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On the so-called " Palatini method "
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Section A :

Physique théorique

ABSTRACT. - A review and discussion is given of what has been called
the " Palatini method of variation " of the action intégral in several
covariant theories of gravitation. There are at least two versions of
this " method " : : One of them gives metric affinities in all cases, i. e.

the (strong) principle of equivalence; the other one leads to deviations
in some cases, among the effects of which there are causal anomalies.
It is shown how, with spinorial affinities treated in the second way,
gravity and electromagnetism can be unified.

1. INTRODUCTION

In Einstein’s original version of the theory of gravitation [ 1] he gave
a variational principle for the field equations, in which the Lagrange
density

is a function of the metric and its first and second derivatives (" purely
metric theory ") : the affinities fimn from which the Ricci tensor

(*) Supported by grant from the Osterreichisches Bundesministerium für Wissens-
chaft und Forschung.

(**) Supported by the « Fonds zur Fôrderung der wissenschaftlichen Forschung
in Osterreich ", Nr. 1534.
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is constructed were considered to be the Christoffel symbols,

The actual variation with respect to the metric was carried out in
detail by Palatini [2] according to the scheme

where 6 { mj n } is calculated explicitly from the Christoffel relation (3).
Later so-called " mixed affine-metric 

" theories were developed ([3], [4])
in which were considered as independent field variables in some
suitable Lagrange density. It was noted that if (1) is treated in this

way, the equations

are équivalent to the system (3)-(4). In most of the literature (’ ) this
observation is ascribed to Palatini, quoting [2], where it cannot be found;
after this remark we shall, however, continue to call the separate inde-

pendant variation of g1~ and thé ’’ Palatini method ", until we are
forced to make the distinctions which are part of the purpose of this
article.

When an electromagnetic Lagrangian is added to (1), both kinds of
variations still remain equivalent, if the affine connexion is assumed

to be free of torsion [6]. We shall assume vanishing torsion (" symmetric
amnities ") throughout this paper.

The Palatini method is considered to be more natural by Weyl, as
he sees no reason to regard the relation between the affine and metric
properties of the space as given. Besides, it has the following advantages :

(i) It allows for generalizations of General Relativity, since

considering fjmn to be independent of gik one can drop the symmetry
condition on In fact, the method was used by Einstein in
an attempt to unify gravitation and electromagnetism by conside-
ring both to be non-symmetric [3].

(ii) It allows construction of theories invariant under the " Weyl
gauge 

" 

[7],

(1) A notable exception is Pauli’s book [5].
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(üi) If are considered to be independent fields, the factor

ordering problem, which occurs in attempts to quantize the theory,
is somewhat simpler. Thus the Palatini method is more suitable

for quantization.

Before one can use then Palatini method ", however, the question
has to be settled whether it is at all applicable in cases where the gravi-
tational field is coupled to other fields other than the electromagnetic
or scalar field, e. g., to a vector meson field. Weyl [6] has shown as

early as 1948 that in the case of coupled gravitational and electron
fields the ordinary procedure of varying gik alone, with (3) imposed
(henceforth called " g-variation ") is no more équivalent to an independent
variation of metric and affinity (henceforth called " P-variation ").
His interpretation was that : " ... by the influence of matter a slight
disaccordance between amne connection and metric (affine connection)
is created ". Then he proposed a change in the Lagrangian leading to
coincidence again. We point out, however that this coïncidence, achieved
through the introduction of the Weyl term in the Lagrangian, is merely
a formal one, as the equation determining the affinity is not changed
by this term.
The present work is a study of the use of the Palatini method in cases

where the gravitational field is coupled to other fields. Section 2 gives
a brief review which analyzes what may be meant by the Palatini method.
Two possible versions are given : one has to distinguish between a 

" Pala-

tini principle " (PP) and the " formal Palatini method of variation "
(FP). The latter is simply a transformation of variables (a kind of

Legendre transformation) and thus always equivalent to g-variation,
although it may sometimes have some advantages. The PP, on the

contrary, is in general not equivalent to g-variation, as shown in Section 3.
Therefore it must lead to theories with new features (which is the reason
for calling it a " principle "). If such a principle is adopted, one must
study its consequences.
One of thèse consequences is, as we shall show in Section 4, the occurrence

of causal anomalies. This will be illustrated by the simplest non-trivial
example, the coupling of a vector field. On the basis of this effect one

should reject the PP, although the numerical amounts for this and
other deviations of the theories derived from a PP will be rather

small.

The special cases in which PP and g-variation are equivalent are
considered in Section 5. In particular, it is shown there that this is

the case for all free compensation fields, in Utiyama’s sense [8].
Finally, an application of the PP using spinors is given in which the

spinorial affinities may be related to the electromagnetic field, thus

leading to a unification of electromagnetism and gravity.
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2. THE DIFFERENT VERSIONS

OF THE PALATINI METHOD

It has often been pointed out ([9], [10], [11]) that the g-variation and
" Palatini method " are analogous to the two procedures employed
in deriving the electromagnetic field equations from a Lagrangian by
either considering the 4-potential Ai as the only independent variable,
while the field tensor is defined by

(7) Fil = 2 

or alternatively by considering Ai and Fmn as independent, in which
case (7) follows from the variation of the Lagrangian. Many examples
of such a twofold approach can be found in the literature; two of them
are indicated in the Table.

In tact, as pointed out by de Witt [12], neither the number of variables
nor the f orm of the Lagrangian is basically relevant for the development
of a given system. But these considerations together with a remark
of Wheeler [13], that this second kind of variation is simply a transition
from a Lagrange to Hamilton kind of formalism shows that there is an
important difference between all these cases (e. g. of the Table) and the
" Palatini method " described so far : for the latter the f orm of the

Lagrangian was not changed. One could make this distinction more

obvious by treating the pure gravitational case exactly in this Hamil-
tonian way, which in the point-mechanical case means to vary not the
original Lagrangian L (q, g) but t.he Lagrangian

(H being the Hamiltonian) with respect to q, p to obtain the equations
of motion in the canonical f orm. The transition from variables q to q,
p and from L to L gives the transition from the left to the right column

VOLUME A-XVIII - 1973 - NO 2
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in the Table. If one starts with the well-known first order form of

the Lagrangian for gravity,

with given by (3), the procedure just described must of course
yield a system of equations equivalent to Einstein’s. If one, however,
treated (8) by the " Palatini method ", varying gik and in (8)
directly, one would not only get disagreement with Einstein’s equations
but also get non-covariant equations. This is so, because the difference

between (8) - which is not a scalar density - and (1) is a pure divergence
only if (3) is assumed from the beginning, but not if r j mn are independent.
These considérations lead us towards making a distinction between

two procedures which seem to have been called sometimes " Palatini
method of variation " : :

(i) The " formal Palatini method " is a mathematical procedure to
treat a given theory by introducing new independent fields in such
a way as to lower the order of the field equations and to construct
a Lagrangian for the new form of the field equations. It proceeds
in the same way as the transition from a Lagrangian to a Hamiltonian
f ormali sm.

(ii) The " Palatini Principle 
" is the following prescription to construct

a Lagrangian and to obtain the field equations which define a theory
of gravitation and its interaction with matter fields :

(1) form the Riemann and Ricci tensor for an arbitrary (torsionfree,
as we shall assume) affine connection and contract with an arbitrary
metric to obtain the Lagrange density of the free gravitational
field;

(2) from the Lagrangian of the (interacting) matter fields in flat

space obtain the Lagrangian describing also their gravitational
interaction by replacing the flat metric by and ordinary deri-
vatives by covariant ones with respect to the affine connection

(as index transport and covariant derivation do not commute any
more, this prescription is not quite unique); 

,

(3) Vary the sum of both Lagrangians with respect to matter field
variables, metric and affinities separately to obtain the field equa-
tions. The total Lagrangian (density) must be a scalar density
or differ from a scalar density only by a pure divergence expression
(the latter must be a divergence expression without assuming any
relation between all field quantities, i. e. matter variables, metric,
affinity).

In the following, we want to investigate some consequences of theories
constructed according to the PP. We already mentioned that it is
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equivalent to ordinary General Relativity for pure gravitation. As

the prescription (2) deviates from the ordinary (metric) " substitution
principle 

" 

or " minimal coupling 
" 

[14] which guarantees that the weak
principle of equivalence is satisfied, one could think of a violation of
the latter. However, since in equivalence principle considerations
one aiways deals with " test fields ", the deviations from the metric

theory must be neglected in this respect. Other observable effects will
be very (i. e. unmeasurably, under normal circumstances) small. There-

fore we will, after exhibiting an example where deviations should occur,
turn to a more basic matter : causal behavior.

3. PP TREATMENT OF A VECTOR FIELD

One of the simplest cases where the PP leads to a theory which differs
from pure metric theory is the case of a vector field. For simplicity
we take it to be massless and do not project out all spins except one,
but start simply with a Lagrangian of the form Ar,s Ar,s. Its interaction

with gravity is described by the Lagrangian (the coupling constant is
absorbed into A,. or has been set = 1) :

with R = g~~ Rib given by (2), and the covariant derivative

also formed with the affinities The g-variation procedure would
be to put = { mj n J and to vary Al, which gives

where; indicates metric covariant derivatives. But now let us apply
the PP ! The algebra becomes a little more complicated, because

index transport by gik and covariant derivation are no more commuting
opérations. (For this reason we shall defer computational details to

the appendix.) Hence (9) is no more a unique generalization of its

special-relativistic form ; but let us just consider (9). Varying A,., fimn

gives

VOLUME A-XVIII - 1973 - N° 2
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where Rik, R are constructed from the r’ s. Of course, thèse equations
could be rewritten in tensor form, if one introduces the différence tensor

ri - r mj n . This difference tensor must be calculated from (15),
whi ch is done in the appendix; the result is complicated enough :

with the abbreviations

It is obvious now that equation (14) with (16) does not reduce to
equation (12), so that g-variation and PP are not equivalent in this
case, as we wanted to demonstrate. We refrain from the actual insertion
of (16) for obvious reasons.

4. PROPAGATION PROPERTIES
OF THE VECTOR FIELD

As we stated in the Introduction, if one wants to take the PP seriously,
one should be able to apply it for any coupled system and obtain reasonable
results. The highly nonlinear equation that was obtained for the field
A in Section 3 does not look too unreasonable, if one takes into account
the weakness of the coupling; indeed, it reduces to (12) if terms quadratic
in A are neglected. But there is one effect of the nonlinear terms which
is more a matter of principle : they affect the propagation properties
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of signals, i. e. small discontinuities of A (or rather its second derivatives)
travelling on a given back-ground gih Aj.
To investigate this, we have to determine the condition for characte-

ristic hypersurfaces for the field equations of A. According to standard
methods, we first write down the terms in (14) which contain second
derivatives. With the help of (16), we find (after extracting a factor
2-a which in general will be # 0) :

where P, Q, S, T are (rational) functions of a = Ai Aj given in the
Appendix. The characteristic hypersurfaces M (x) = const. which belong
to the field equation and some background gib Ai have therefore to

satisfy the following first order partial differential equation

We evaluate the déterminant as the product of the four eigenvalues
1.1) ~2, ~:~, ~4 of M~. First we observe that any vector orthogonal to Ak

is an eigenvector of Mik with eigenvalue 03C9j wi + P (Aj 03C9j)2. Since

the vectors orthogonal to M’, in general form a 2-dimensional space,
our eigenvalue is twofold, hence

To find the other eigenvalues we must look for eigenvectors ~,

which are not simultaneously orthogonal to c~~, A~’, i. e. and Ail ~
must not vanish simultaneously. Contracting (21) with Ai we get
two linear homogeneous equations for these two scalar products, if

the explicit expression (19) is used. Putting the 2 X 2 déterminant

of this system equal to zero, we obtain a quadratic equation determining
the other two eigenvalues. Their product is given by the ).-free term
of this equation, i. e.
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(22) is a binary quadratic form of the variables W i wi, (A j Wi)2 and may
be factored as

where P’, P" are hereby defined new functions of A j Aj = a (they could’
even be conjugate-complex).

Collecting these results, we see that the local characteristic cône

)’1 À2 À:3 )’4 = 0 is split into three sheets, given by

On the other hand, the characteristic cone for the gravitational field,.
and also for an additional scalar or electromagnetic field, has the usual
equation (light cone) :

Hence, against a non-vanishing background A~’, we have to expect
several kinds of causal anomalies for the propagation of small disconti-
nuities of A, which depend on the background and on the polarization
of the discontinuity amplitude with respect to background and orientation
of the initial discontinuity surface. There is one harmless, although
interesting, case, in which all three cones (24 a, b, c) are normal-hyper-..
bolic and inside the light cone (24 d) ; here one has to expect (locally,
so that non-linearity plays not much rôle) phenomena like in crystal
optics. In other cases one gets violation of causality or no propagation
at all for some polarizations, etc., depending on the signature (elliptic,
ultra-hyperbolic) of the cones and, in the normal-hyperbolic case, their
position relative to the light cone.

More appropriate than to study all these possibilities in detail it
would be in our opinion to exclude all of them by simply rejecting the PP
as general principle. In cases of connections with torsion (2) this means.
that one should always require the connection to be metric and apply
the PP only with this constraint.

5. ON THE CHOICE OF LAGRANGIANS

From the results of the previous sections as well as from the work
of Weyl on the Einstein-Dirac fields it is seen that in general g-variation
and PP will be inequivalent. One might, of course, object that the

(z) Connections with torsion recently received some interest, in particular by
Trautman and his co-workers [15J.
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Lagrangian of a physical system is not " general ", and that for all

correctly chosen physical Lagrangians one would get equivalence or
at least not nonsensical features. As an example, the requirement for
the vector field to carry pure spin 1 would force us to use the Lagrangian
for the Proca or Maxwell field, where the affinities drop out when written
ocovariantly in flat space, so that g-variation and PP are indeed equivalent
in this case.

However, the correct Lagrangian of the real world has not yet been
found. What one can try is to make general statements about the
types of Lagrangians where one will get equivalence, and where not.
One can classify the Lagrangians which are used in physics according
to the symmetry groups involved; but we do not know all symmetry
groups [16]. For theories with gauge groups one can make a general
statement : for generalized Yang-Mills fields (or compensation fields
in Utiyama’s sense [8]) interacting only with gravitation, PP and g-varia-
tion are équivalent. This is so, because the Yang-Mills Lagrangians
.are (space-time and internal) scalars constructed from the internal
.curvature tensor which does not involve the space-time affinity.
With these general remarks in mind, we turn to a spinorial version

of the PP which was discussed by Jamiolkowski [17]. Here the metric
is defined with the help of the contravariant Pauli matrices

i. e. an object transforming as a contravariant vector under coordinate
transformations and as a contravariant Hermitian density under spinor
transformations (see [17] for all details). Covariant Pauli matrices are

defined by

From these, the real (symmetric) metric tensor is defined as

being the spinor metric. Another object defined from these quantities
is the spin tensor

satisfying

The tensorial and spinorial affinities (x) = fi km (X), (X)
are introduced independently from each other and from the They
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describe how the operator of covariant differentiation, 7/, acts on tensors
and spinors. The tensorial and spinorial curvature tensors are construc-
ted from them in the usual way :

The relation between metric and affine structure is now to be obtained
" dynamically 

" from a variation principle. Jamiolkowski first considered

the Lagrange density

but found that upon variation with respect to r, one does

not obtain enough independent equations to calculate rAn/. Trying
to overcome this difficulty, he introduced an additional antisymmetric,
purely imaginary tensor field for which he added the terms

to the above Lagrangian. From the resulting variational equations one
dérives

and - satisfies the full Maxwell vacuum equations, which enables
one to identify it with the electromagnetic field.

There are now two objections to be made : (a) The system of variational
équations is still not enough to completely determine due to the

assumption that is purely imaginary. The latter, however, is essential
in order to have satisfying Maxwell’s equations. (b) The introduction
of a new field to obtain the relation between already existing fields is
logically unsatisfactory. Enough relations of this kind should exist
in the absence of this field, and it should even be expected that the new
field will alter them in some cases.

These objections and difficulties can be overcome. Instead of 
one simply takes which is constructed from the already existing
structures, and adds instead of (32) an Utiyama type term
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The variations

From (35 a) one concludes

From (36 a) and (35 b) one gets, similar to [17] :

From thèse equations one can conclude, by arguments similar to

corresponding calculations in [18] that can be made purely
imaginary, the quantity

satisfying

and, by (35 c),

(38), (39) show that Fjm can be identified with the electromagnetic
field. As BNNjm is geometric in character, we have thus obtained a
kind of " unification " ([18] ; note that was not assumed to be purely
imaginary from the beginning, so that (36 b) are enough equations to
determine the 

APPENDIX

It is our purpose here to solve equation (15) for in terms of Aj, gi~
and their derivatives. We introduce the tensor
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and rewrite (15) as

{the équivalence with (15) becomes immédiate if a coordinate system

is used where the l vanish at the point under considération]. (A. 2)
can be contracted in two ways : first put i = l and sum, to obtain

where

then contract with gik to get

(A. 3, 5) are now substituted back into (A. 2). Lowering all free indices
we have

By taking cyclic permutations of (ikl), adding two of the resulting
équations and substracting the third one, the following formal solution
for Blik results :

This does not yet give the because these quantities appear also
on the right hand side in the expressions we have

Now we try to calculate Ai,k and then obtain Blik from (A. 7). First
we write
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where A(,./,) is implicitly defined if (A. 7) is used :

where

(A. 9, 10) lead to the following still implicit expression for 

Transvecting (A.12) with we obtain two linear scalar

equations for the unknown scalars AI Aej Am.1JI which;appear on

the right hand side of (A. 12). Their solution is

where the abbreviations (17) have been used.

Transvecting (A .12) with Ak only, we get an équation for C; whose

solution is

Insertion of (A. 13, 14) into (A. 12) gives the desired explicit expression
forA,./,: :

whose further insertion into (A. 7) gives Bi;, in explicit form, i. e. (16).
Thus the relation (A.l) between the " dynamical " connection 

and the Christoffel connection is determined.
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The terms in the field equation (14) which contain second derivatives
after the substitution of (A. 15) become (18), with the coefficients given
by
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