum
smaller than 7- while the minimum radius attained by the particles (5 . 2)
(5.4) is less than r- (see fig.). Normal oscillations are possible if e2 &#x3E; m2

for then the metric (4.1) can be used throughout the whole of the
exterior space time.

6. STATIC SOLUTIONS

If we consider the case in which R is a function of r only, the metric
will then be static. R = R = 0 implies that the arbitrary functions
of r must further satisfy the equation F2 = f (K2 - 1) E2. However,

regularity now requires that F == 0 and it then follows from R = R = 0

that K2 = r2 = 1. We now have, from (4.6) and (4 . 7), that e m = ± 1
as it should be for a static solution free of singularities ([12], [13]).
A change of coordinates (R = r) can now be made so that the singu-

larity-free interior solution becomes, from (3.7) and (3.9),

where

m (r) being an arbitrary function of r such that the Reissner-Nordstrom
parameter is m (rb). The density of matter is given by

ACKNOWLEDGEMENTS

I would like to thank Professor W. B. Bonnor for helpful discussion,
and the Science Research Council for financial support.

[1] A. HAMOUI, Ann. Inst. H. Poincaré, vol. 10, 1969, p. 195.

[2] R. C. TOLMAN, Proc. Nat. Acad. Sci. (U. S. A.), vol. 20, 1934, p. 3.

[3] J. C. GRAVES and D. R. BRILL, Phys. Rev., vol. 120, 1960, p. 1507.
[4] V. DE LA CRUZ and W. ISRAËL, Nuovo Cimento, vol. 51 A, No. 3, 1967, p. 744.
[5] I. D. NOVIKOV, Sov. Astro.-A. J., vol. 10, 1967, p. 731.

VOLUME A-XVIII - 1973 2014 ? 2



145CHARGED DUST SPHERES IN GENERAL RELATIVITY

[6] J. L. SYNGE, Relativity : The General Theory, North Holland Publishing Co.,
Amsterdam, 1960.

[7] G. DARMOIS, Les équations de la gravitation einsteinienne (Memerial des sciences
mathématiques, XXV, Paris, 1927, p. 30).

[8] H. BONDI, Mond. Not. R. Astro. Soc., vol. 107, 1947, p. 410.
[9] H. NARIAI, Prog. Th. Phys., vol. 35, No. 5, 1966, p. 786.

[10] A. H. TAUB, Ann. Inst. H. Poincaré, vol. 9, 1968, p. 153.
[11] B. GARTER, Phys. Lett., vol. 21, 1966, p. 423.
[12] R. M. MISRA, Phys. Rev., D, vol. 2, No. 10, 1970, p. 2125.
[13] U. K. DE and A. K. RAYCHAUDURI, Proc. Roy. Soc. (London), vol. A 303, 1968,

p. 97.

(Manuscrit reçu le 11 décembre 1972.)

ANNALES DE L’INSTITUT HENRI POINCARÉ


