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On an inverse scattering problem
with an energy-dependent potential (*)
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Vol. XVII, no 4, 1972, ]
Section A :

Physique théorique.

ABSTRACT. - The inverse scattering problem is considered for the

radial s-wave Schrodinger equation with the energy-dependent poten-
tial V+ (E, x) = U (x) + 2 l’E Q (x), in the case of real potential U (x)
and Q (x), when there is no bound state. To each element (U (x), Q (.r))
of a large class C’ of pairs of potentials is associated a function

S+ (k) (k E R) called the « characteristic function " : : S+(~-)(~0)
represents the scattering " matrix 

" and S+ (k) (k  0) plays the role
of a parameter in the solution of the inverse problem. It is proved
that there exists at most one pair (U (x), Q (r)) in (5’ which admits

a given function S+ (k) (k E R) as its characteristic function, and, under
very general assumptions on S+ (k) R), this pair is explicity cons-
tructed. The method of solution used generalizes the one given by
Marchenko in the case Q (x) = 0. The results obtained also allow us

to solve an inverse scattering problem associated with the radial s-wave
Klein-Gordon equation of zero mass with a static potential - in this
case the characteristic function S+ (k) (k E R) for k ~ 0 represents the
scattering " matrix 

" for a particle and for k ~ 0 represents the scattering
" matrix " for the correspondent antiparticle -.

RESUME. - On etudie le probleme inverse de la diffusion associe

a l’équation de Schrodinger radiale pour l’onde s avec le potentiel depen-
dant de l’énergie V+ (E, x) = U (x) + 2 VE Q (x), dans le cas ou les

(*) Ce travail a ete effectué dans le cadre d’une recherche cooperative sur pro-
gramme du C. N. R. S. (RCP no 264 : Étude interdisciplinaire des problèmes inverses).

(**) Postal address : Departement de Physique mathematique, Universite des

Sciences et Techniques du Languedoc, 34060 Nlontpellier-Cedex.
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potentiels U (x) et Q (x) sont reels et ou il n’y a pas d’etat lie. A tout
element (U (x), Q (x)) d’une classe tres generale C’ de couples de poten-
tiels on associe une fonction S+ (k) (k E R) appelée « fonction caracté-

ristique » : S- (k) (k 0) represente la « matrice » de diffusion et

S+ (k) (k  0) joue le role d’un parametre dans la resolution du probleme
inverse. On montre qu’il existe au plus un couple (U (x), Q (x)) de d’
qui admet une fonction donnee S- (k) (k E R) pour fonction caracte-

ristique, et, pour des hypotheses tres generales sur S; (k) (k E R), on cons-
truit explicitement ce couple. La methode de resolution utilisee gene-
ralise celle donnee par Marchenko dans le cas Q (x) = 0. Les resultats
obtenus permettent de resoudre egalement un probleme inverse associe
a l’équation de Klein-Gordon radiale pour l’onde s, de masse nulle et

avec un potentiel statique - dans ce cas, la fonction caracteristique
S- (k) (k E R) represente pour k  0 la « matrice » de diffusion pour une

particule et represente pour k / 0 la « matrice » de diffusion pour l’anti-
particule correspondante -.

1. Introduction and preliminary results

In this paper we are interested in the inverse scattering problem for
the radial s-wave Schrodinger equation

with the energy-dependent potential

where B E is defined as

This problem is of interest not only for its own sake, but also because
there are other inverse problems in physics which can be reduced to it.
In particular we shall apply our results to the solution of an inverse
problem associated with the radial s-wave Klein-Gordon equation of zero
mass with a static potential. Other applications will be discussed in a
forthcoming publication.

It has been shown [1] that this inverse problem can be reduced to
the solution of two coupled integral equations ([1], formula (5.17)) with
a coupling condition ([1], formula (5.20)). But these equations have
not been solved in general, and it has not been proved in general that
the potentials constructed from these equations - in the case where
they can be solved - reproduce the input data of the inverse problem.
These difficulties are not surprising for complex U (x) and Q (x) since
they already arise for complex U (x) and for Q (x) = 0. Here, we propose
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to overcome them for real U (x) and Q (x), when there is no bound
state. This paper is an abridged version of part of an unpublished
work [2] to which we refer for more details.

Before describing more explicitly our inverse problem, we give some
preliminary results which will be useful in studying it. It is useful
to consider the equations

if we set k = B E (Ee C), we see that for the index " + " these formulas
reduce to (1.1) and (1. 2). The Jost solution fb (k, x) (Im k J 0)
of (1.4)-(1.5) is defined as the solution satisfying the condition

The Jost function f= (k) is defined by the formula f= (k) = /’= (k, 0).
Let è’ be the set of pairs of real potentials (U (x), Q (.r)) which satisfy
assumptions Ai, A2 and A:3 :

ASSUMPTION Ai : U (x) is continuous for x ~ 0 and x U (x) is infe-

grable.

ASSUMPTION A.~ : Q (x) is continuously di f ferentiable for x ~ 0, and Q (x)
and x Q’ (x) are integrable.

Assumption expresses the hypothesis that there is no bound state.
Let (k) be the function defined as

The function S-+- (k) (k ~ 0) represents the scattering " matrix " of the
system. The function S+ (k) (k E R) though not known experimentally
for k  0 is still useful in studying the inverse problem. We call it

the " characteristic function 
" 

associated with the pair (U (x), Q (x))
belonging to c"’. In the two following lemmas, we give the principal
properties of the functions f: (k) and S+ (k). We set

LEMMA 1 :

(P,) f= (k) is continuous for Im k C 0 and analytic for Im k C 0;
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(P 6) there exists an integrable function a~ (t) such fhat

LEMMA 2 :

(Qi) continuous for A-eR;

(Qa) there exisls an integrable funclion s~ (t) such that

arg S+ (k) being defined as a continuous function, equal for each k fo an

argumenl o f the complex number S+ (k).

These lemmas follow easily from [1]. (Q6) expresses the Levinson
theorem in our case. On the other hand, it has been proved in [1] that
the Jost solution f-+- (k, x) of (1. 4) is generated by two functions F+ (x)
and A+ (x, t) :

where

and where A= (x, t) is a function such that
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Furthermore, there exist two coupled integral equations ([1], for-
mula (5.17)) connecting A+ (x, t), A- (x, t), F+(x) and F- (.r) with s- (7)
and s - (t). A~ (x, t) and A- (x, t), F- (x) and F- (x), s- (1) and s- (t)
being complex conjugate with our assumptions, these integral equations
are also complex conjugate and are equivalent to the following integral
equation

This equation will play the role in our study of the Marchenko equation
(see [3], chapter III) in the case Q (x) = 0.
Our inverse problem is the construction of the pairs (U (x), Q (.r))

of d’ which admit a given function S+ (k) (k ~ 0) as its scattering
" matrix ". In fact, more conveniently, we are given a function
S+ (k) (keR), the part S+ (k) (k  0) playing the role of a parameter,
and we look for the pairs (U (x), Q (x)) of d’ whose associated charac-
teristic function is precisely S+ (k) (keR). For the present time,
we make the following assumptions on the input function S+ (k) (k e R) :

ASSUMPTION Ii. - The function S+ (k) (keR) satisfies the following
conditions :

, x ~ *- ~ ’ B~~’ I x " 
-

(Q’J there exists an integrable funcfion s+ (t) and a complex
number F ~ such that

[note that, S~ (k) being known, is uniquely determined
but not F§] ;

ASSUMPTION L. - The fonction s- (t) is continuously differentiable
for t ~ 0, and the function ts-’ (t) (t ~ 0) is integrable.
Note that Ii and 12 must be necessarily satified for a function

S~ (k) (ke R) to be the characteristic function of a pair (U (x), Q (x)~
belonging to (5B As a consequence of Ii and L, we have

where
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clearly, the functions ~o (t) and t cr~ (t) are integrable. We also have

The starting point of our method of solution of the inverse problem
is the investigation of the integral equation (1.23). In section 2,
we prove our main theorem, and using it, we show in section 3, that,
F+ (x) being fixed, the equation (1. 23) has a unique solution A- (x, 0.
In section 4, we make the dependence of A+ (x, t) on F= (x) explicit.
’To determine F+ (x), we use a differential equation [formula (4.6)]
instead of the coupling condition introduced in [1] ([1], formula (5.20))
(we explain the reason for this at the end of section 7). So we can
define in section 6 a pair of potentials (U (x), Q (x)). In section 8,
we prove, with the additional assumptions 1’2 and that this pair
belongs to e’ and admit the input function S+ (k) (k e R) as its charac-
teristic function. The principal results of this paper are theorems 7

and 8. These results are comparable with the classic ones obtained by
Marchenko for real U (x) and for Q (x) = 0. They allow us in section 9
to solve the inverse problem for the radial s-wave Klein-Gordon equation
of zero mass with a static potential (theorems 9 and 10).

2. The main theorem

The following theorem will be useful to solve the equation (1.23).
It is similar to a well known result for real U (x) and for Q (x) = 0
([4], p. 85).
THEOREM 1. - Let a function S+ (k) (keR) satisfy assumption Ii.

Let S- (k) (k e R) and F~ be the function and the number defined as

Then :

1. The functions S-~ (k) and S- (k) satisfy the conditions (QJ) to (Qs)
and the numbers F~, et F~ are complex conjugate and o f magnitude unily.

2. There exist two functions f+ (k) and f - (k) (Im k ! 0) satisfying the
conditions (P 1) to (P6) and the relation (1.6);

3. If f7 (k) and (k) 0) are two bounded functions satis fying
the conditions (P 1)’ (P4) and the relation

then, there exists a real constant K such that

in particular, K = 1 if f i (k) satisfies also 
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The first part of the theorem is obvious. To prove the second part,

we consider the function Log S=(k) (F=0)2, defined as the continuous function,
equal for each k to one value of the logarithm of the complex

number S=(k) (F=0), which goes to zero as k ~ ± co. Because of the condi-

tions (Q;) and (Q6), there exist two integrable functions 03B3+ (t) and "’,’- (t)
such that

to show this, we use the Wiener-Levy theorem under a slightly more
general form (see [2]) than the classic ones ([5], p. 63; [4], p. 102). It is

then not difficult to see that the functions f- (k) et f- (k) defined as

satisfy the conditions (P 1) to and the relation (1.6). To prove the

last part of the theorem, we consider the function f±1(k) f±(k). It is bounded

and continuous for Im k / 0, analytic for Im k  0 and real for k E R.

By the Schwarz reflection principle it has a bounded analytic conti-
nuation into the entire complex plane. Therefore, by the Liouville

theorem, this function is constant. Hence the statement 3.

3. Existence and uniqueness of the solution A~- (x, t) of the equa-
tion (1. 23) for fixed F+ (x)

Having fixed F+ (x), we seek the solutions A- (x, t) of (1. 23) which are,
for each fixed x  0, continuous and integrable in t for t ~ x. To this
end we consider, for to ~ 0, the following equation

in which f (t) (the data) and y (t) (the unknown) belong to L1 00),
the space of classes of functions integrable for t ~ to (it is known that
in this space two integrable functions almost everywhere equal are
represented by the same element). In what follows L1 (to, oo) will be
considered as a real vector space. Lt (to, oc) is a Banach space vcith

the norm
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Let 1B1 be the linear operator in L1 (to, oo) defined as

With the help of a Frechet-Kolmogorov theorem ([6], p. 275) one easily
prove that the operator M is compact. Therefore, by the Fredholm
Alternative theorem, the equation (3 .1 ) has a unique solution if the

associated homogeneous equation has only the trivial solution. Let us

consider this homogeneous equation

From (3.4) we obtain

Setting

we see from theorems on Fourier transforms that (3.6) can be written
in the form

Since we clearly have y (k) Y (k) = [ ~ (k) J2 S+ (k) ~, (3. 7) implies that

~ (k) ~ (k) _ ~ ~ (k) J2 S~ (k). Hence

It is clear, if we set f 1 (k) = § (k) and /7 (k) = y (- k) (Im k / 0), that
the bounded functions /r(A-) and f .1 (k) satisfy and (2.2).
By theorem 1, there exists a constant K such that

K is equal to zero since, as ~c i goes to infinity, y (k) goes to zero
and f+ (k) goes to 0. As a consequence, (3.4) has only the trivial
solution and (3 .1 ) has a unique solution for each f (t) belonging
to L1 (to, oo). It is now easy to deduce from this the following theorem :

THEOREM 2. - For fixed F+ (x), equation (1.23) has a unique solu-
tion A+ (x, t) in the space of functions of (x, t) (t ~ x ~ 0) which are,

for fixed x ~ 0, continuous and integrable in t for t ~ x.
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4. The functions a: (x, t) and 3= (x, t) and a useful differential
equation

We propose to make the dependence of A+ (x, t) on F+ (x) explicit.
Let ai (x, t) be the solution of the equation (1.23) corresponding to
F+ (x) = 1 and a~ (x, t) be the one corresponding to F- (x) = - i.
Let x-~ (x, t) and ;3- (x, t) be the functions defined as

and let a- (x, t) and 13+ (x, t) be the complex conjugate functions.
We easily obtain the following theorem :

THEOREM 2 bis. - If A+ (x, t) is the solution o f equation (1. 23)
and A- (x, t) is the complex conjugate function, then

where F- (x) is defined as the complex conjugate function o f F+ (x).
~~ (x, t) and ~~ (x, t) (f ~ x ~ a) being the functions defined in [1]

we obviously have

One can show that the functions x± (x, t) and {3+ (x, t) are continuously
differentiable for t ~ x ~ 0 and that

where C is a general positive constant. For this, one first investigate
the functions a-r (x, t) and a) (x, t) by using arguments similar to those
used in ([3], chapter V).

In the sequel, we shall need the following result :

THEOREM 3. - The differential equation
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has a unique solution in the space of real functions differentiable for x ~ 0.

The right hand side of (4. 6 a) being written f (x, z), it is clear from (4.4)
that there exists a positive constant k such that, for every x  0, and
for every z, zi and Z2 real, we have

Using these bounds, we easily prove that the sequence of real func-
tions zn (x) defined by

converges to a function which is a solution of (4. 6), and that this solution
is unique.

5. The uniqueness theorem

We propose to prove the following theorem :

THEOREM 4. - If there exists a pair of potentials belonging to C’ which
has a given function S+ (k) (k E R) as its characteristic function, then it

is unique and it is given by relations (5.4) and (1.21).
Let us first recall that if a function S+ (k) (k E R) is the characteristic

function of a pair (U (x), Q (x)) of (5’, it satisfies the conditions Ii and Iz,
so that the results of sections 2 to 4 hold. In particular, since the func-
tions F+ (x) and A~ (x, t) which generate the Jost solution satisfy (1.23),
the relation (4.2) holds. We use this relation to write the equation

which follows from (1.21). Setting y (x) = [F+ (x)]2, we find

It is easy to deduce from (5.2) the equation
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Let us set

We have y (x) = exp (- iz (x)). Inserting this expression in (5.3),.
we find that z (x) is the solution of the differential equation (4.6).
Theorem 4 follows then from theorems 2 and 3, and from relations (5.4~
and (1.21).

6. Determination of Q (x), F+ (x) and U (x)

In this section, we make again the assumptions Ii and L on the input
function S- (k) The results of section 5 pave the way to
define U (x) and Q (x). z (x) being the unique solution of (4. 6), Q (x) will
be defined as

Clearly Q (x) is real, continuously differentiable for x ~ 0 and satisfies
the bounds

(6.2) and (6.3) show that the functions Q (x) and x Q’ (x) are inte-

grable. F: (x) is defined from Q (x) by (1.20). One can prove that
the function f+ (x) defined by (1.22) have a meaning. Starting
from (4.6) we easily find the relation (5.1), and we can therefore
define U (x) by (1.21). U (x) is real, continuous for x  0 and satisfies
the bound

so that U (x) is integrable for x 1 0. Hence the following theorem :

THEOREM 5. - The functions U (x) and Q (x) (x ~ 0) defined by (1 . 21)
ond (6 .1) are real and satis fy assumptions Ai and A2.

7. The Jost solution associated with (U (x), Q (:r))

We make the additional assumption 1’2 :

ASSUMPTION 1~. - The funclion s+ (t) is twice continuously di fferen-
tiable for t ~ 0, and the function (t) is integrable.
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We will prove the following theorem :

THEOREM 6. - The function f= (k, x) defined by the relation (1.19)
in which F‘ (x) is defined in section 6 and A+ (x, t) is the solution of (1. 23),
is the Jost solution o f fhe di fferential equation (1. 4) for U (x) and Q (x)
defined in section 6.

One can prove, with the assumptions Ii, 12 and 1’2’ that the function

has a meaning and is continuous with respect to (x, t) for t ~ x ~ 0

and integrable in t for t ~ x. Applying the operator

to both sides of (1.23), we find, by means of differentiation under the
integral sign and of integration by parts, that a~- (x, t) is the solution
of the equation obtained by replacing F+ (x) by f+ (x) in (1.23).
We therefore have by theorem 2 bis :

Recalling (1.21) and (4.2) we find the partial differential equation

On the other hand, one can prove without difficulty (see [2]) that

Using equations (7.3) and (1.22) and conditions (7.4) and (7.5), one
easily obtain theorem 6 [for this one can apply theorem (4.2) of [1]].
It follows from this theorem that the functions f+ (0, x) and f- (0, x)
are equal, i. e.

Using (4 . 2), we obtain from (7.6)
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(7.7) allows us to determine F- (x) for the values of x which do not
cancel the second factor of the left hand side. This is clearly true at
least for x sufficiently large. In general we do not know-n the position
of zeros of this quantity. For this reason, we have used the diffe-

rential equation (4. 6) to determine F+ (x) (x ~ 0) and not the coupling
condition (7 . 6) [identical with the formula (5.20) in [1]] used in [1].

8. The characteric function associated with (U (x), Q (~)). The

existence theorem

By theorem 6, the Jost function f# (k) associated with the pair
(U (x), Q (x)) defined in section 6, is

where, from (4.2),

On the other hand, we know by theorem 1 that there exist two func-
tions f- (k) and f- (k) which satisfy the relation (1. 6) - S+ (k) (k E R)
being the input function - and which can be written in the form (1.11).
Using the properties of Fourier transforms we can easily show
from (1.6), (1.11) and (1.25) that

We see on (8.3) that a+ (I) is the solution of the equation deduced
from (1.23) by putting x = 0 and by replacing F+ (0) by F;. It follows
from section 4 that

We make an additional assumption :

ASSUMPTION I;. - I f z (x) is the solution of the di fferential equa-
tion (4. 6) and if (F§)2 is the number defined in assumption 11 (Q~), then

We remark that

1. 1~ must necessarily be satisfied for a function S- (k) to be
the characteristic function of a pair of potentials belonging to e’. 

-

2. Assumption 13 is not very restrictive : using the fact that f- (0)
is equal to f - (0) and 1-+- (0) is equal to f- (0) it is easy to see that a

ANN. INST. POINCARE, A-XVII-4 26
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necessary condition for Is to be satisfied is

Because of assumption Is, we can choose F; in such a way that F’o = F+ (0).
The formulas (8 . 2) and (8.4) show that A~ (0, t) and a= (f) are equal.
Hence

Theorem 1 shows that the pair (U (x), Q (x)) defined in section 6

satisfies A~ and that the input function S+ (k) (k e R) is the characteric
function associated with (U (x), Q (:r)). To recapitulate, we have
obtained the following results :

THEOREM 7. - A necessary condition for a function S+ (k) (keR) to
be the characteristic function associated with a pair o f potentials belonging
to e’, is that conditions 11, I2 and 13 be satis fied. If there exists a pair
(U (x), Q (x)) o f ~’ which reproduces S+ (k) (keR), it is unique and
given by formulas (6.1) and (1.21).
THEOREM 8. - A sufficient condition for a function S+ (k) (ke R) to

be the characteristic function associated with a pair of potentials belon-

ging to C’, is that conditions I1, 12, Ii and I3 be satis fied. There exists
a unique pair (U (x), Q (x)) of d’ which reproduces S+ (k) (ke R). It is

given by formulas (6.1) and (1.21).
We remark that :

a. we have not tried to give a necessary and sufficient condition for
a function S+ (k) (k e R) to be the characteristic function of a pair
(U (x), Q (.r)) of d’. So it is possible that theorem 8 remains valid
if assumption 1~ is not satisfied;

b. we have assumed for convenience that the potentials were conti-
nuous for x = 0; this condition is probably not absolutely necessary
for our study;

c. our assumptions concerned the characteristic function S+ (k) (k e R)
and not the scattering " matrix 

" S+ (k) (k ~ 0). To find the number
of solutions to the inverse problem, one would like to know how to
construct the functions S+ (k) (k e R) which satisfy assumptions Ii, la, 12
and Is, and which continue a given function S+ (k) (k ~ 0).
To end this study, let us consider a particular case. If S+ (k) (k e R)

is the characteristic function of a pair (U (x), Q (x)) of d’ such that

Q (x) = 0, we obviously have (F¿)2 = 1 and S+ (k) = [S+ (- k)]-1 (k e R).
Conversely, if we are given a function S+ (k) (k e R) satisfying assump-
tions I1, Iz and 1~ and the above conditions, it is easy to see that 13
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is necessarily satisfied and that Q (x) = 0. So, we find again the results
that Marchenko obtained for real U (x) and for Q (x) = 0.
Our method of solution of this inverse problem can be used to solve

other inverse problems in which a differential equation of the same

type as (1.4)-(1.5) appears. In particular, in the following section
we solve an inverse problem for the Klein-Gordon equation of zero mass.

9. The inverse problem for the radial s-wave Klein-Gordon equa-
tion of zero mass with a static potential

With the additional condition

the formulas (1. 4) and (1. 5) for the index " + ", represent, for ~~0,
the radial s-wave Klein-Gordon equation for a particle of zero mass

and of energy k with a static potential Q (x) ; (1. 4) and (1. 5) for the
index " - " describe the correspondent antiparticle. Let e’l be the
set of potentials Q (x) which satisfy assumptions A2 and A3; if Q (x)
belongs to (U (x), Q (x)) - with U (x) defined by (9.1) - belongs
to d’. Let us note that assumption A2, which expresses the hypothesis
that there is no bound state, is not physically restrictive here. The
characteristic functions S+ (k) (k E R) associated with (U (x), Q (x)) is

here physically observable and will be called the scattering " matrix " : :
for k ~ 0, it represents the scattering " matrix 

" for the particle, and
for it represents the scattering " matrix 

" for the antiparticle.
The inverse problem that we consider now is the construction of the

potentials Q (x) belonging to ~’1 which admit a given function

S+ (k) (keR) as its scattering " matrix ". This inverse problem has
already been studied (references can be found in [1]) by extending the
Gel’fand-Levitan method. It has been reduced to the solution of an

integral equation in which a certain spectral function appears. However,
the conditions that the input function S+ (k) (k E R) has to satisfy in
order that this equation has a solution are still not known. Theorems 7
and 8 enable us to solve this inverse problem completely. Let us call H
the following assumption :

ASSUMPTION I;. - If z (x) is the solution of the di f ferential equation (4 . 6)
qnd i f f+ (x) is the function defined by (1. 22), then

We easily obtain the following results :

THEOREM 9. - A necessary condition for a function S+ (k) (k E R)
fo be the scattering " matrix " of a potential belonging to c’1 is that condi-
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tions Ii, 12, 13 and I4 be satis fied. If there exists a potential Q (x) 
which reproduces S..L (k) (ke R), it is unique and given by formula (6 .1).

THEOREM 10. - A sufficient condition for a function S+ (k) (ke R) fo
be the scattering " matrix " of a potential belonging fo e’l is that conditions

Ii, 1~ 1’2’ Is and I. be satis fied. There exists a unique potential Q (x) o f ~i
which reproduces S~ (k) (k E R). It is given by formula (6 . .1).
Let us note that in the case where Q (x) is a superposition of expo-

nential potentials, H. Cornille [7] has studied a slightly different inverse
problem which is the reconstruction of Q (x) from the S-matrix discon-
tinuities in the complex k-plane. His study is also based on an extension
of the Marchenko formalism and is as well valid for the Klein-Gordon

equation of mass m.
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