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Harmonic analysis on the one-sheet hyperboloid
and multiperipheral inclusive distributions

by

A. BASSETTO and M. TOLLER
C. E. R. N., Geneva

ABSTRACT. — The harmonic analysis of the n particle inclusive distri-
butions and the partial diagonalization of the ABFST multiperipheral
integral equation at vanishing momentum transfer are treated rigorously
on the basis of the harmonic analysis of distributions defined on the
one-sheet hyperboloid in four dimensions. A complete and consistent
treatment is given of the Radon and Fourier transforms on the hyper-
boloid and of the diagonalization of invariant kernels. The final result
is a special form of the O (3, 1) expansion of the inclusive distributions,
which exhibits peculiar dynamical features, in particular fixed poles
at the nonsense points, which are essential in order to get the experi-
mentally observed behaviour.

RESUME. — Nous traitons rigoureusement la diagonalisation partielle
de I’équation intégrale multipériphérique de ABFST & valeur nulle de
Pimpulsion transférée et I’analyse harmonique des distributions inclu-
sives a n particules, faisant recours & des résultats mathématiques
concernant I’analyse harmonique sur un hyperboloide a une nappe en
quatre dimensions. Nous donnons un traitement complet des transfor-
mations de Radon et de Fourier sur I’hyperboloide et de la diagonalisation
des noyaux invariants. Le résultat final est une forme particuliére de
développement selon O (3, 1) des distributions inclusives, qui met en
évidence des caractéristiques dynamiques particuliéres, notamment
des pdles fixes aux points de « non sens », qui sont nécessaires pour obtenir
un accord avec des propriétés bien établies par ’expérience.

1. Introduction

In the present paper we develop and clarify some mathematical
procedures which are useful for the treatment of multiperipheral models
of the ABFST type ([1]-[3]). These models provide a definite approxi-
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2 A. BASSETTO AND M. TOLLER

mate expression for the N particle production amplitudes. By integra-
ting over all the final states, one gets the total cross-sections; if one
keeps some of the final momenta fixed, integrating over all the other
momenta and summing over the multiplicity N, one obtains the inclusive
distributions ([1], [4]-[7]). It is just in dealing with this last aspect of
the model that the powerful mathematical concepts described in the
following are most useful.
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Fig. 1. — A multiperipheral contribution to the two-particle inclusive distribution.

Wavy lines represent off-shell spinless particles and solid lines represent on-shell
particles. On-shell integration is understood for internal solid lines. The upper
part of the graph represents just the complex conjugate of the production ampli-
tude represented by the lower part.

In the simplest version of the model, the production amplitudes are
given by the multiperipheral graphs of a ¢* field theory. In this case
in computing a two-particle inclusive distribution we find, for instance,
an integral of the kind described by the graph in figure 1. It has the
general form

1.1 In Py, Py) = f f fo (P, Q) K (Qn, Qu) - ..
XK (Q: Q) fa Py Q) d* Qi ... @ Qp

where P, stands for P,,, P4, ... and Py has a similar meaning.

For instance, in the example of figure 1, we have

fs Ps, Qn) = @2m)" 9?0 (Qn — Pyi + Ps) (Qn — m*)=,
K (Qis1, Q) = 27)~° ¢ 0 ((Qurs — Qo) — m?)
1.2) X 0 (Qir1,0 — Qu) (QF — m*)~,
fA (PA, Q1) = (2 71')° 9* 0 ((Qi — Py + PA1)2 — m?)
X 0 (Q1,0 — Pasyo + Payo) ((Qr — Pas)? — m?)—2
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HARMONIC ANALYSIS ON THE ONE~SHEET HYPERBOLOID 3

One can easily realize that also other contributions to the inclusive
distribution in the ¢* model have the form (1.1) with more complicated
forms for the functions f, and f; when the observed particles are |more
‘ internal ” in the multiperipheral chain.

Also more general multiperipheral models give rise to contributions
of the form (1.1). For instance, every term K could describe the produc-
tion of a cluster of final particles ([1], [8], [9]). The only limitation
of the present treatment is that the wavy lines in figure 2 must represent

o B T
K
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Fig. 2. — A multiperipheral contribution
to the r + s — 2 particle inclusive distribution.

spinless off-shell particles. A further generalization leads to the Reggeized
multiperipheral models ([10]-[13]), which require more powerful mathe-
matics. Nevertheless, most interesting features appear already in the
simpler class of models we are considering.

Our treatment uses only some very general assumptions on the quan-
tities K, fy and fz. From the example (1.2), we see that in general
they are Lorentz invariant positive distributions, i. e., Lorentz invariant
measures. The integral (1.1) is not necessarily meaningful for every
choice of these measures. We shall discuss later how and under which
conditions we can give a meaning to this expression.

An essential use will be made of the support properties of these distri-
butions. As Qi., — Q; is just the total four-momentum of a cluster
of produced particles, the support of K (Q..,, Q) is necessarily contained
in the region

1.3) (Qivr — Q) = M, Qirio — Qo= M,

where M is the sum of the masses of the particles produced in the cluster.
In a similar way we see that the support of f, (P,, Q.) is contained

in

1.4 Par + Q)P =M, QM —Py,
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4 A. BASSETTO AND M. TOLLER

and the support of f; (Ps, Q,) is contained in
(15) (_' Qn + PIH)2 é M123s - Qno é MB - PBI,(),

where M, is the sum of the masses of the observed and the unobserved
produced particles taken into account by the term f,, and M is defined
in a similar way. All these inequalities restrict the region of integration
in equation (1.1) to a compact set XK.

We call m,, and mg, the masses of the incoming particles and we
make the assumption, valid in the most interesting cases,

(1.6) My > my,, M, = my, (n>1).
Excluding the case in which all the three relations are equalities, a

simple resoning shows that in the set & we have

(1.7 Q<0 (=12..,n)

and we can introduce the variables

(1.8) u=—Q >0, z=u"Q.

The four-vectors x; span the one sheet hyperboloid I' defined by
(1.9) @, z2)=2"= —1.

If we introduce the Lorentz invariant measure on I :
(1.10) dl =20 (x> + 1) d' x,

equation (1.1) takes the form

(1 . 11) J’l (Plh P\) :f fll (P[b Up, xn) K (un, Tny Up—1, xn—l) PP

XK (uiy X2y Uy, xl) fA (PA’ uy, xl)
1 1

5 u du,dl’, ... zu,du,dl,.

X 5

We remark that perhaps the most important application of multi-
peripheral models is the study of Regge-like limits. In our case this
means ([14]-[16]) to study the dependence of the quantity

o

(1.12) i 30 (L (Q) Py, Py) =D, 3, (@) = I (a),

n=1 n=1

on the element a of the Lorentz group acting on all the four-momenta
Py, while the four-momenta P, , are kept fixed. It is just in the limit
of large a that the separation of the observed particles into two sets A
and B becomes natural and unambiguous.

VOLUME A-XvIIl — 1973 — nN° 1



HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID 5

Therefore we are led to consider integrals of the kind

(1.13) Ip (@) = f fa L (@) 2) K (ZTn, o) - - -
XK (@ ) fa () dLy ... dTy,

where the dependence on the variables u; is understood and the corres-
ponding integrations are supposed to be performed later. We are
assuming that the kernel K is defined as a Lorentz invariant distribution
in x4, a; for any positive values of u;,, and uw;, From now on, the
variables u; are considered as fixed and we concentrate our attention
on the ¢ angular ” variables z..

From equation (1.3), one can see that the support of the kernel
K (@i, ;) is contained in the set

1
(1.14) — (@i, T) 5 @y w2 (M2 Uy +u) > 1,

Ziv1,0 — Too > 05

while from equations (1.4) and (1.5) we see that the supports of f, (z,)
and f; (x.) are contained in the sets

(1.15) T > Uy (My — Puy)
and

(1.16) — Tno 2> U, (My — Phi,o)
respectively.

These are the support properties on which we rely in the following.
Though only positive measures appear in the physical problem, from
a mathematical point of view it is natural to deal with arbitrary dis-
tributions with some limitation on their rate of increase. This is the
point of view we shall adopt.

We shall show in Section 9 that if K, f, and f3 have the support pro-
perties mentioned above, the integral (1.13) can be interpreted as a
ditribution on the Lorentz group. Assuming some limitation on the
rate of growth of these distributions, we shall give an expansion of the
quantity (1.13) in terms of matrix elements of irreducible, not necessarily
unitary, representations of the Lorentz group. This expansion has not
exactly the form proposed in [17] and it exhibits some peculiarities
hitherto unexplored, as the existence of fixed poles at the ¢ Lorentz
nonsense ~’ points. The existence of these poles is essential for a correct
approach to the transverse momentum dependence of the inclusive
distributions [7].

ANNALES DE L’INSTITUT HENRI POINCARE



6 A. BASSETTO AND M. TOLLER

We shall get these results following the classical procedure of distri-
bution theory [18]. First we perform the harmonic analysis of a function
belonging to the space @ (I') of the infinitely differentiable functions
of compact support on the hyperboloid I'. This can be done by means
of the elegant method developed by Gel'fand and collaborators [19].
Unfortunately in [19] only functions with the symmetry property

(1.17) f(=2) =f @),

are treated and the extension to the general case is not trivial. The
general treatment of the Fourier transform is given in Sections 2 and 3,
where we introduce also the usual basis labelled by the angular momentum
indices j, m. Some useful properties of the “ hyperbolic harmonics ”
in this basis are given in Section 4. The inverse formula for functions
in @ (T) is given in Section 5.

In Section 6, we introduce some new spaces of test functions and
of distributions on the hyperboloid I and we define the Laplace transform
for a large class of distributions on T, in perfect analogy with the Laplace
transform of a distribution on the real line [18]. In Section 7 we consider
invariant distribution kernels, which have the property of mapping
into themselves some spaces of test functions and of distributions on T.
We show also that when one of these kernels operates on a distribution
on T, its Laplace transform is changed by a scalar factor; this is just
the diagonalization of the kernel. In Section 8 we study the regulari-
zation of a distribution on I' by means of the convolution with a smooth
function on the Lorentz group and the corresponding change in its
Laplace transform. All these results are applied in Section 9 to derive
an O (3, 1) representation for the inclusive distributions.

In our effort towards a systematic treatment, we partially overlap
with previous work. The ¢ hyperbolic harmonics ” in a somewhat
different form are discussed in [20]. The diagonalization of invariant
kernels is treated in ([21], [22]); an extension to spinning particles is
given in [23]. These treatments are not based on the harmonic analysis
of functions on the hyperboloid, which in our opinion is the most natural
and clarifying starting point.

It is also interesting to compare the diagonalization procedure for the
multiperipheral equation (giving the absorptive part of the amplitude)
with the analogous treatment of the Bethe-Salpeter equation at fixed
four-momentum transfer (which gives the whole amplitude). For
spacelike four-momentum transfer, the O (2, 1) projection of the Bethe-
Salpeter equation was performed in [24] (see also [25], [26]). Of course,
in this case one has no support conditions of the kind (1.3)-(1.5). Instead
one has a symmetry with respect to time reversal, which is incompatible
with the mentioned support conditions. In this situation, it is una-

VOLUME A-XVIII — 1973 — N° 1



HARMONIC ANALYSIS ON THE ONE~SHEET HYPERBOLOID 7

voidable to obtain a Laplace transform which has a symmetry property
in the [ plane which prevents this transform from being analytic in a
half plane. This feature complicates somehow the discussion of the
inverse formula, which is nevertheless perfectly justified, at least when
only poles are present in the [ plane. If one tries to extend this formalism
to the Bethe-Salpeter equation at vanishing four-momentum, one runs
into difficulties whose origin will be clear in Section 7.

2. The Radon transform

Our first task is to define the Fourier transform of a function f(z)
belonging to the space @ (I') of the C* functions with compact support
on the hyperboloid I' defined by equation (1.9). We follow the method
of [19], where this problem is solved for functions which satisfy the sym-~
metry condition (1.17). For some details and for geometrical moti-
vations, [19] should be consulted.

The first step is to define the Radon transforms

@.1) he =2 [ f@d(@y + D,

where the four-vector £ belongs to the half cone

2.2) =0 5>0,

and

2.3) c0n=[ ro+ma

where

2.4) b =—1 b, 5) =0, £2 =0, £ > 0.

The invariant measure dI' is defined by equation (1.10).

The function (2.3) has the property
2.5) 9+ ok, B) =59 (B, D)

The Radon transforms h () and ¢ (b, &) are infinitely differentiable.
h (£) vanishes in a neighbourhood of the origin and A (f £) has at infinity
an asymptotic expansion in terms of negative integral powers of £ [19].

Now we want to reconstruct the function f (z) starting from its Radon
transforms. We consider the integral [19] :

@.6) L@ b= [0k (@D~ DE ¢ E (Rep< -1,

ANNALES DE L’INSTITUT HENRI POINCARE



8 A. BASSETTO AND M. TOLLER
where the distribution [¢]* is defined by

@.7) [f=lim 2{sin ) fexp (imp:) ({ — 1) — exp(— i) -+ E ¥,
Then from equation (2.1) we have () :
@.8) 2f [L(— 5T — 2, p)
— 3+ YL (—na—aipt )| f@ar
= [ (=@ 9 — 1 — 5+ [- @) — 1) RO &' ¢E,

The function (2.6) has been computed in [19], and, if we put
2.9 k= —(z, 2,

we have

, 1
J+(—x,x—x,pt)—2(;1+2)J+(—x,x—x’,p—|—l)
=—2n (k> —1)"""20(@x, — x,)

2.10) [ R En Y SV
—%wm—1+k—nw1
(k> 1),

Ji(=z 2 -2, H)—%(H+2)J+(—x,x—x’,lu+1)
=7 (sin mp)—t (1 — k?)~'72
X|}p~+—1)4(1 —k 4 iyT = k&)

2.11)
e+ ) (1 —k—iyT—F)*"
-I-%(l—k+i\/1—_P)u+2+“1_z(1_k_iv/1fp)““]
(k] <1),
, o1 o, B
(2.12):‘1*(““’""_’5’#) s +2Ji(—mz—a,p+1)=0
k< —1).

(1) The integral (2.6) and the integral in the right-hand side of equation (2.8)
are not absolutely convergent for large £&. They have to be regularized by analytic
continuation from the region where b and z’ respectively are timelike [19].

VOLUME A-XvIII — 1973 — nN° 1



HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID 9
Both sides of equation (2.8) have a pole at p. = — 3. Using the
equations [18] :
res [l = 55" (0,
B=—3

(2.13)
e, [ = —29o" @®;

we see that the residue of the right-hand side is
1 ”n 1oy !’ ! -\ — -
@1 @y o@D |rn eE

In order to compute the residue of the left-hand side of equation (2.8),
we treat separately the regions of integration where equations (2.10)
and (2.11) respectively hold. In the first region the singularity comes
from a divergence of the integrand at k = 1. From equation (2.10)
we have

1 '
2.15) Ji(—z,z—2, p) — Q(y +2J (—z, z—2, p+1)
= =27 ()7 0 (@ — ) (K — DIE 4 O[(kt — D],

We remark that the second term in the left-hand side of this equation
P+

is essential in order to cancel a term of the order (k* — 1) * which
would also be divergent in the limit g — — 3.

We choose a frame of reference in which

' =(0,0,0,1),
(2.16) k=ux,,
k—1=2z —x} — 2}

and using the formula [18] :

2.17) Tes [£7 — 2 — 23]V % 0 (2)) = — 270 () 0 (1) J (x2),
Po=—1:

we can write the contribution of the region k > 1 to the residue in the
form

(2.18) res 2w [ 0 @) [z§ —x} — 23]9¢ f (x) dx,y d, doc, = — 4 72 f (2).
w=—3 o

The contribution to the residue of the region | k| < 1 is

(2.19) — f (1 —2)2 1 —2)" 0 (1 —a2) f (@) dT.

ANNALES DE L’INSTITUT HENRI POINCARE



10 A. BASSETTO AND M. TOLLER

Remark that this integral has to be regularized. We perform the change
of variables

xo - t,
2.20) x; = sin 0 sin o 4 £ cos «,
’ 2, = — sin 0 cos @ - ¢sin «,
T; = cos 0;
(2.21) dl' = dt d cos 0 da,

and the integral (2.19) takes the form
—+1 27 —+ o
©.22) —f dcos@f dozf dt (sin 0)~' (1 — cos 0)~1 f (b + £ )
-1 0 — ®

+1 27
— f d cos f dz (sin 0y~ (1 — cos 0)~1 o (b, ).
—1 )

We have used equation (2.3) and we have put

2.23) { b= (0,sin 0 sin 2, — sin O cos «, cos 0),
. l £ = (1, cosa, sina, 0).

In order to write equation (2.22) in invariant form, we remark that
the argument b depends only on £ and cos 6. If we introduce the diffe-
rential form on the cone

(2.24) W = | zo |~1 (51 dZQ di:’, - n:,z dEL dE:; -+ Es dEl diz)’
the integral (2.22) can be written in the form

(2.25) —fH (sin 0)~! (1 — cos 0)~' d cos Of wo ((x', &) ¢ (b, £).
- v

This can easily be shown if v is the intersection of the cone with the
plane £, = 1. On the other hand, using equation (2.5) one can show
that the integral does not change if v is deformed in such a way that it
still cuts all the generators of the cone.

In conclusion, equating the residues at . = — 3 of the two sides
of equation (2.8), which have been computed in equations (2.14), (2.18)

VOLUME A-XVIII — 1973 — N° 1



HARMONIC ANALYSIS ON THE ONE~SHEET HYPERBOLOID 11

and (2.25), we get the result
PropositioN 1. — If f(x) e @ (T), its Radon transforms (2.1) and (2.3)

can be inverted by means of the formula
@2) @) =—@=" [ B @ H+1)
+0' (@, &) + DIhE)E d° 8
— @) f " (sin 8)~t (1 — cos 8) d cos 6

% f wd (', £)) o (b, E),

where the four-vector b is defermined up to the addition of an irrelevant
four-vector proportional to £ by the conditions

(2.27) b=—1 (b5 =0 (b 2')=— cos0.

A further ambiguity is due to the fact that the condition (2.27) is quadratic.
It has to be eliminaled by means of an arbifrary but continuous choice.

Of course, as these formulae are written in a Lorentz invariant form,
they hold also if 2’ has not the special form (2.16).

3. The Fourier transform

We assume that the element a of SL (2 C) acts on the function f in
the following way (®) :

(GRY f@—~[U(@f]@ =fL@")2).
The matrix L (a) is defined in such a way that the relation
3.2) =L(azx

is equivalent to

<x’0 +x, = — ix;> _ a(xo +z oz — ix2> o

3.3 . .
3.3) T, +ir, z, —=x, Ty Xy X — x5

It follows that the functions defined in equations (2.1) and (2.3)
transform in the following way
-9 hE) —~[U (@) h] €) =k (L (a)5),
3.9 ¢ (0, &) > [U (@9l (b &) =9 (L(a?) b L(a)E).

() For simplicity of notation we indicate by the same symbol U (a) the repre-
sentation operators which act on all the function spaces we shall define.

ANNALES DE L’INSTITUT HENRI POINCARE



12 A. BASSETTO AND M. TOLLER

If we put

(3'6) h (E_) = E(ziy 22)5

where

3.7 Eo‘f‘%z Ei-i&): < Z~_r>_9___
¢ Eih 2T ()e-=
the transformation property (3.4) becomes

3-8) (U@ k] @, 2) =Rz, 2),

where

(39) ( 2’1 =2z, Ay + 2> Azy,

| 2, =2, @iy + 25 Qoo

The function (3.6) has the symmetry property

(3.10) k(% z, €% 2) = h(z, 2).
We introduce the new functions

(3‘ 11) I:I)\ (219 z?) = (2 TE)_l [ Tl (tz,, tZg) tl_2)‘ dt,
0

which have the homogeneity property
(3.12) A (22, a2) =|a | H (2, 2.)

for arbitrary complex «. The integral (3.11) converges for Re > 0
and, using the asymptotic expansion of h (), it can be analytically
continued in the whole complex A plane apart from poles at A =0,
-1, —2,....

In ([19], [27]), the irreducible representations T%" of SL (2 C) are
defined as operators acting on a space of homogeneous functions of
2, z. We shall use the slightly different notation ®"* where

(3.13) n=%—M n,=2i+M

Comparing the formulae given above with the definition of ([19], [27]),
we see immediately that if f(z) undergoes the transformation (3.1),

the function H* (z,, z,) transforms according to the representation @°*.
It is also useful to consider these representations as operators acting
on a space of functions on the group SU (2). We put

(3.14) H* (u) = A* (un, )  [ueSU @2)].
From equations (3.6), (3.7) and (3.11), we get
3.15) H () = (2 1) f “h(PL @) o,

VOLUME A-XvIiII — 1973 — nN° 1



HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID 13
where
(3.16) tE=(@1,0,0,1).

Introducing equation (2.1) we obtain
@.17)  H'@=@n) f f@[— (& L @) ) dr.

The transformation property of the function (3.14) is just the one
described in ([27]-[29]). As in these references, we introduce in the
space of the functions on SU (2) the basis

(3.18) 2] + 1) R (u),

where Rj,, (u) are the rotation matrices as defined in [30]. We define
the projections

(3.19) H., = 2j + 1)~ f RJ,. () H* (u) &° u.
SU(2)

U

Remark that only basis functions with M = 0 appear. Taking into
account equation (3.17) we get

(3.20) H:, = (—1)» f B;*, (@) f @) dT,

where
@.21) B, @ =@n) " @)+ 1)~
x [ - @LE) ) R, @ du,
SU (2)

Remark that if 4 is pure imaginary, we have
(3.22) (— )" BjL,, (x) =B, (@).

In order to compute the ‘“ hyperbolic harmonics ” (3.21), we introduce
angular variables putting

(3.23) x = L (u; (9) uy (0)) Z, Z =(ha, 0, 0, ch ).

Using the invariance of the measure d* u and the definition [30] :
B-24) Yjm (0, ¢) = (@m)= (2j + 1) R}, (uy (— 9) u: (— ¢))
of spherical harmonics, we get

(3.25) Bjn @ = Y;n (8, 9) b) (@),

where

+1
(3.26) b (0) = (d n)—~2 f [—sha 4 cha cos y];*~* P, (cos ) d cos .
—1

ANNALES DE L’INSTITUT HENRI POINCARE



14 A. BASSETTO AND M. TOLLER

This integral can be performed by means of equation (3.7.30) of [31]
(hereafter called HTF) obtaining

3.27) b} (@) = @ n) 2T (— 2) (ch a)™ P} (th a).
In order to Fourier analyze the function (2.3), we consider the function

(3.28) $@=¢(L@)bL@nE [aeSL@O),

where

(3.29) §=(1,0,0,1, 5=(,1,0,0).
If we put

(3.30) k = (p; g) (9mp = 0),
using the property (2.5), we see that

3.31) % (ka) = p~* 6 (a).

In particular, we see that ¢ (¢) depends only on
3.32) Z, = Qa, 2y = s,

and if we define

(3.33) ¢ (z1, 22) = ¢ (@),
we have
3.34) 3 (xzy, azs) =a2G (21, 22) (@ma = 0).

Clearly the transformation property is
(3.35) [U (@) 3] (21, 22) =7 (2, 22),
where z, and z, are given by equation (3.9).
If we introduce the functions
M (z,, 2,) = 27)! f ’ (e z,, €Y z) MY dY,
0

M=0, +1, +£2,...)

(3.36)

they satisfy the covariance property
(3.37) il (221, @ 2) = a—t—Mg—1+M P (21, 22),
and therefore they transform according to the representation ®"°.

VOLUME A-XvIiIl — 1973 — ~o 1



HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID 15
Also in this case we introduce the functions defined on SU (2) :

(3.38) " (u) = M (o), us)
=en" [ swehwentay.
0
Using equations (2.3) and (3.28) we obtain

@39  e@=eo [ Ty ooy

x [T @ w2 (6 41D a

—

Also in this case the transformation properties of this function are
just those given in ([27[{29]). Projecting it on the basis (3.18) we
get

(3.40) oY, =2j+ 1)~ f R () (u) @Y (w) d®> u

SU(2)

We remark that we must have j> |M]|.
It is useful to write

3 . shoa =1t
b+tI=L@ @)s .
(3.41) {55 = (sh a, 0, 0, ch «); f)gﬁ ﬁ_<t_7:

Using Equations (3.29) we have
642 =i+ [ a [ R @Ce @) c
—w SU(2)

—+= w0

— @)+ 1) f d sh a f Rt (i, @) 0) [ (L (@) 2) d 1.
o SU @)

Introducing the polar variables (3.23) and using the representation
property of the rotation matrices, we get after some calculation

(3.43) oY, = f f (z) C,, (@) T,

where

(3.44) Cn @) =Y,m (8, ¢) cf (2),

(3.45) ¢} (@) = (4 )~ R{, (uy (8)) (ch «)—,

that is

(3.46) & (@) = @) <8;“§g_: >”2 PY (th o) (ch o),
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16 A. BASSETTO AND M. TOLLER

In conclusion we have

Prorposition 2. — If the function f(x) belongs to @ (I'), we can define
its Fourier transforms

(3.47) ), = [ 1@ (= " B;L, @,
(3.48) o, = f f (@) CF,. @) dT.

If the function f(x) undergoes the Loreniz iransformation (3.1), these
quantities transform as follows

(3‘49) /m _>2 GD/m//m’ (a) H jrm’s

jrm’

(3 50) (I)I}[m Z U“)I;llc:ljfmf (a) (I)}I'm ’

jrm'

where a‘)}f,z‘,-, w (@) are the matrix elements of the irreducible representations
of SL (2 C) in the basis (3.18). Explicit expressions for these quantities
are given for instance in [29]. The equations (3.47) and (3.49) hold for
arbitrary complex ) with the exception of the non-positive integers. When
®e A = 0, equation (3.47) can be written as

(3.51) H) = [ (@B}, @ dr.

4. Properties of the functions B’ b (@) and CY¥,, (2)

In this Section we exhibit some properties of the functions defined
by equations (3.25), (3.27), (3.44) and (3.46). From equations (3.27)
and (3.46), using the formulae (3.4.14) and (3.4.17) of HTF [31], we
get

r(Hra—»r+)

*.1) = =renrariiy Y b (@),
(42) cyy (_ O() — (_ 1)\l+1 M (1)’
4.3) M (@) = (— )"} (o).

Using the formulae (3.9.8) and (3.9.9) of HTF, we get the asymptotic
behaviours

.4 bh(a) >~ —rtmexpla(d —1)]
0>

& @)~ (— e ery (FER) espl— 01+ 1)

M=01,2...).

@.5)
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HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID 17

The function b}‘ («) is analytic in the whole A plane apart from poles
at the integral points 2 =0, 1, 2, ...,j. We call them the ¢ Lorentz
nonsense points ”. The residues are

@.6) res b} @)= (Do (FEDH e gm0,

Besides we have the identity

@n 5@ =0 e-n(FTp) e M=o

Comparing these identities with the definitions (3.47) and (3.48),
we see that

ProrosiTioN 3. — Iff(x)e® (I'), the function H,m is analytic in
the whole complex A plane apart from simple poles at the points 4 =0,
—1, — 2, ..., —j with residues given by

y M I 1/2
(4.8) )\ie_sMH}.,F(_l)M(M,)_I(%M_;J O M=0,1,...,)).

Moreover, we have the identities

@9 HY, =0 er- () e er=t2 ),

(4' 10) (p;]l:f = )“ jme

We shall also use the majorizations
“.11) |2 b} @] =@n)y"(cha)y(j2+j+1)exp(xRed) (Rek=0),
4.12) |20)(@)| = @y (cha)y™ (2 +j+1)

’N—MFO+1+D
T —7+))

| ¢j (@)= @r)"" (chay

exp (x Re 1) (Re x> 0),

2
.13) X[|1&|1(8+{1\1\:B:> ]I exp (—[Ma|)
= @y ehay (37 (4 3) ) exp (= Sta]),
(0=M<|M|).

Equation (4.11) can be obtained from the integral representation (3.26)
after an integration by parts. Equation (4.12) follows using
equation (4.1). Equation (4.13) is a consequence of the definition (3.46)
and of equation (3.7.30) of HTF [31].
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18 A. BASSETTO AND M. TOLLER

Now we want to study the behaviour of our functions under infini-
tesimal Lorentz transformations. We introduce the differential operators
(generators) :

@1 Mf@=|ZrC@Ema| = g -al]r@,

@19) Lf@=|FfCa-0n]|  =[-or—al]ie

=0

where a; ({) means a boost along the z axis with rapidity . The other
four generators can be obtained by rotation of the indices. In the
last expressions in equations (4.14) and (4.15) we have to consider
an arbitrary C” extension of f(x) outside the hyperboloid.

The action of the infinitesimal rotations can be obtained from well-
known properties of the spherical harmonics [30] and is

(4.16) M. £ 1 M,) B))‘m (@) T“ G F ’T‘) (jxi m+ 1)]1/2]3},”1:.1 (),
M. B}, (x) = — im B}, (z);

4.17) (M. 4+ M; + M)B}, @) = —j (j + ) B, @)

Exactly similar formulae hold for C¥,, (z).

The action of L. can be found by direct calculation using the
formulae (3.8.19) and (3.8.12) of HTF and we get

@.18) LB}, @ = ¢ — 1+ 0| LELEDUL LM, | @

[ m G —m) T .
G+ 0| FERE=h] B @

4.19) L. CY, (@
_[U+1+M)(j+1—M)(j+1+m)(i+1_m)]'ﬁc”! @
= @j+DEj+3)

GEMG—MG+mG—mT”w
_[ Ri+DHEj—1D ] Cj-1,m (@)-

The generators L, and L, can be obtained from the commutation relations

(4.20) L,=M,L. — L M, L,=L. M, — M.L..

By repeated use of these relations one gets

@.21) (L +L; +L:—M,— M, —M)B}, (@ = —1)B}, @),

)
4.22) (L4 L+L:— M,—M —M)C), @ = —1)C, @.

)
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HARMONIC ANALYSIS ON THE ONE~SHEET HYPERBOLOID 19

Now we consider the equations (3.47) and (3.48) and we apply several
times to their integrand the equations (4.17), (4.21) and (4.22). As
f (x) is C* and has compact support we can integrate by parts and using
the bounds (4.11)-(4.13) we get the following result

ProposiTioN 4. — If f(x) is C* and has compact support, the quantities
defined in equations (3.47) and (3.48) satisfy the bounds

4.23) [2H, | =1+ om2)y? A+ )7k (p, g Red)  (Red0),

. TW)T (I — % +J) NN

XA +j)y7k(p, q Redl)  (Reh=0),
(4'25) | d)i'lm ] é (j + 1)_(] k (q)!

where p and q are arbitrary integrers and the function k (p, q, Re}) is
continuous in Re A. Of course the functions k depend on f(x).

Another useful result can be obtained by remarking that a generator
applied to a function B, (z) [respectively CY, (z)] gives rise to a finite
sum of functions of the same kind with different values of j and m multi-
plied by coefficients which can be majorized by a polynomial in j and | % |
(respectively by a polynomial in j). From this remark, from the bounds
(4.11), (4.13) and from equation (4.1), we get

ProrositioN 5. — If P is a polynomial in the generafors, we have

(4.26) |3 PB}, @)| = (cha) " exp (2 Re ) Q(j, [A])  (Re} =Z0),

A r(—»ra+ar+j _
Xexp (@ ®Red)Qy,|2|), (Re k> 0),
(4.28) |PCY, @)|<=(cha)y'exp (—M|«])Q() (0=F=|M)),
where Q (j, | }|) and Q (j) are polynomials which depend only on the poly-
nomial P and in the last case on M.

5. The inverse formula

In order to reconstruct the function f(x) starting from its Fourier
transforms (3.47), (3.48), we start from the inverse Radon transform
(2.26). The first term of this formula can be written in the form

6.1) —@n [ du f £y dto
SU(2) 0

x[8" (&, L @)k + 1) 4+ ' (2", L (@) E) & + 1)]
X h (5 L @) E),
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20 A. BASSETTO AND M. TOLLER
where £ is defined in equation (3.16). Inverting the Mellin transform
(3.15) we get
ttiw
6.2) h(LL @i = —2 if DD @) dh (> 0),

E—iwx

and substituting into equation (5.1) we get

+iw N
(5.3) int f wdh | dul[— (¢, L@)E)]T" T H ().
iw SU(2)

In order to treat the second term of equation (2.26), we consider
the equation

6-4) 9 (LEHEL@EMHI) = o®,

which follows from equations (3.28) and (3.38).
If we parametrize the rotation u as

(.9) u=u; (= v)uy (—n) u: (=)

the angles » and p are just polar co-ordinates for the vector §. The
angle v is determined by the condition (2.27) which takes the form

(5.6) (L (@3, 2') = — cos 6.
If we put
6.7 T =L (—n)u(—p),

equation (5.6) takes the form

(5.8) Zyc08v + 2 sinv = cos .

Due to the ¢ function which appears in the second integral of
equation (2.26), we must require

(4.9 @, 8 =5 =2—-2=0

and therefore

(5.10) £+ 2 =1

As a consequence, equation (5.8) takes the general form
(B.11) v==0-+79

and we can write

5.12) u=u,(— 94,

(6.13) i=u(—9)u, (—n)u;(— .

VOLUME A-XvIill — 1973 — ~N° 1



HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID 21

Remark that &# depends only on the parameters » and p, as ¥ is deter-
mined by the condition

(.14) (L(@b,2) =—1.
Using equation (5.4) and the covariance condition
(5.15) OY (u, (— 0) &) = exp (i M 0) ® (71),

which follows from the definition (3.38), we can write the second term
in equation (2.26) in the form

6.16) @Y f_ " d cos " [

where

T:
(.17) Tw = — 7 f exp (i M 0) (1 — cos Ot d.
0

2

s (), L @ B) @ (@),

In order to compute this integral, which is singular, we have to remember
how equation (2.19) was derived starting from equation (2.11). We see
in this way that it has to be interpreted as the analytic continuation in
¢ = — 3 of the integral

(.18) @my~ f M[(l — et (1 — el
g0+ 1) (1 — ey
+ D @ — e et an.
After some calculation we get
(5.19) m=|M|

In conclusion, we have

ProrositioN 6. — If fe® (I), the Fourier transforms (3.17) and
(3.39) can be inverted by means of the formula

(6.200 f@)=i n—1f+iw 22 dA @ u[— (2, L@ H ()

—ix SU(2)

+ 3 M| [ dud((@,L@E)) e @),

— sU()

where the rotation it is defined in ferms of the rotation u by means of equa-
tions (5.12) and (5.14).
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22 A. BASSETTO AND M. TOLLER

If we introduce the basis (3.18), from equations (3.19) and (3.40)
we get

(5.21) H' (1) = Y\V27 1Rl (1) H,,
jm
(5.22) " () = Y V27F 1 Rl () ¥

m

Using equation (5.21) and the definition (3.21), the first integral
in equation (5.20) takes the form

(.23) 2 f 2 ALY B}, @) H).
—i= jm

In order to treat the second term in equation (5.20), we introduce
the polar co-ordinates

(5.24) 2’ =L (. (¢') u, (0) &,

(5.25) ' = (sha', 0, 0, ch 2),

and the new rotations

(5.26) v = U, (5) Uy () Uz () = uu; (¢') uy V"),
(56.27) ¥ = u; (&) uy () us: (r) = fu. (¢') u, (¥').

Then the second integral in equation (5.20) takes the form

6.2 MY e+ 1)1/2f @03 (sh o’ — ch o’ cosy)
M SU(2)

jm

X 2 Rit: () R @y (= 0) uz (— 9) Do

and the condition (5.14) becomes
(5.29) ch o’ siny cos& = 1.

We can perform the integral (5.28) using the ¢ function. We have,
also from equation (5.29),

(6.30) tha' =cosy, cos7 =1,

and equation (5.28) takes the form

G.31) w3 IMY (eh ) Rio @y (1)) Yy (0, ) @
M

jm

=273 (M| Y] Cj @) P
M

jm
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Using the symmetry properties (4.3) and (4.10), we can restrict
the sum over M to positive values and we get the final result

PropositioN 7. — If fe® (T), the Fourier transforms (3.47) and (3.48)
can be inverted by means of the formula

e Y B}, @) H, + 4 wi MY, CJ @) © e

jm M=1 jm

(.32) [ @) =2if

—i®

Here and throughout this paper the sums over j and m are always extended
to all the integral values of these indices such that j>>|M| and | m| <j.

If we multiply equation (5.32) by a function f; (z') belonging to
@ (I') and we use equations (3.47) and (3.48), we get the Plancherel
formula
(.33) f fo @) f@dl =2i f Y, (— 1) Hem H; L
—i= jm
-+ 4 TTZ ME (_ l)m d)gjm (I)},i—m'

M=1 im

6. The Laplace transform on the hyperboloid

In the preceding sections we have studied the Fourier transformation
of functions on the hyperboloid belonging to the space @ (I'). We have
seen that only pure imaginary values of 2, corresponding to unitary
representations, are involved in the inverse and in the Plancherel for-
mulae. These results can be generalized to arbitrary L? functions on
the hyperboloid. However, in order to expand functions of a more
general kind, we have to consider values of A which are not purely
imaginary. The situation is very similar to the one we find in the two-
sided Laplace transform of a function defined on the real line.

We start from equation (5.33), in which f and f; belong to @ (I).
Using the bounds (4.23) and (4.24), we see that it is possible to shift
the integration path on the line ®Re 2 = L, where L is an arbitrary real
non integral number. In doing this, we cross some poles and, using
equations (4.8) and (4.9), we see that their contribution cancels exactly
some terms of the series in equation (5.33). We get in this way

L+io

®6.1) ffc (x)f(x)dl‘=2if

L—iw

2 d Y (— 1) Hep Hy L,
jm

+ Y AT MY (— D @, O,

M>|L| jm
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24 A. BASSETTO AND M. TOLLER

Now we want to extend this formula to the case in which f is a distri-
bution with suitable properties. It is convenient to define a space S (I')
of test functions which are infinitely differentiable and have the following
fast decrease property : for any polynomial P in the generators M, ..., L;
with constant coefficients and for any integer ¢ we have

6.2) sup[cha (1 +|a|)|Pf(®)|] <o (sh o = ).

The semi-norms (6.2) define, as usual, the topology of & (I). This
is a natural generalization of the space  (R*) of test functions in R~
Also in this case we can introduce a corresponding space S’ (I)) of
¢ tempered ” distributions [18].

We consider first a distribution f (x) with support in the part of the
hyperboloid defined by « > «, and such that

(6.3) el fo (x)es’ ().
This means that the distribution f; can be applied to the C” function f(z)if

6.4) 0. (2 — 2,) €% f (@) €S (L),

where 0, (f) is a regularized step function equal to one for > 0 and to
zero for { == — .

Using the Lemma of Appendix A, and the bounds (4.26)-(4.28), we see
that the functions B’j‘,,); (x) satisfy the condition (6.4) for

6.5) L < Rel r£0,—1, —2, ..., —J)
while the functions CY¥,, (z) have this property for
(6.6) L, <|M|

If the conditions (6.5) and (6.6) are satisfied, the integrals (3.47)
and (3.48), in which the distribution f; takes the place of the function f,
have a meaning in the sense of distributions. Moreover, due to the
continuity property of distributions, the integral (3.47) is majorized
by a finite sum of semi-norms of the kind

6.7 sup [cha (1 + | a|)7|P 0. (x —a)) e*B7 L, @],

while the integral (3.48) is majorized by a finite sum of semi-norms of the
kind
6.8) sup [cha (1 + |« |)7 | P O (x — ) €% CF,, (@) ]].

VOLUME A-Xvil — 1973 — ~N° 1



HARMONIC ANALYSIS ON THE ONE-SHEET HYPERBOLOID 25

Then, using the Lemma of Appendix A and the inequalities (4.26)-(4.28),
we get the bounds

( [HGu|=k@ 4y Q +|omi|)y,

6.9) [®Rer=L>L,  (L#0,—1,..., —j),

(6.10) | Om| <K (j+ 1) (M| > Ly,

where k, p and q depend on L, but not on j, m and Jm A, while k' and p’
do not depend on M, j and m.

Now we can show that equation (6.1) can be extended to the case
in which fe® (T) and f; is a distribution of the kind we are considering.
First of all, we remark that the bounds (6.9), (6.10) and (4.23)-(4.25)
ensure the convergence of the sums and the integrals which appear in
the right-hand side of equation (6.1). Then we consider a sequence { f;, }
of functions belonging to @ (I') such that

6.11) et fo, (T) T e fo (2)

in the topology of $’(I). From a general property of distribution
spaces [18] we have that the distributions which appear in equation (6.11)
are equicontinuous functionals in  (I'). It follows that the Laplace
transforms of the functions f, satisfy bounds similar to equations (6.9)
and (6.10) with the right-hand side independent of i. We write equa-
tion (6.1) for the functions f and f;; and the result we need is obtained
by performing the limit i - co. This procedure is justified by the bounds
derived above.

A similar treatment can be given for distributions which have support
in the part of the hyperboloid defined by

(6.12) o < d,
and such that
(6.13) e L fo (x)es’ (D).

Then equation (6.1) holds for L < L.,.

In conclusion we see that equation (6.1) holds whenever the distri-
bution f; satisfies both the conditions (6.3) and (6.13), provided that
(6.14) Li<L<L L4142 ...

In fact in this case the distribution f; can be decomposed into the sum
of two distributions of the kind considered above.

Now we want to get a further extension of equation (6.1) in the case
in which

(6.15) f (@) e-*es (T).
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It is easy to show that under this conditions H’,, is defined for

Re ) = —L and @Y, is defined for M= | L|. Moriaover, these func-
tions satisfy inequalities similar to equations (4.23)-(4.25). These
inequalities ensure the existence of the right-hand side of equation (6.1),
which can again be extended by means of the procedure used above.

In conclusion we have

PropositioN 8. — If the distribution fc (x) satisfies the conditions

{ el fo()es (I),

(6.16) | e =% fo (@)es’ () (L < Ly),

its Laplace transforms, given by formulae similar fo equations (3.47)
and (3.48), are defined for

(6.17) Li< ®edr<L,, M>max[L, — L],
and under these conditions satisfy the bounds (6.9) and (6.10). If the

function f(x) satisfies the condition (6.15), ifs Laplace transforms are
defined for

(6.18) Rer=—L, M>|L|

and satisfy the bounds (4.23)-(4.25).

Under these conditions, and if equation (6.14) is safisfied, the
formula (6.1) holds.

7. Invariant kernels
By invariant kernel we mean a function or a distribution K (z, ')
with the property
7.1) K@@z L(a)2)=K(x, ),
where x and 2’ are points of the hyperboloid and a is an element of SL (2 C).

The action of a kernel on a function f(x) can be written formally as
(7.2) K@ = [ K@a)f@)d.

This definition is meaningful only if the kernel and the function satisfy
some conditions. We are interested in studying some class of kernels
which transform some well-defined function space into itself.

We consider first kernels which are continuous functions and we impose
that the integral (7.2) is absolutely convergent. Then if K transforms
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a function space into itself, the iterated kernel
(7.3) K. (, 2") = j K (@, 2) K @, z") dI".
must exist.

It is easy to show that K can depend only on the quantities
(7.4) z=—(z, 2), e+ = sign (z, 4+ ),

and that it can depend on e only when z>1 and on z, only when
z=—1.

One can easily realize that if the kernel K depends only on z but not
on ¢, the integral in equation (7.3) cannot be absolutely convergent.
This is the origin of the difficulties one finds in the group-theoretical
treatment of the Bethe-Salpeter equation at vanishing four-momentum.

Therefore, we restrict our investigation to kernels of the form

(7.5) K (z, ) =0 (x, — x,) k (2),
where
(7.6) k@ =0 for z-1,

which are just of the kind which appears in the multiperipheral models.
Three other classes of kernels can be obtained just changing the sign
of x or 2’ and can be treated in a similar way.

We consider the space @, (I') of the infinitely differentiable functions
on I' which vanish for z, smaller than some constant (which depends
on the function). One can develop a mathematical treatment of this
space in close analogy with the treatment given in [18] of the space @,
of the C” functions of the real line which vanish for sufficiently small
values of their argument. In particular, one can introduce a suitable
topology on @, (I') and show that the dual of @, (I') is the space @’ (T)
of the distributions vanishing for sufficiently large x,. In a similar way
we introduce the space @_ (I') of the C” functions vanishing for suffi-
ciently large x, and the corresponding dual space @, (I') of the distri-
butions vanishing for sufficiently small z,.

Now we assume that
7.7) k(= @hpy" k@ (z=chp),

where k (8) is a distribution with support in the half line 3> 3, > 0.
Under this condition, it is easy to show by means of suitable changes
of variables, that K (z, «') is a distribution in the two variables z, xz’.
Moreover, for fixed z’ it is a distribution in x belonging to @ (I') and
for fixed z it is a distribution in =’ belonging to @_ (I').
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To be more specific, if fe®_ (I') and we put

@8 V@O~ [[@(@)+hp)0 @, —w)dl,
we have

@9 K1) =K@ @d=[k@ye, o ds.

It is easy to show that the function [K" f](z’) defined in equation (7.9)
belongs to @_ (I'). In a similar way one can show that if fe®, (I,
the function [K f] (x) defined in equation (7.2) belongs to @, (I'). In this
way we have defined two linear mappings K” and K, respectively in ®@_ (I')
and in @, (T'), which can be shown to be continuous.

If few_ () and fee®, (I'), we have
@10 [f@KI@ = K1) f @) d.

We remark that the right-hand side of this equation is meaningful also
when fie®, (I). Therefore equation (7.10) can be used to define
[K fc] (x) as a distribution of @', (T).

In conclusion, we have

ProposiTioN 9. — A kernel of the form
(7.11) K@, o) =0(x, —2)) k@) h ™ [chd =—( 2],

where k (B) is a distribution with support in the open half line 3 > 0,
transforms the spaces @, (I') and @ (T') continuously into themselves.
The transposed kernel K* tfransforms the spaces @_ (I') and ®_ (I') conti-
nuously info themselves.

In order to introduce the Laplace transforms, we have to restrict
the space of distributions on the hyperboloid imposing the condition (6.3)
and to impose also some conditions on the kernel in such a way that it.
maps this more restricted space into itself.

First we consider equations (7.8) and (7.9) assuming that

(7.12) fx)y=0 for z, <0
and
(7.13) e fxyes ) (L, >0, 2, = sh ).

Then from the majorization (B 11), we see that the function (7.8) has.
the property

(7.14) 0. (B — B ¥ (@, Be“PesSR)  (Bo>c>0).
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Therefore the right-hand side of equation (7.9) is meaningful if the distri-
bution k (8), besides having its support in 3 > (3,, satisfies the condition

(7.15) e LB k (B)es’ (R).

Moreover from equation (B 11) and the continuity property of the distri-
bution (7.15), we get the inequality

(7.16) |[K'f]@)[=c)(chay e (1 +|a'[)* (2 >0),

where ¢, is a semi-norm continuous in § (') of the function (7.13).

From the Lorentz invariance of the kernel K we get
(7.17) [PK*f] (") =fK (@, ') [P f] (z) dT,

where P is an arbitrary polynomial (with constant coefficients) in the
generators of the Lorentz transformations. It follows that [PKT f] (z')
satisfies a bound similar to equation (7.16). In conclusion, we have
shown that the function

(7.18) 0 (), + &) e [KT f] (2')

belongs to ¥ (I') and depends continuously on the function (7.13).

Introducing this result in equation (7.10), we see that if the distribu-
tion f¢ (x) has its support in z), > ¢ and

(7.19) e L¥ fo (x)es' (D) (L, > 0),
we have
(7.20) e L [K fe] ) e s’ (D).

In conclusion, Proposition 9 can be precised as follows

ProrositioN 10. — Under the conditions of Proposition 9, if k (B) satisfies
the condition (7.15) with L, > 0, the kernel K transforms infto itself the
space of the distributions of &', (I') which have the property (7.19).

We remember that the functions Bf,;f (z) and Cﬁ-‘m (x) satisfy the condi-
tion (6.4) if the parameters 3 and M satisfy the conditions (6.5) and (6.6).
Then these functions can be decomposed into the sum of a function
belonging to @_ (I) and a function satisfying the conditions (7.12)
and (7.13). Therefore, if equation (7.15) is satisfied, we can apply to
them the kernel KT.

It is a simple calculation to show that, if we put in equations (7.8)
and (7.9) f(z) = By} (z), we have

(7.21) ¢ @, B =fBo_o)‘ () o ((x, ') + ch B) 0 (z, — ;) dT
=271 eM By} ()  (Red>0),
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and therefore

(7.22) [ K@ )B3 @dr =F0) B3 @),
where

(7.23) K@) =2m f k@) eMds  (Red> L, > 0).

Using equations (4.16), (4.18) and (7.17), we see that this equation is

also valid for a general function of the kind B,_-,?; (x). From equation (4.7)
we get

(7.24) f K (z, ) CY, @) dl =k (M)CY, @) (M >L,>0).

Introducing these results into equation (7.10), we get

ProposiTioN 11. — If fc is a distribution of @' (') which satisfies the
condition (7.19) and the kernel K is given by equation (7.11) where k (8) is
a distribution with support in the open half line 3 > 0 which satisfies the
condition (7.15) with L, > 0, we have the following connection between the
Laplace transforms of fc and of K f¢ :

(7.25) f B7 %, @) [K fe] (@) dT =& (3) f B, (@) fc (@) dT,

@20 [TL@K @A =Fo) [T f @,

where k (3) is defined in equation (7.23).

8. Regularization of a distribution on I'

Now we consider a function g (a) defined on the group SL (2 C),
infinitely differentiable and with compact support, that is an element
of the test function space @ (SL (2 C)). Its Laplace transform is given

by
@.1) Ghym = [ @nym (@) 9(a) & q,

SL(2C)

where d° a is the invariant measure. One can show that it satisfies
inequalities of the kind

®-2) |Gy | = Cpay (RN (L[ Im ) (1 41y (1 +J),
where p, ¢, ¢’ are arbitrary non-negative integers.
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If f (z) belongs to @ (I'), we can consider the new function

(8-3) fo @) = g@fL(@))d a,
SL(2C)
which also belongs to @ (T).

Using the results of Proposition 2, we see that the Laplace transforms
of the function f; are given by

A 0n 2N
®-4) Hijw = X, Gjome H) s
Jrm
M Mo M
(8 . 5) (I)l)/'m 22 Gjln/" m’ d)/" m’e

jrm'

Equation (8.3) can be extended to the case in which f(z) is a distri-
bution. 'We have in this case the following results which can be proved
by means of standard procedures.

ProrosrtioN 12. — If in equation (8.3) f € @’ (T), f, (z) is an infinitely
differentiable function, i. e., it belongs to & (V). In particular, the trans-
formation (8.3) maps @' (') into @, (T), and &' (L) into @_ (). If f (x)
safisfies the conditions (6.16), the function f, (x) satisfies the conditions

(8.6) et fy@es ), for L<L<L,

and its Laplace transforms are given by equations (8.4) and (8.5).

9. The Laplace transform of inclusive distributions

In order to define the expression (1.13) as a distribution, we consider a
test function g€ ® (SL (2 C)) and we write

©.1) fg (@) 9a (a) & a =fg @ fo (L (@) 22) K (@ny 70s) + ..
XK (2, 2,) fa (x)d* adly ... dT,.

If fied, (), fse®_ (') and the kernel K has the form (7.11), from
Propositions 9 and 12 we see that the right-hand side of this equation
is meaningful. If moreover we assume

e fy(@es (1),
9.2) el fy (@) es (D),
e 1Bk (3) es’ (R) (L:>0),

the Laplace transforms Hj jms HE,}n and k (1) are defined for ®Re A > L,,
while the Laplace transforms @Y, and @}, are defined for M > L,.
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Using the Propositions 8, 11 and 12, we can write the expression (9.1)
in the form

L+ie
[r@rn@aa=2if wd Y Gt i
L—iw

jmj m’

9.3
( ) + 4n Z M 2 G}?/?/" m' I/]};r?/{l'm"
M>L  jmjm
(L > Ll),
where
9.4) oo = (— 1y Hyj o [RW)] " Hajlows
(9.5) Drrm = (— 1y @), (R QD] @3

We remember that in the right-hand sides of equations (9.4) and (9.5)
one should take into account the variables u; and the corresponding
integrations, which were understood in equation (1.13). In particular,
the expression (k (1))"™* has to be interpreted as a kernel iterated n — 1
times.

In order to sum over n to get the inclusive distribution (1.12),
we assume that, as it happens in the physically interesting cases, the series

® ®
0 N 70hn Mo Mon
(9 . 6) Ijmj'm' = 2‘ I/'m/" m's I/'mj’ mr = 2 I/'mj' m's
n=1 n=1

converge for ®e A > L[> L, and M > L. in such a way that the sum
under the integration sign can be performed in equation (9.3). We obtain
in this way

L+iw N 3
0,— 0
[ A2 d)\ Z Gjm/" m’ I/'/nj’ m’

“L—iw

fg(a)J(a)d6a=2i

jmjrm’
9.7 Y Mo Mo
( ) -I— 4 2 M Z Gjmj' m’ I/'m/"m”
M>L jmj m'

(L>1).

If & (a) is a sufficiently regular function, equation (9.7) is equivalent
to the simpler formula

L+iw
@8 s@=2if rd Y @l
L—iw

jmjrm’

+4r M Y O @ Dy (L>T)

M>L jmjm
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If the function If,i,u . can be continued analytically for ®Re A <L,
one can get in the usual way the asymptotic behaviour of & (a) from the
singularities of this function. The standard way to obtain this analytic
continuation is to write

0.9) By = (= U [ By @F Qv w)

X HE}W @) % u' du’ % udu,

where F is the solution of the multiperipheral integral equation
9.10) hQ,uuw)=2u"'d@u —u)

+f1"< Gy u, 2RO, u”, ) % u” du”.

If the kernel k is Fredholm, the kernel f is meromorphic in the half
plane ®Re 4 > L, and its poles are just the Lorentz poles.

We remark that equations (9.7) or (9.8) can be interpreted as an
harmonic analysis of the distribution & (¢) on SL (2 C). From a general
point of view, if & (a) is an arbitrary distribution one can only write [17] :

©9.11) fa (@ g (a) & a = F (G),

where F is a linear functional on the space of the analytic func-
tions G%,},» n. BEquation (9.7) gives a particular explicit expression for
the functional F, which is valid for functions of the form (1.13) and
therefore contains some dynamical information that follows from the
model we are considering. Remark that this functional is not written
in the same form as the one assumed in [17].

At this point, we analyze briefly the dynamical information contained
in equations (9.7) and (9.8). 'We remember that the square of the centre-
of-mass energy is given by

(9.12) S = (P“ + L (a) Pm)2

and therefore the limit of large a is equivalent to the limit of large s.
In this limit the series in the right-hand side of equation (9.8) is of the
order s—! and therefore can be lumped in the * background integral .

The contribution of a Lorentz pole at A = % > 0 behaves asymptotically

as s»—'. Remark that in this class of models only Lorentz poles with
M = O can appear.

From Proposition 3, we see that HE,},,,, can have poles for 2 =0,
1,2, ..., j’, which in general appear also in the expression (9.9). These
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are fixed poles at the nonsense points in the Lorentz plane. The matrix
elements &)?;,T,}mr (a) have simple zeros for A =j + 1, j+2, ..., j
(if j* > j). Therefore the integrand in equation (9.8) has poles at the
“ nonsense nonsense ~’ points A =1, 2, ..., min(j, j). The contribu-
tions of these poles have the same nature as the terms of the series in
equation (9.8), due to the identity

oo o [GAMIG = M2 w0
jmj' m ((1) = [(] — M) i (jl + M) 1] O/m/’m’ (a)’
(IM|=j, M| £,

(9.13)

and therefore can be asymptotically included in the background integral.

A more interesting situation occurs when a Lorentz pole is present
for integral 2. Then the function I};,:‘j, = has a double pole if j" > A.
We remember that the coefficient of the leading term of 63?;,7,},,1, (a)
has a simple zero for 2 =0, 1, 2, ..., j', so that, for any fixed j, j’, the
integrand in equation (9.8) has, in general, a simple pole, as far as the
leading term is concerned. In conclusion, we see that the fixed poles
have the effect of compensating the nonsense zeros.

This mechanism is physically very important if one assumes that the
Pomeron is a Lorentz pole at A = 2. In fact, if we consider the one-
particle inclusive distribution for the process A + B — « 4 anything,
and we call ¢ and 0 the momentum and the production angle of the
observed particle in the rest system of the particle B, the inclusive distri-
bution is given by ([7], [32]) :

9.14) F(,q,9)

= M5 — 4m)] 0 (@ @) uy (9),9)

~ 356 —4m (— 49 X 6 @) @571 (@ @) uy O),

where % is the position of the leading pole. Using the asymptotic pro-
perties of the representation matrix elements, we get [29] :

(9.15) F (s, g, 0)
~—2nst (T(X4+1))exp[(R —1)¢]

X 3B @V27 F1(T (X =) T (X4 +1))7" Py (cos 6).
If X = 2, the sum over j' has only the first two terms giving rise to
a linear behaviour in cos 6, which is incompatible with the observed
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damping in the transverse momentum
(9.16) p = gsin 0.

It is easy to realize that the presence of the fixed pole at 2 = 2 permits
to avoid this unwanted conclusion.

APPENDIX A

We prove the following result :

Lemma. — If f(x) is a C* function on T, the two sets of semi-norms
A1 sup [cha (1 +[a[)7 | P et f(2) ]]
and
(A2) supfcha(@ +]a|)e*|Pf(x)]] @=0,1,2,...),
where P indicates an arbitrary polynomial in the generators (with constant

coefficients), are equivalent in the sense that each semi-norm of the kind (A 1)
is majorized by a finite sum of semi-norms of the kind (A 2) and vice-versa.

Proof. — First we show that, if P is a polynomial in the generators

(A 3) |Pele| = C ele,

This inequality follows from the fact that if P is of degree n, we can
write

2n

(A4 P el® = el Z (x3 + 1)—0re 2 Aity o, Ty Ty - -« T

'p
p=0 ilg... dp

This formula holds clearly for n = 0 and can be proved by induction
starting from the definitions (4.14) and (4.15) of the generators.

It follows that

> (@} &%) (P: f (@)

i=1

A5 [Pef(@)|= Zeé* Y C:|Pif @)

By means of the substitutions exp (L «) f (x) - f (z), L - — L, we get
also

(A 6) & |Pf(z)| <Y Ci|Pie*f(@)]

i=1
and the Lemma follows immediately.
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APPENDIX B

In this Appendix we study some properties of the function ¢ (2, )
defined by equation (7.8). By means of a rotation, we can choose a
system of co-ordinates in which

B1) 2’ = (sh’, 0,0, ch o)

and equation (7.8) takes the form
B2) Y@, B = f f (@) R da, dzs,

where

B3) {x(,:chﬁsha + Rchda,

z; =chBcha + Rsha’
B9 R = [(sh ) + o} + &3]

If we keep ., ., and o' fixed, from equation (B 3) we get

@ 5) 55 [@ == R shp L[ @),

where L; is the generator of the boosts along the x; axis. From a repeated
use of this equation, we obtain

B6) 55, (R @) = R Y, Au (R ch 6, R sh §) @Y @)

where A,; is a polynomial of maximum degree n in each of its two variables
and therefore satisfies an inequality of the kind

B7) | A | < a, (th By

Therefore from equations (B 2) and (B 6) we have the inequality
B3) d—"q»(x’ B)| < a. (th @)—"i | (L) f (x) | R~ dz, dx
dﬁn ’ = s 1 2
i=0

Now we assume that f has the properties (7.12) and (7.13). Then,
from the Lemma of Appendix A, we have

®9) @) [ @) ] £ Cog e o)™ (L [« ])
= @=0,1,2..),
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where C,; is a semi-norm continuous in $ (I') of the function (7.13).
Introducing this inequality into equation (B 8), we get the majorization

dn
\Wﬁ—" b (@, B) l
=, Cry th B) " 27 (Lych a’)~t e~ 1> +B) (1 + o’ + B)~7
(@ +3>0,L,>0),

(B 10)

and therefore

dn.
g | @D 2oy (P27
®B11) X (Ly ch ')t €11 +8) (1 4 a)=7 (1 + B~
(@’ >0,p,¢g=0,1,2...,L; > 0).
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