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Section A :

Physique théorique.

ABSTRACT. - Unitary irreducible representations (u. i. r.’s) of semi-
direct products ~ = with nilpotent ~’G and regular semisimple
action of ~ on 9T, are investigated. Given a point in an orbit of ~’L
and a u. i. r. of its stabilizer ~ . 91 (which characterizes any u. i. r. of ~~,.
it is shown that the s-u. i. r. M of the little group ~, which yields M’
has a real-valued multiplier s, and is therefore a true u. i. r. of Ð or of a
twofold covering group of Ð.
This result is then applied to the 15-dimensional group containing

Lorentz transformations on space-time, and position and momentum
operators verifying the Heisenberg relation. The spectrum of the
squared mass operator in these u. i. r.’s is exhibited; and they are
related to u. i. r.’s of the conformal group by means of Wigner-Inonu
contraction.

INTRODUCTION

All unitary irreducible representations (u. i. r.’s) of groups which are
semidirect products with abelian normal subgroup, are known to be
induced representations, provided some topological restrictions hold,.
since Mackey’s papers on induced representations ([1], [2]). When one
drops the abelian subgroup hypothesis, projective representations
generally appear [3].
A question which arises is whether this hypothesis can be replaced

by a less restrictive one, but which keeps projective representations away.
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40 E. ANGELOPOULOS

. One generalization is to take a semidirect product where 91

is nilpotent. In the present paper it is shown that projective repre-
sentations may appear with this hypothesis; but if an algebraic condi-
tion is imposed, projective representations are limited to either true

representations or two-valued ones. (This happens, for instance, if ~

is semisimple.)
To establish this result we make use of Dixmier-Kirillov’s results

on nilpotent groups ([4], [5]); the mathematical background which is

used is exposed in section 1.
In section 2 the main result is proved. The proof is based on induction

upon the dimension of ~’G and involves properties of the characteristic
ideals of the central descending series of the Lie Algebra of m.

Section 3 contains an extension of Kirillov’s classification to groups
of the form there is also a discussion of the hypotheses and hints
for possible generalizations.

In section 4, the general results are used to obtain all u. i. r.’s of

a 15-dimensional group ~ = SL (2, C) . 91, where m is a 9-dimensional
nilpotent group. The center I of G is one-dimensional, and M/I splits
into two Minkowski spaces, on which SL (2, C) acts in the usual way.
Each 4-dimensional abelian subgroup is isomorphic to a Minkowski

space, but two vectors belonging to a different Minkowski space each,
do not commute (unless they are orthogonal) and their bracket lies in I.
The choice of ~ as an example is due to the fact that it has a physical

significance : G is a kinematical group which acts on states; its Lie

algebra is the smallest one containing both position and momentum
operators along with Lorentz transformations. In fact ~ is obtained

if, given the group of active covariance ~, one defines four infiniterimal
generators for position, satisfying the Heisenberg relation; the complete
duality between position and momentum appears in ~, while it does not
appear if position operators are defined as an integral of a spectral
measure over some domain [6]. Faithful u. i. r.’s of ~ are determined,
according to the general results, by a character of the center I and

a u. i. r. of SL (2, C). The spectrum of the squared mass operator p, p~ is
then the whole real line; thus no discrete mass splitting exists for faithful
u. i. r.’s, as predicted by Jost-Segal’s no-go theorem [7].
On the other hand, for unfaithful u. i. r.’s, for which the center I is

trivially represented (corresponding to the classical limit n - 0 of the
Heisenberg relation [p, q] = ~), the squared mass operator has its

spectrum concentrated in one point.
Finally, since G is a Wigner-Ionü contraction of the conformal group e

(special conformal transformations contracting to position operators),
the relation between u. i. r.’s of ~ and e through contraction is sketched
in the end of section 4.
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41ON UNITARY IRREDUCTIBLE REPRESENTATIONS

1. THE MATHEMATICAL BACKGROUND

The mathematical background we shall make use of, concerns essen-
tially two topics; the theory of u. i. r. ’s of nilpotent groups on one
hand, the theory of projective representations of groups extensions
on the other.
The theory of u. i. r.’s of nilpotent groups was developed by Dixmier

and Kirillov ([4], [5]); we summarize it as follows :
Given a nilpotent group m, connected, simply connected, there is a

one-to-one correspondance between m and its Lie Algebra n. Let n’
be the dual vector space of the real vector space underlying n. One can
define on n’ the contragredient of the adjoint representation of 91,
which we shall call R. The action of ~’G on n’ through R defines a
partition of n’ into orbits : two elements x, y of n’ belong to the same
orbit if there exists g in m such that x = R (y). y.
The group dual m, i. e. the set of equivalence classes of u. i. r.’s.

of m (distinct from the linear dual n’ !) is mapped on the set of orbits
of n’ under R, the mapping being one-to-one. This mapping is given
by Kirillov’s classification :

THEOREM 1. - Let h be in n’, and let h be a subalgebra o f n of maximal
dimension such that [ni,, u/J belongs to the kernel of h. Let be the

corresponding subgroup and xj, the character of defined by
xh (exp X) = exp i (X, h) for X in Then, the representation of ~’C.
induced by xjz is irreductible, and two such u. i. r.’s are equivalent if and
only if the corresponding elements h belong to the same orbit o f n’ under R ;
all u. i. r.’s of 9t are obtained in this way.
We shall also state another result, due to Pukansky [8], which is

essential for establishing the general results by a method based on the
dimension of 91.

THEOREM 2. - Let  have one-dimensional center . Then every
u. i. r. o f ~, the restriction of which to the center is nontrivial, is induced
by a u. i. r. o f a suitably chosen subgroup ~’, such that the codimension
o f in 91 is one and the codimension of  in the center :9’ o f ’ is
strictly positive.

REMARK. - All along this paper when speaking of a nilpotent group
we shall assume it to be connected and simply connected.
The general theory of projective representations of group extensions

has been developped by Mackey [3]. We shall give here the main
results, under a simplified form, which suffices for our purpose.
Let ~ be a locally compact group, 91 a closed invariant subgroup

and 9~ the set of equivalent classes of u. i. r.’s of 91. Let L - Lg be
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42 E. ANGELOPOULOS

the action of ~ on c9Î, defined by

for 

We shall assume that this action of ~ on m is regular with respect
to the Borel structure of m : that is, if a measure class in ~z is invariant
under the action of ~, it corresponds to an orbit ~ under ~. Let, for

any L in m, S’L, denote the stabilizer of L, i. e. the subgroup of  such
that Ls and L are equivalent for any s in :S’L’. Clearly, :S’L’ contains 

and ~t/ are conjugated subgroups if L and L’ belong to the same orbit.

THEOREM 3. - There is an one-lo-one correspondance, between equi-
valence classes of u. i. r.’s o f ~ and couples (9, M) where c~ is an orbit o f ~,
and M a u. i. r. of the stabilizer o f some point in (9, The u. i. r. o f ~
corresponding to (a, M) is induced by M.

THEOREM 4. - Let ~, 91, (9, ~’, be as above, and L a point in (9. Then

there exists a projective representation L of tS’, with multiplier ’r

[i. e. Lxx = T (x, y) Lx L.y], such that L (n) = L (n) for every n in ~’G.

z may be chosen to be of the form where w is a multiplier 
and i f is the canonical homomorphism from S’ S’ to S’/M X S’ /M. If 03C4 is

so chosen, w is uniquely determined by L up to a factor of the form
p (x) ~ p (~J) ~ P (xg)-1 (called a trivial multiplier).

THEOREM 5. - Let T be a projective u. i. r. with multiplier ~,
and T’ the projective u. i. r. with multiplier co o f, canonically obtained

from T. Then the mapping T - L 0 T’ sets up, an one-to-one corres-

pondance (up to equivalence), between the set o f all projective u. i. r.’s

o f with multiplier w, and the set of all u. i. r.’s the restriction

of which on ~’G is a multiple o f L.

It is well known that if ~ is a semidirect product and m is abelian,
the multiplier M drops and one obtains ordinary representations 
Our purpose is to show what happens if ~’G is nilpotent.

2. THE MAIN THEOREM

From now on we shall denote by ~ = a semi direct product
such that

(a) ~’G is nilpotent with Lie Algebra n.
(b) ~. acts regularly on 9t.
(c) The restriction q of the adjoint representation to the subspace n

and to the subgroup is semisimple.

VOLUME A-XVIII - 1973 - N° 1



43ON UNITARY IRREDUCTIBLE REPRESENTATIONS

The stabilizer ~’ of an u. i. r. L of 91 is of the form S.~,
where ~ == ~’ n 1R is the corresponding « little group ».

We want to show that in this case we have a stronger result than
Theorem 4 :

THEOREM 6. - For any orbit (9 of ~’G under 1R and any there is

an s-u. i. r. L of S’, such that : (i) L (n) = L (n) for n E and (ii)
L (x) L (y) = s (x, y) [(x, y) for x, y ~ S. The multiplier E can take

only the two values ~ 1.

REMARK 1. - From what precedes we see that s is uniquely determined
by ~, up to a trivial multiplier. If s is two-valued, it defines a central
extension of ~ by Z2, and L can be considered as a true u. i. r. of S.

REMARK 2. - Condition (c) is automatically fullfilled if dl is semi-

simple, but if 8 has a non discrete center, the condition may not be
fullfilled as we shall see further in a example.
The proof will be based on induction over the dimension of [)to

Clearly the theorem holds for one-dimensional ~, which is abelian. We
shall thus assume that it holds for any [)t’ of lower dimension than ~.

Proof. - Let the group law in ~ be

Let L be in (9 and ð be the subgroup of 8 such that LS and L are
equivalent for any s in ~, that is, for any s in ~ any n in m :

We shall show that the operators KS, determined up to a scalar factor,
can be chosen in a way that the mapping

be an s-u. i. r. of ~ . ~’G, which will be taken as L. We shall first prove :
LEMMA 1. - Let ~, 3r, L defined as above. If L can be defined when-

ever L is a faithful u. Î. r. o f ~’G, then L can be defined for every L.

Proof. - Let 3ro be the subgroup of 3r on which L is constant.
From (2.1) we see that ~ leaves 3ro invariant. Putting 3r’ = 
and p the canonical projection from m to 3r’, we define L’ on 9T/,
such that L = L’ o p. But p can be extended trivially to the proj ec-
tion p from b . 91 to ~ . ~z’ by

Then, since L’ is faithful, L’ is defined, and L is defined by L = i/ o p,
which proves the lemma.

ANNALES DE L’INSTITUT HENRI POINCARÉ .



44 E. ANGELOPOULOS

From now on we shall thus assume that L is faithful, which means
that Ðt has one-dimensional center 3, and that the restriction of L

to  is nontrivial. We shall now describe more presicely the struc-
ture of Ðt, in order to use induction over the dimension.
The center 3 of n coincides with the last ideal of the central descending

series. Let n be the next-to-the-last one and b its centralizer; let eit

and 63 be the corresponding subgroups. t1. and 13 are invariant under

all automorphisms of ~. The Jacobi identity shows that b contains
the first derived ideal of n, since

Neglecting the trivial case 3 = n, we see that we have either

These two cases shall be treated distinctly.

A. 3 = [n, n]. - Such a group is an immediate generalization of the
three dimensional non abelian nilpotent group. It is a central exten-

tion of 3 by R2k (considered as an abelian group) and it is determined
by a skew-symmetric bilinear form from R2k into ~. The center being
one dimensional, the bilinear form is non degenerate. Writing the
group law in ~,

/ 1 B

one sees that q (8) must be a subgroup of Sp (k, R* ; the action of an
element (A, À) of 8 is

obeying

REMARK. - We have implicitedly supposed here that the comple-,
mentary of a which is invariant by 6t is the set (a; 0).
By choosing a canonical basis in R2k = Rk, one can express,

the symplectic structure in a more analytical way. One has

for x and y in Rk, the dot standing for the scalar product in Rk.

Now, a faithful representation L is determined by a non zero cha-.
racter x of ~ and is induced by the u. i. r, of the abelian subgroup
{ (0, y~) } :

VOLUME A-XVIII - 1973 2014 ? 1



45ON UNITARY IRREDUCTIBLE REPRESENTATIONS

L can thus be written

and s is the subgroup of cR. determined by the condition a = 1, that
is, s is in Sp (k, R).
To extend L to Sp (k, R) we first introduce the following unitary

operators :

where S and A are real matrices, S symmetric, A invertible, and
~

*x ~
du = ~ |2 du1 ... duk.

2 TT

Then for almost every element g of Sp (k, R) one can write :

where p is some complex-valued function of modulus 1.
We leave it to the reader to check that L satisfies (2.1).
D. Shale [9] has shown that L is a two-valued s-u. i. r. of Sp (k, 
We must point out, however, that there are subgroups of Sp (k, R),

on which the restriction of E is a trivial multiplier, hence the restriction
of L yields a one-valued u. i. r. [10]. One can see from (2.6) that GL (k, R)
is such a subgroup. This is also the case for U (k - k’, k’); we refer
to [11] for a realization of the faithful u. i. r’s of U (k). 91 on a space
of holomorphic functions.

B. a c [n, n]. - We have the sequence of decreasing ideals

then ~~: = is an abelian group, and the group law in ~’G can be
written

where Q is a polynomial expression of the coordinates of x, satisfying
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46 E. ANGELOPOULOS

and Adx is the element of Aut B determined by

We observe that if Adx (a) is known for every a in is well deter-

mined. Let now L be a faithful u. i. r. of m. From theorem 2 one

can easily deduce (by alternately applying theorem 2 and projecting
the subgroup of codimension one to a suitably chosen factor group
with one-dimensional center again) that L is induced by a u. i. r. U

of B which has the same restriction on a as L has. Conversely, if U’

of B induces on 91 a u. i. r. equivalent to L, U’ is equivalent to the
representation b - U (Adx . b) for some x in We shall use the following
realization for L :

f being a square integrable function from ~ to the carrier space of U.

Let now «(I), 8, W) be the automorphism of m defined by

The group law shows that ø must be in Aut B and.., in GL (x) (x being
considered as a real vector space), and one must also have :

Let now q be a subgroup of Aut m satisfying the conditions of the
theorem. Because of the semisimplicity condition we know that there
is a complementary subspace a’ of 3 in a, invariant by 8. Let d’ be

the corresponding abelian subgroup. We shall choose U in a manner

that a’ belongs to the kernel of U. Then, if (~, 0, W) is in ~, @ belongs
to the subgroup of Aut B which leaves U invariant, and since dim B
is strictly lower than dim st, one can assume

such that

Let now (~ n, W) be in q (~) and express that is equivalent
to L. We have, using (2.8) :

VOLUME A-XVIII - 1973 2014 ? 1



47ON UNITARY IRREDUCTIBLE REPRESENTATIONS

with

It is then quite easy to check that

which is effectively the group law in Aut 91, hence in q (~). Then the

u. i. r. L is given by

REMARK 3. - Using the semisimplicity condition on ~, one could
annihilate W as well. On the other hand, for trivial 111’, the assump-
tion that @ leaves U invariant can be dropped. One sees thus that the
theorem is true for a larger family of groups. However, when neither W
is trivial, nor does 0 leave U invariant, a non trivial multiplier appears
and L is then a true projective representation. That is why the semi-
simplicity conditions are needed for the general case.

REMARK 4. - On exhaustive study is still to be done about the
conditions, under which one obtains one-valued u. i. r.’s only. Res-
trictions may be imposed either to 9t or to Here are some hints :

(a) If one wants to exclude case A as a final step of the induction
which starts in case B, by imposing conditions on 9t only, the list of
the acceptable nilpotent groups would be quite poor.

(b) To have a result concerning all nilpotent groups, one must take «
such that it contains a twofold covering of cp (~) for every ~ which gives
rise to a twofold e-u. i. r. This condition depends on L, hence on 9T.
Is there an m-independant condition, weaker than dl reductive with
simply connected maximal semisimple subgroup ? We leave this
problem open.

3. RESULTS AND REMARKS 

From what precedes one can extend Kirillov’s classification to groups
of the form ~.9T, since a point in ~’L is an orbit in n’ (under the action
of we thus have

THEOREM 7. - in theorem 6 ; given h in n’, let 3th
and xh be as in theorem 1, Lh be the induced representation by xh, and  h . pt
be the stabilizer of Lh in . Then the representation induced on  by the
u. i. r. Lh 0 T where T is any representation of  h. ~’G, trivial
on St, is irreducible.

ANNALES DE L’INSTITUT HENRI POINCARE 4



48 E. ANGELOPOULOS

Two such representations corresponding to (h, T) and (h’, T’) are equi-
valent i f and only i f hand h’ belong to the same orbit of T’ under ~ and
i f T and T’ are equivalent. All u. i. r.’s are obtained in this way.

Discussing the hypotheses of theorem 6, one first observes that the
condition of regular action is essential : as a matter of fact, the theory
of representations of group extensions elaborated by G. Mackey, based
on the properties of systems of imprimitivity, requires a Borel set pre-
serving condition to give full results. Otherwise, counter-examples are
known, given by Mackey himself.
On the other hand, the condition of semisimple action of V1 on ~T,

simply drops if ~ is taken to be abelian. In this sense, theorems 6
and 7 are more restrictive than a full generalization of Mackey’s classical
result on abelian subgroups to nilpotent ones. We must point out that
it is not a necessary condition, as it appears in the proof of the theorem
(see Remark 3); and it covers a few more cases than the mere

assumption of ~. being semisimple.
However, even if this condition can be slightly generalized (for example

the theorem holds for suitably chosen subgroups of V1) one cannot get
rid of it, as can be shown by the following example :

Example. - Let  = be defined as follows : Ei being an Euclidian
vector space (i = 1, 2) the underlying space of 9t is E ~ (p) E~ Q) RB with
the group law :

with Xi, Yi in Ei and xo, yo, z in R.

Let (R = 81 0 where is the connected subgroup of GL (E;),
i. e. the set of invertible matrices with positive determinant. We shall
write for u ~ in 8;,

Let the action on M be

Let L be the u. i. r. of described in section_2, case A,

with the obvious notation x = (xo, Xh x2), etc.

VOLUME A-XVIII - 1973 - N° 1



49ON UNITARY IRREDUCTIBLE REPRESENTATIONS

The operator L (ui, U2) such that

turns to be

where p (u) is a complex factor of modulus one, depending on (ui, u2).
It is easy then to find that

and there is no choice of p which annihilates the multiplier exp ( - i a i a2).
L turns thus to be a true projective representation.
On this example one can remark that ~ is a subgroup of the group ~’,

obtained by suppression of (3.1), taking thus Ài and ui independant.
We have ~/ == 8. s’, where 91’ is the nilpotent subgroup obtained by
ui = U2 = 1. Clearly, CJ’ verifies theorem 6, but ~ does not. On the
other hand, considering the subgroup ~" of ~ obtained by rz = !/2 = 0
one checks that the results of theorem 6 hold; taking ~/’ = 9t",
where s1" is obtained by taking U2 scalar and ui = 1, the relevant
u. i. r.’s of 1Y1" are of the form

and the multiplier disappears from 1/’, as one easily checks.
From this example one sees that, though semisimple automorphisms

and nilpotent ones (which yield a larger nilpotent group) behave well
if they act independently, complications arise if they are linked together.
We point out that this situation is characteristic of solvable groups.

4. AN EXAMPLE

Let g be the Lie algebra generated by the operators = - M,v,
X,, P~,, I (p., 11 = 0, 1, 2, 3) with the commutation relations

ANNALES DE L’INSTITUT HENRI POINCAR~



50 E. ANGELOPOULOS

all other brackets being zero ; denotes the symmetric tensor of the
Minkowski metric (+, -, -, -).
The simply connected corresponding Lie group is G = SL(2, C). tJt,

where m is a nine-dimensional nilpotent subgroup; the group law is

given by

with t e R, 1 E SL (2, C); p and x are four-vectors and ~ p, x ~ denotes
their Minkowski scalar product, SL (2, C) acts in the ordinary way
on the Minkowski space.

Before determining the u. i. r.’s of G, let us remark that it contains

the universal covering E of the Poincare group ; its Lie algebra is the
smallest one containing both position and momentum operators along
with homogeneous Lorentz transformations.
As we shall show below, g can be obtained as a Wigner Inonii contrac-

tion of the conformal Lie Algebra, 50 (4 , 2).
We shall now apply the preceding general results to determine the

u. i. r.’s of G; we know that the method of sec. 2 yields all u. i. r.’s.

The dual lil is the union of two sets; the first is isomorphic to R - { 0 },
and contains all faithful u. i. r.’s of 91, which are in a one-to-one corres-

pondance with the set of nontrivial characters of the center I.

The second is isomorphic to R8 and contains all u. i. r.’s of which

is isomorphic to R’, too. We shall examine them separately.

A. Faithful u. i. r.’s. - Let (p, t) - exp i À I be the inducing character ;
the representation L, of N is given by

with 

The stabilizer for non-zero À is the whole group; to extend LÀ to

SL (2, C) we put [1 (A) f (~) = f (l1-1 ~) and the Lorentz invariance

of the scalar product proves that LB is indeed a representation.
Finally, if S is an arbitrary u. i. r. of SL (2, C) with carrier space x,

all faithful u. i. r.’s of G are of the form

where

. VOLUME A-XVIII - 1973 2014 ? 1



51ON UNITARY IRREDUCTIBLE REPRESENTATIONS

We remark that the infinitesimal generators are, in this realization

U~ can be considered as acting on the momentum space. It is easy
to observe that its restriction to a Poincare subgroup is highly reducible,
since the squared mass, P [1 p[1 can take all real values.

B. Un faith ful u. i. r.’s. - The factor group M/I being Abelian, we
start from a character (~ q) of 1Y1 such that

SL (2, C) acts on the right on R8 by

We have to determine the orbits of R8; we shall suppose that ~ and g
are linearly independant, since otherwise there exists a 4-dimensional
abelian subgroup which is represented trivially, and the quotient of

such a u. i. r. by its kernel will yield a u. i. r. of s.
Separating R8 into orbits, we find that a proper orbit is a 5-dimen-

sional surface determined by three real constants A, B, C :

and, in addition, if A ~ 0 (resp. C ~ 0) by sign ~o (resp. sign qo).
To find the stabilizer of such an orbit, we observe that if A ~ = ç,

A q = q every linear combination of ~ and q is also invariant. The
restriction of the Lorentz scalar product to the ((, q) plane yields a
bilinear form, the signature of which we shall call the signature of the
plane. Let u, v, be two orthogonal vectors in this plane : if one of them
is timelike the signature is (+, -) ; if one is lightlike the signature
is (0, -) and the bilinear form is degenerate; if both are specelike the
signature is ( -, -). Planes with same signature have isomorphic
stabilizers.
To effect the calculations is detail, we first change the labelling of

the orbits. Let D = AC - B2.
D can be considered as a (+, -, -) quadratic form on R3, and its

sign characterizes the (~, q) plane; for if one applies any linear mapping cp
on the (~, q) plane, D is multiplied by (det q)2 ; in fact GL (2, R) acts
canonically on R3 like R+ x SO (2, 1).
We shall thus determine a proper orbit by A, B, D and, eventually,

sign ~o, sign qo.

ANNALES DE L’INSTITUT HENRI POINCARE



52 E. ANGELOPOULOS

Let us first consider a (+, -) plane, which covers all cases A &#x3E; 0,
C &#x3E; 0 ; a spatial rotation brings ç and q in the (0, 3) plane. The subgroup
of SL (2, C) which leaves invariant every point in this plane is the

subgroup U (1), such that

A rapid calculation shows that for

D is always negative, and inferior to AC.

According to the values of A, C there are several ways of choosing a
characteristic point (E, Q) in the orbit. One can then factorize SL (2, C)
by A = Y . such that Y E U (1) and 2, Q) = (~, q). If

Q denotes an orbit, there exists an invariant measure

Then, according to Mackey’s results, to every character ~ of U (1)
and to every choice of Q, corresponds a u. i. r. of G of the form

with 

If the (~, q) plane is spacelike, we can identify it with the (1, 2) plane.
In this case, for ~o = qo = ~3 = q3, one finds D = (Ç1 q2 2014 ~ ql)2; thus D
is strictly positive in this case. The stabilizer of any such orbit is the

multiplicative group of real numbers R*, acting like

The characters x of R* being of the form x (a) = a with

s = sign a, n = 0 or n = 1, and À real, the expression of the u. i. r. VX,Q
is the same as (4.7).

Finally, if the (ç, q) plane contains a spacelike vector V and a lightlike
vector V, mutually orthogonal, we see that

VOLUME A-XVIII - 1973 2014 ? 1



53ON UNITARY IRREDUCTIBLE REPRESENTATIONS

hence D is also zero. Fixing, for example

we obtain as little group formed by the set of matrices

which act on R4 like

The characters of this abelian group are of the f orm x (E, a) = En 
with À real and n = 0, 1. With the convenient choice of the section ~,
we obtain again the formula (4 . 7) for with ~2 belonging to the
subset verifying D = 0.

These results are summarized in the following table :
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Here we have determined all u. i. r.’s of G. There is one series of

faithful representations and three series of proper unfaithful ones,

and, in addition, the whole series of representations of q. Each series

is divided into may subseries, two u. i. r.’s of the same series corres-

ponding to the same little group.
The results of sections 2 and 3 help to determine the faithful u. i. r.’s

only, since the unfaithful ones are available by the classical results
of Mackey.
We shall end with some remarks on this example. We shall first

compare the reduction on  of faithful and unfaithful u. i. r.’s of G.

Let, in (4.5), S be the identity representation of SL (2, C) and À = 1.
The restriction U of on q is highly reducible : U is the direct

integral over all values, positive and negative, of the squared mass, ), )&#x3E;,

(since translations are dropped) of the spinless u. i. r.’s of q. On the

other hand, taking a proper unfaithful u. i. r., say, A = - C = 1;

B = 0, we see that the mass is fixed. The restriction on q is a direct
sum over all spins, as easily checked by a technique quite similar to

the technique of reducing the tensor product of two u. i. r.’s of ~ .
Another fact we shall notice is that G is a Wigner-Inonu contraction

of the conformal group SO (4.2).
Let M,v, K~,, Q~, D be the generators of so (4.2) with the commu-

tation relations

and

Putting

one obtains

For non zero a these relations together with (4.1), (4.2) give a Lei

algebra isomorphic to so (4.2). Bur for a = 0, one obtains g.

We shall briefly sketch how this contraction is reflected in repre-

sentations. Let g~ be the algebra determined by (4.1), (4.2);
(4.10), (4.11), and go = g. We consider induced u. i. r.’s of SO (4.2),
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(the little group being the Weyl group), generated by M,v, P~,, I.

The expression of the generators in such a representation are :

where S,v and i ~, are the generators of the inducing representation
(which has as kernel the 4-dimensional ideal { P~ }).
For a = 0 one obtains relations (4.6). It appears thus that 

contracts to US, À, as ga contracts to g, while the little groups undergo
the same contraction. We leave open the further examination of the

contraction of SO (4.2) to G.
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