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Conformal invariance of the equations
of motion in curved spaces

E. SCHNIRMAN and C. G. OLIVEIRA

Centro Brasileiro de Pesquisas Fisicas

Ann. Inst. H. Poincaré,
Vol. XVII, n° 4, 1973,

Section A :

Physique théorique.

ABSTRACT. - The conformal invariance of the classical and quantum
equations of motion in curved spaces is studied. It is shown that this
invariance may be obtained without considering any mass variation.
This is possible due to a suitable modification of the metric of the Rieman-
nian space-time. The arc element of the new geometry depends on
the values assumed by a vector field along a trajectory leading to the
point under consideration. This new formulation may be called a

semi-metrical formulation, in the sense that not only the metric (x)
is a fundamental object, but also the vector field.

INTRODUCTION

In the study of the conformal invariance of the fundamental equations
of physics [1] it is assumed, in general, that the rest mass of the particles
transform in a specified way in order to assure the conformal invariance
of those equations. As we will see, any realization of the rest mass

transforming in that way must be dependent on the coordinates. In

the particular case of the fifteen parameter conformal group of the flat
space, the rest mass has to depend on the scale and acceleration para-
meters, as well as on the coordinates. Since these quantities may
assume any continous range of values, we get a representation of the
mass depending on a continuous set of variables. From the point of
view of the theory of elementary particles this fact has no physical
interpretation. In this connection, it is usually said that conformal

symmetry holds only at high energies, the rest energy of the particles
being neglectable compared to their kinetic energy [2]. In the classical

theory we may, in principle, allow a mass variation of this sort, if for
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instance we think at the conformal correction to m as a scalar interaction

acting on the system, that is in terms of the action integral :

where meff = (m + ::£9) is the eflective mass of the system, which could,
eventually, assume a continuous range of values. However this inter-

pretation has no analog in the quantum theory.
Presently we propose a redefinition of the space-time metric in a such

a way that the rest mass becomes conformal invariant. This is done

for the case of curved manifolds. With the new metric, that means,
with the new geometry, the arc element, calculated at any regular point
for (x) (the metric of a Riemannian space), will depend on the line
integral of a vector field along a trajectory which leads to this point
without crossing any world line of singularity for ~ (x).

It is important to note that the introduction of this vector field does
not absorb the dilatation transformations in flat space-time, so that a
conformal invariant scalar mass is only achieved in curved spaces satis-
fying a particular condition [(1.10), in the text].
The notation used is the following : greek letters denote values going

from 0 to 3, latin letters indicate values from 1 to 3. Usual partial

derivatives are denoted by a comma, or by if this operates on any

quantity independent on the path of integration referred above. The

symbol d, will be used for denoting the derivatives of the path dependent
objects. A semi-colon denotes the covariant differentiation for the

metric (x) or any path-independent object and the symbol D~ indicates
the covariant differentiation for the new metric. The metric tensor

(x) is taken with a local signature equal to - 2.

1. THE CONFORMAL GROUP :

CONFORMAL TRANSFORMATIONS ON THE METRIC

We will think at the conformal group as the group of general transfor-
mations which consists of the manifold mapping group (M. M. G.),
the group of the general coordinate transformations such that

and the transformation group of the metric tensor, such that, under
the action of this group denoted in the following by Cg [3] :

7 (x) an arbitrary function at least of the class C2.
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Due to this variation of the metric, the geodesic of a Riemannian
space is not conformal invariant, since the Christoffel symbols transform,
under Cg, as 

, , . ,

Weyl has solved this difficulty, in his theory of gravitation and electro-
magnetism by introducing a conformal invariant semi-metrical symmetric
affinity by means of the condition :

This condition does not determine uniquely (x) and Ax (x), due to
the fact that, given a pair (gL’I’ Ax), which satisfies (1.4), there is an
infinity of other possible pairs (x), A~ (x)] satisfying the same condi-
tion [4], provided that :

(x) a scalar function]. However, as it may be easily proved,
the semi-metrical symmetric affinity of Weyl’s formulation is form
invariant under the passage from one pair of solutions of the fundamental
condition to another. The first half of the above transformation repre-
sents just the conformal transformation of the metric and thus we
obtain a conformal invariant affinity by considering as fundamental
objects the metric and a vector field Ax. In Weyl’s theory Ax is
interpreted as the electromagnetic potentials. Other variations of
this theory have been proposed in such a form that Ax (x) is interpreted
as an object proportional to the metric [5] However, the determi-
nation of conformal invariant equations of motion, in these « purely
metrical formulations », seems to us very complicated and, moreover,
the conformal invariance is not obtained without considering a confor-
mally covariant variation on the rest mass of the particles.

Since apparently there is no physical interpretation for such variation
in the mass, it would be interesting to look for other possible form of
obtaining equations of motion which are invariant under the conformal
group such that the rest mass is also conformal invariant.
For obtaining this type of formalism, we modify the form of the metric,

instead of modifying the form of the affinity. For this modification
in gyw we follow an idea of Mandelstam [6] who showed how to define
gauge-invariant quantities with a matter field interacting with the
electromagnetic field. The disadvantages of the current formulations
of quantum electrodynamics, which use the potentials as the fundamental
variables and, therefore, depend on particular gauges (as, for instance,
the Coulomb or the Lorentz gauge), are not present in the formulation
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in terms of operators which keep unchanged under gauge transformations.
In this way, the introduction of non-physical states normalized with
respect to a non definite metric (Lorentz gauge) or the use of lagrangeans
which are not manifestly Lorentz-invariant (Coulomb gauge) is not

necessary.
For the electromagnetic field interacting with a scalar field, the gauge-

invariant variables of the matter field are defined as

The equations of motion are constructed with the total gauge-invariant
Lorentz covariant Lagrangian :

where

The commutation rules among the gauge invariant operators are

determined in the usual way, leading to the quantization of the electro-
magnetic field which depends only on gauge-independent quantities.

In this paper, we consider the conformal changing on the metric as a
gauge transformation on g,v (x), and then look for a redefinition of g~,.,
in such a form that it becomes gauge-invariant.
With this aim, we define (in a cartesian system of coordinates, for

convenience) :
/ ~~ 1

where the integration is taken over a trajectory P starting at Xin, without
crossing any world-line of singularity for and in such a form that

 03B60  x0 (since this is reasonable from the physical point of view-
propagation effects of the vector field in the manifold obey the causality
law) ; the krx in (1.8) is defined as a four vector under the general coordinate
transformations, and changes under C~ as

. It is interesting to note that these two simultaneous requirements
do not allow a direct representation for ~x in terms of the metric gu.,
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and its derivatives ~. Indeed, we may form the quantities :

which obey the transformation law (1.9) but they do not transform as
a fourvector under curvilinear coordinate transformations. This implies
that we must keep k;x as a set of independent variables, of the same
fundamental order as ~. A conformal invariant formulation, as we
intend presently, will need both types of quantities. (x, P), defined
by (1.8) will be conformal-invariant if we impose on the transformation
function 03C3 (x) the condition :

It is important to note that our formalism does not absorb the scale
transformations (or dilatations) in flat-space time (remember that the
special conformal group Cu contains the dilatations) for, in this case,

we have

under Cg,

But in flat space-time, under an infinitesimal transformation

where ~’~ are the generators of the infinitesimal conformal special group,

with

~ : translation parameters;
2~ : parameters of the Lorentz group;

fi : dilatation parameter;
ax : special conformal parameter;

we obtain,

At any fixed point, such as x;n, which may, eventually, be taken as Xin = 0,
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Then (1.10 a) is conformal invariant only for special transformations
not containing dilatations. We conclude that the introduction of a

vector field k, (x) does not absorb scale transformations. This is in

agreement with the general assumption that conformal Co-invariance
is only verified at high energies (the operator of Hilbert space associated
to the generator of scale transformations has a continuous spectrum of
eigenfunctions), implying continuous rest-mass values (which are neglec-
table at high energies) [2]. As we will see in the following, a conformal-
invariant scalar mass is only realizable in curved spaces satisfying condi-
tion (1.10).
Although having used a cartesian system of coordinates for the defi-

nition of (x, P) and of the limiting conditions, we note that this may
be done in any coordinate system, since we have imposed that kx is a
world fourvector. Denoting by o (x, P) the value of the integral present
in (1.8), we have

Under a coordinate transformation to a curvilinear system of coordi-
nates, we get :

The integration in (1.8) will depend on the choice of the trajectory,
in each fixed coordinate system. Consider two paths Pi and P2 which
coincide at all points, except at some point x where they differ by a
small loop. Calling the area of this infinitesimal closed loop by 
we get from Stoke’s theorem :

where

Thus, there will be independence on the choice of the trajectory, if kx
is a gradient. However, we will not impose any particular form for kx.

2. THE CONFORMAL INVARIANT DERIVATIVES

The derivatives of G,w are given by
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where by x we indicate the remaining set of variables which do not vary,
the variation in the trajectory P being generated by the variation 3x&#x3E;,
in the coordinate x:~. It may be shown that this variation in the trajec-
tory tends to zero in the limit A~ 2014~ 0, so that we can define the derivatives
of G~~ by the usual formula

which gives

Under a conformal transformation :

This shows explicitly that the first kind Christoffel symbols constructed
with the Gap (x, P) are conformal invariant :

The quantities p, } depend on the choice of the trajectory P. However
the second kind Christoffel symbols :

are also conformal-invariant and independ on the choice of the trajec-
tory P, since they can be written entirely in terms of path independent
quantities

For the definition of r ~ we have used the convention that the tensor
index of any path dependent quantity, e. (x, P) is raised (or lowered)
by GÀp (Gxp) associated to the same trajectory :

In particular,

but
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if

In general, all path independent conformal invariant quantities are
equivalent to the corresponding objects in Weyl’s theory. For instance,
the affinity is the same as the Weyl affinity. The only difference
is that now is the second kind Christoffel symbol for and its

reciprocal. This interpretation is not obtained in WeyFs geometry.
By the other hand, objects like (x, P) and x, ~y ; (x, P) which are
conformal invariant, but depend on the trajectory P, do not exist in
Weyl’s formulation. As it will be shown in the next section, is just
the existence of such objects that will allow a formulation of the equations
of motion in a conformal invariant form, without requiring any trans-
formation on the rest mass of the particles.
The order in which conformal invariant derivatives appear cannot

be interchanged. A straightforward calculation shows that :

The tensor standing on the right hand side of (2.6) is a fourth rank
conformal invariant tensor.
We saw that ðp Gxp (x, P) is conformal invariant, nevertheless it is

not a third rank tensor with respect to curvilinear coordinate transfor-
mations. For obtaining a conformal invariant third rank tensor out
of d~ 0x3 we introduce the conformal invariant covariant derivative
Dp by

where is the corresponding affinity, which, by definition, has to be
conformal invariant. We impose the condition

For another trajectory P’ = P + oP :
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Since for any choice of the affinity, we have

we get, to first order in the variations :

Then, the condition (2.8) will hold independently of the trajectory
only if

that is,

The afinity which is obtained from the conditions (2.8) and (2.10)
is the second kind Christoffel symbols calculated for (x, P) and its
reciprocal :

3. THE CONFORMAL INVARIANT CURVATURE TENSOR

The conformal invariant curvature tensor associated to (x, P)
is

is independent on the choice of the trajectory and as can be
easily verified, antisymmetric only on the last pair of indices, contrarily
to -the Riemannian curvature tensor, which is antisymmetric on both
pair of indices.

The Ricci tensor

contains a symmetric and an antisymmetric part, the last being,
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Starting from the identity :

we arrive at the following relation

where

The affinities being symmetric, the Bianchi identities are verified :

Then,

Recalling that

a straightforward calculation leads to

where

Writing

we have for equation (3.6) :

which are the contracted Bianchi identities [7] for this case.

4. THE CLASSICAL

AND QUANTUM EQUATIONS OF MOTION

The classical equation of motion for electromagnetic interactions is

where e and m are respectively the charge and rest mass of the particle..
The velocity four-vector is u" = ,2014 ? ds being the line element 

Riemannian space-time geometry.
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This equation is not form-invariant under Cg, mainly due to the beha-
viour of the metrical affinity, the Christoffel symbols for gtJ.’J (x). To

make (4.1) conform invariant, we may try, as a first approximation,

to replace the metrical affinity ) £ 10/ 1 by the semi-metrical affinity rgy
given by (2.5). But the conformal covariance of the equation of motion
will only be attained if the rest mass varies under C,. Indeed, deno-

ting by

we see that, under Cg :

(use that the electromagnetic field strength do not vary). Thus, in

order to obtain conformal covariance, the rest mass has to transform as

A variation of this type in the rest mass was primarily proposed by
Schouten and Haantjes [1]. Since our initial aim was to avoid such
a transformation in the mass, we will look for a conformal invariant

equation of motion for electromagnetic interactions, starting from
conformal invariant field equations, plus the Bianchi identities (3.7).
(In analogy with the theory of General Relativity, where, as it is well
known, we can get the correct equations of motion for the particle,
represented as point singularities, from the field equations.)

In our case, the field equations will be formally derived from a varia-
tional principle, where G,v is the variant quantity which vanishes at
the boundary of the domain of integration.

Consider the following conformal invariant Lagrangian density for
empty space-time :

where a is a constant, and ui, u~ are the two field invariants constructed
out of 

-

upon variations on we get the field equations
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In these equations, R,; represents the symmetric part of the generalized
Ricci tensor, and T~ ; is the analog of the Maxwell stress tensor for the
field variables o.j~ : :

Since

we obtain, from (4.4), the following condition

Or, in terms of (x) and k  (x), we have

where R is the Ricci scalar of the Riemannian geometry.
As (4. 4) represent ten equations for the fourteen quantities g’f’J and A-p.,

we impose four subsidiary conditions :

There is no way of obtaining these equations from the Lagrangean (4.3),
since the variations are taken on the 

For a space with charged matter, we have the Lagrangean density :

where .~, f denotes the free Lagrangean (4. 3),
F~, : : electromagnetic field strength;
A : : density characterizing the matter;
~, ~ : constants.

The field equations are

Since :

where UV = is the velocity four-vector for our geometry with line

element dcr = dx" d~)’~, and using that
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for p{O) and the charge and matter densities in the rest frame. We
obtain from the identities (3.7) :

where we have put

(4.10) are the conformal invariant equations of motion for particles
of mass m and electric charge e.

We may also present (4.10) in the form

We see, from this equation, that even in the case where F,a = 0
and r~a = 0, the particle does not move along a straight line, in the
local tangent plane, due to the presence of the vector field k, (x) (1).

Observe that in (4.10) m is a conformal invariant scalar, since all

quantities that enter into this equation are invariant inder Cg. But

we should note that this invariance for m holds only in a non Riemannian
space, resembling close the so called Weyl space which appears in the
unitary field theory proposed by Weyl.
Now we treat the case for the quantum equation of motion, the Dirac

equation. From the fundamental relation connecting the generalized
Dirac matrices y, (x) to the metric g,v (x),

it follows that y, (x) transforms under Cg according to

Thus, to (x) may be corresponded the new object

Such that from (1.8) we obtain the new equation replacing~(4.11),

(1) This was to be expected, since the local vanishing of the conformal invariant
amnity does not imply that the Christoffel symbols vanish, but rather that they
are proportional to the local value assumed by the vector ka.

ANN. INST. POINCARE, A-XVII-4 27
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The covariant derivative of the Dirac spinor ’~ (x), in the Riemannian
space, is given by

Similarly the covariant derivatives (x) will be given by

The explicit expression for the spin-affine connection S’J (x) is given
by the conditions

its explicit form being (see Appendix) :

From (4 .13) we obtain the conformal invariant derivative of r~(.r, P)
in a form similar to (2.1) :

As before, we note that this derivative is not a second rank tensor under
the curvilinear coordinate transformations. Here the d~, IB also do not
transform as a Dirac spin-tensor under the internal transformations.
These two difficulties may be removed by introducing the conformal-
invariant covariant derivative D, rx (x, P) by

where we have taken directly the affinity (x) as given by the conformal
invariant expression (2.5), and have considered that the internal affinity
~? (x) is independent of trajectory [by the same reason as in the case
for G,v (x, P)]. We now set, accordingly to (2.6) and (4.14),

It is important to note that the expression (4.13), as well as the expres-
sion (4.18), for the contravariant 03B303B1 (x) take the form
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In compact notation, introducing

we rewrite (4.18) and (4.22) as

The equation that is obtained from (4.19) and (4.20), taken into consi-
deration the notation introduced in (4.23) and (4.24), will be

Which is similar to (4.17), except that we replace the usual derivative

7r~, since it operates on the ~,, and replace / / / by the rx . Thisy ~ P ’ p 91J y

new internal affinity ~~(~r), given by (4 . 25), is conformal invariant.
That is, under Cb we obtain

Thus, the equation (4.15) now becomes

for the conformal invariant coderivative of the Dirac spinor. From
this equation it follows directly the form for Dirac’s equation. In the
usual versions this equation is presented as

Now, we write it under the form

which is conformal invariant, without mass variation, that means, m is
conformal invariant. Again we note that this equation depends on
variables which contain explicitly the trajectory P, namely the 
If we use instead of the ru the usual matrices ; :~ (x), the mass m has to
transform in the form given before in order to maintain the form invariance
of the equation.
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1. - Contrarily to the general assumption that a spin 2 1 field
changes under Cg as C~) :

(this is obtained by requiring that the current density J:~ = ~/2014 / ’~ 
is conformal invariant), we consider that in our case c! (x) does not

change. That means, the generalized current density vector :

is conformal invariant, without requiring any transformation on ’~ (x).

Note 2. - We emphasize that the conformal invariant mass m is
not an observable, in the usual sense of a direct observation, since its
conformal invariance is only attained in a strong gravitational field

[due to the condition (1.10)]. The mass obtained by direct observations
is measured in weak gravitational fields and thus, conformal variant.

APPENDIX

From (4.16), along with y,;v = 0 we have

Using the vierbeine formalism, where the coordinate-dependent matrices
x~, (x) are given as linear combination of the usual Dirac’s matrices 

We may expand the matrix S (x) as a linear combination of the sixteen
Dirac matrices

Therefore, the commutator standing in the left hand side of (A .1) takes
the form

(=) C f . J. ELLIS, CERN, Genebra, Ref. Th.-1245. CERN, 22 October 1970.
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where

Using

We get

Substituting this into (A .1), we find after some easy steps

From the linear independence of the Dirac operators, it follows that

and that

(where the fact that is skew-symmetric over the indices r, x

was used). This last equation is solved for the bl;‘~’ ((11J ,

Substituting the coefficients a, b, c and d back into (A. 2) we get the
explicit form the matrix Sv (x) satisfying (A .1) :

which except for a multiple of the identity matrix is the formula (4.17)
of the text. The term proportional to the identity matrix is of no use
for us presently (3), so that we set av = 0.

(3) Usually this term is connected to the electromagnetic interaction by means
of the requirement of the minimal coupling.
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The formula (A. 3) was first derived by Fock and Ivanenko [8], and by
this reason the S, are sometimes called as the Fock-Ivanenko coefficients.
We also note that the derivation of the formula (4 . 25) is similar to

the derivation which we have done here. However, we will include
here some details of this derivation which are of interest due to the

comments done at the end. From (4.19) and (4.20) we have

Now,

and a formula similar to (A. 2) holds for the ~. Thus,

and

where

a calculus similar to before gives as result

Then,

It should be observed that the first two terms inside the bracket may
also be written simply as

In this form, the only difference between 03A303C1 and S, is due to the change
of { :’J } by 039303C1 03BD. As it may be easily checked, the !p will be conformal

invariant independently if we use i/" rp v x - (03C003C1 i,z) vX or 03B303B1 i,«, , - 03B303B103C1 03B303B1
as the first term inside of the bracket in (4. 25). In other works, the
combination y" - ~,~z, ~ i," is conformal invariant.
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