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Physique théorique.

ABSTRACT. - A Galilei (Lorentz) structure on a manifold V is defined
as a reduction of the bundle of linear frames to a subbundle of frames
invariant under the homogeneous Galilei (Lorentz) group. Galileian
or Newtonian and (general) relativistic theories are thus distinguished
in a satisfactory way by nothing but the group operating at each space-
time event on the admissible reference frames. This approach leads
to a more unified formalism for theories in Galilei and Lorentz « inva-

riant » versions. The existence of different types of Galilei connec-

tions is investigated and applied to a new characterization of the Newto-
nian gravitation theory. As another application an almost completely
parallel treatment of canonical (Hamiltonian) formalisms for external
forces on a particle un Galileian and Lorentzian space-time is obtained.

RESUME. 2014 Une structure de Galilee (Lorentz) sur une variete V est
définie comme restriction du fibre principal des repères au groupe de
Galilée (Lorentz) homogène. Les theories galileennes ou newtoniennes
et celles de relativite generale sont ainsi distinguees d’une facon satis-
faisante par rien d’autre que Ie groupe qui opère en chaque point
de 1’espace-temps sur les referentiels admissibles. Ce point de vue mène
a un formalisme plus unifié pour les versions galileennes et lorentziennes
des theories physiques. On etudie l’existence de diiierents types de

(*) Supported in part by the National Research Council of Canada.
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connexions galileennes, et on les utilise pour une caracterisation nouvelle
de la théorie de la gravitation de Newton. Une autre application consiste
en un traitement presque parallèle des formalismes canoniques (hamil-
toniens) pour les forces exterieures sur une particule dans l’espace-temps
galileen ou lorentzien.

1. INTRODUCTION

Space-time formulations of Newtonian mechanics have been discussed
by many authors, starting probably with Frank [8], Weyl [24] and
Cartan ([2], [3]). Most of this earlier work is summarized in the review
articles of Havas [10] and, in the case of continuum mechanics, of Truesdell
and Toupin [23]. Toupin [20] pointed out the role of the different sym-
metry groups on the four dimensional formulation of (flat space) Gali-
leian continuum theories. Trautman ([21], [22]) and Havas [10] stated
Newton’s gravitational field equations in termes of the curuature of

a suitable connection in close analogy to Einstein’s equations and empha-
sized the role of the Galilei and Lorentz group as asymptotical symmetry
group. At about the same time Dombrowski and Horneffer ([6], [7])
introduced the concept of a general Galilei manifold and studied its
differential geometry.
The purpose of this paper is to present a more uniform formalism

for the two types of theories and to show from a new point of view that
practically all the differences between Newtonian and Einsteinian physics
- not just in the free particle case and for special relativity - can be
readily inferred from differences between the structures of the homo-

geneous Galilei and Lorentz groups. In particular, there is no need
to assume asymptotical flatness to recover these groups in a curved

space-time. The Galilei and Lorentz group, respectively, are once

and for all connected with the particular space-time structure by the
fact that they define the admissible reference frames of an observer
at any one space-time event. Several of the earlier given definitions
seem less arbitrary in this approach. Einsteinian and Newtonian
theories are put on a strictly equal footing with very little room for
separate ad hoc assumptions in either theory.
The formalism appears to be useful for the comparison of any « non

relativistic » and the corresponding « relativistic » theory, like the study
of interacting particle systems, the foundations of continuum theories,
coordinate invariant Newtonian limits of Einsteinian universes (1), etc.

This paper treats in some detail the special conditions needed to derive

(’ ) Discussions of this limiting process, but with the use of special coordinate systems
have been given by Friedrichs [9] and Dautcourt [5].
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the classical Newtonian gravitation theory from a general Galilei space-
time. These conditions can be made somewhat weaker than those

imposed by Trautman [21], but one condition in addition to the analogue
of Einstein’s field equations is needed, due to the nonuniqueness of

a symmetric Galilei connection. Only for these special symmetric
Galilei connections - We call them Newtonian connections - the curva-
ture tensor has the same number of independent components at any
one point as for the Levi-Civita connection of a pseudo-Riemannian
metric, before the field equations are imposed.
A second application of the formalism is made to the dynamics of a

particle in an exterior force field in Galileian and Lorentzian space-
times, since this may be useful as a first step to a more geometrical
treatment of many particle systems. Most of these results (for the
Galilei case) have already been obtained by Horneffer [11]. But though
his formalism is geometrical it seems too much adapted to the Galilei
structure, specifically, to admit direct comparison with the corresponding
relativistic case. Here, the classical Hamiltonian formalisms for non
relativistic systems and for the few known cases of Hamiltonian rela-
tivistic systems are almost completely unified. The remaining difference
is that gyroscopic force terms (like the Lorentz force of a Maxwell field)
can be considered as inertial forces in Galileian but not in Lorentzian

space-times.
While some general terminology of the theory of G-structures (as

presented in Sternberg ([19], chapter 7) is used in parts of sections 2 and 3
no familiarity with this theory is required for reading the rest of the
paper, which uses tensor calculus only. Since the differential geometry
of Lorentz manifolds is too well known to be repeated here most of the
following discussion will be confined to Galilei structures.

2. HOMOGENEOUS GALILEI GROUP AND ALGEBRA

The proper (inhomogeneous) Galilei group Go can be defined as the
group of affine coordinate transformations of of the form

where ba, a~ and (J~) E SO (n, R) are constants (~). The proper homo-

geneous Galilei group G° is the subgroup of those transformations (1)
that leave the origin of Rn+1 invariant, that is, for which ba = 0. It can
be considered as a subgroup of GL (n + 1, R) regarded as group of

(2) Small Latin and small Greek indices run from 0 to n, capital Latin indices (barred
or unbarred) from 1 to n.
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(n + 1) x (n + 1)-matrices operating on Rn+l on the left by

With respect to this action G° is the semi-direct product (s) G’’ (’).
As a Lie group only (i. e. not as a Lie transformation group) Go is iso-
morphic to the group of n-dimensional Euclidean (rigid) motions
E (n) == Rn (s) SO (n).
For comparison purposes we will often refer to the proper (homogeneous)

Lorentz group LO and the proper Poincare group LO = (s) Le
where L° is also considered as a subtransformation group of GL (n + 1 )
on .

If we represent the Lie algebra gl (n + 1) of GL (n + 1) by the set
of (n + 1)-square matrices with the bracket operation

then Q E gl (n + 1) is in the (homogeneous) Galilei algebra or in
the (homogeneous) Lorentz algebra 1° iff

for 1i = 0 or 1, respectively. The matrices E~ defined by (E~ == o~ o,
form the standard basis of gl (n + 1). As a suitable basis for g° and 1°
we choose (for 1 ~A  B E~ == 2014 defined by

= - E ~ -E- E~ and FA == 2014 Ej~ 2014 ~ Eg. The multiplication table
then is 

’ ’ ’

Most of the qualitative differences between Galileian and Lorentzian
(or, more generally, pseudo-Riemannian) geometry are due to the fact
that the first prolongation of 50 (n, m) vanishes while it does not for
the Galilei algebra gO. In fact, the Galilei algebra is of infinite type. We
follow here Sternberg ([19], chapter 7).

Let G be any subgroup of GL (n + 1 ) considered as transformation
group of Then the Lie algebra g is a sub vector space of the set
Hom RIl+l) of all linear maps of R’Z+’ into itself. The first prolon-
gation of g is defined by

where dQ is an antisymmetric bilinear map of into defined

by d n (r /B y) == ~ (r) y - Q (~) x~ 

(3) Cf., for example, Simm s [16].
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Let explicitly Q (x) = E~, then Q (x) v 
or {O [1) iff

and

for v = 0 or 1, respectively. Now (5) and (6) imply 
and Q (x) = F~ for 11 = 0 with (cp1) = ( - e g°, arbitrary.
Thus the first prolongation I° ~ 1 a of the Lorentz algebra vanishes, while,
for the Galilei algebra, g° (1) is isomorphic (as a vector space) to g°.
The higher prolongation of a Lie algebra g c gl (n + 1) are defined

by - (9~-~)0, explicitly,

(2. 7) = (x) ~J = ~ (y) x, }.

Thus if Q (x) = (S?;i ... x"Z) E &#x3E; then Q E iff S~ 1... is

totally symmetric in si, ..., s~+1. A Lie group (or the corresponding
Lie algebra) is called of finite type if there exists a k such that = 0,
otherwise it is of in finite type.

For we have ~ ,~=0 ans antisymmetric
in A and B. It follows that only SZ~ ... o and

do not vanish. We have therefore proved

THEOREM 1. - The homogeneous Galilei group G° is of in finite type.
All prolongations gO ~~~ of the Lie algebra gO of Go are isomorphic (as vector
spaces) to gO. D

In the rest of this section we review the geometrical characterization
of the Galilei group as symmetry group of space-time and its operation
on frames. Suppose x = = r r E V where {er} and f are

two bases of the (n + 1)-dimensional vector space V. Then the linear

coordinate transformation xk ~ k == corresponds to a basis
transformation

and if 6~ ~ is the basis of V* dual to then

Now, for the Galilei group
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so that (8) and (9) become explicitly

We see that equations (12) and (13) are particularly simple. They express
that ~ == V* and y = (g) V 0 V (where 
is the Kronecker delta) are invariants under Galilei transformations.

Conversely, these two quantities characterize (a certain action of) the
proper homogeneous Galilei group (on V), namely

THEOREM 2. - Proper homogeneous Galilei transformations of the
(n + 1)-dimensional vector space V are characterized by leaving invariant a
given linear 1-form tf E V* and a given positive semi-definite symmetric tensor
y~V(g)Vo/’ rank n such that v is in the kernel of j, i. e. == o. 0

Remarks. - That this is a more convenient characterization than
one using a degenerate metric (i. e. a covariant tensor) Y E V* Q9 V*
has been recognized in many though not all previous discussions. It will
greatly simplify the definition and formalism of a Galilei manifold in
the next section as compared to the ones given by Dombrowski and
Horneffer [7].
The full homogeneous Galilei group G (including space and time

inversions) can be described similary if 03C8 is replaced by a symmetric
2-form W of rank one satisfying ykr == 0 (namely ~F == ~ Q9 ~).
Then A=G iff kr03B3rs ls == 03B3kl ,and -1l = 03A8kl (cr. Havas [ 10]).

3. GALILEI STRUCTURES

This section treats the definition and some basic properties of Galilei
structures that do not involve the use of a connection. It is a fairly
straightforward application of the theory of G-structures - as in

Sternberg ([19], chapter 7) where all the terminology is explained in detail
- to the Galilei group. Since the latter is of infinite type theorems
about local flatness do not follow from the general theory. But it turns
out that they are very easily proved directly. In this sense Galilei
structures are simpler (far more readily reduced to Riemannian geometry)
than other related structures of infinite type, like e. g. the degenerate
metric structures studied by Crampin [4].
Let V be an (n + 1)-dimensional C’-manifold, (~ 1 (V), n, V) the

principal bundle of linear frames over V. Then GL (n + 1) acts freely
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on each fibre of ~ Z (V) to the right by o : GL (n + 1) x (x) - (x) :
«-B1), }) ~ "ea = er where {er} is any basis of Tx V and er = ear da
in terms of a local coordinate system of V. A reduction G0 ( V) of G l ( V)
to the (proper) homogeneous Galilei group G° is then called a (proper)
Galilei structure on V and V together with this structure a (proper)
Galilei manifold (4).
More explicity, G0 ( V) is a subbundle of G l ( V) over V such that

if iff Suppose ~° ~ p = (x, ~ ea ~)
and let } be the basis of T~ V dual to ~ ea ~ { then p = (x, ea }) ~ ~
iff êa = er 1a for A e Go or iff ea = .A. #r. Thus, for a Galilei structure

[by (2 , 10)], 0° = e ° and î = X ên X eB = y. Theorem 2

leads immediately to 
"

THEOREM 3. - A proper Galilei structure ~° on V defines and is charac-
terized by a pair (r, ~) of a positive semi-definite contravariant symmetric
tensor field y = (x) dx X d~ of rank n and a never vanishing 1-form
tf - s u bj ect to

Globally a proper Galilei structure exists on a manifolds V iff there
exists a time orientable and space orientable Lorentz structure. In

particular, V must be orientable and non compact or have Euler charac-
teristic zero. The proof is the same as for Lorentz structures (e. g.
Steenrod [18]).

If a Galilei manifold (V, 03B3, 03C8) is given, a Galilei frame ea at a point
~~ V is a basis of T_r V such that ea d~ = o~ and ~~~sa ox 8~ = 01 ~
The 1-form ~ defines an n-dimensional subspace 5,~. of T,r V for each
re V. A tangent vector X e Sr, characterized by ~ = 0, is called
spacelike. A vector V is called timelike if tf; ~ 0, future

(past) directed if X ~ ~ (~) 0, a timelike unit veclor if ~ = 1.
The symmetric contravariant tensor V 0 T,r V induces a

positive definite scalar product on S.~ by (X X) = XA XB where
X = XA eA e Sx and } is any Galilei frame at x. In particular, if
the n-dimensional differential system S is integrable there is an induced
Riemannian metric on each of its integral manifolds.
Every proper Galilei manifold carries a canonical volume element

1 = eo A 61 A ... A en where ea ~ } is any Galilei frame.

The standard flat Galilei structure on V = Rn+1 is defined as follows
in terms of the cartesian coordinates (XO, Let = ea d x ~ } be a

(4) Exclusion of time and space inversions means that a proper Galilei manifold

is time and space oriented, hence oriented. The word « proper will often be omitted

in the following.
ANN. INST. POINCARE, A-XVII-4 24
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Galilei frame iff ea = Er _1a where ). is the standard frame field

on [i. e. E; (x) = ox] and (=1Q) E G°. Thus

Then (V) is the set of all (x, { ea j) with and ea satisfying (2).
From (2) we find

whence

and

The differential system S is integrable and its maximal integral manifolds
03A3t == (t) = x E Rn+1/x0 = t ; carry the induced flat Riemannian
metric

For any Lie group G C GL (n + 1) a diffeormophism f : V - W is
an isomorphism of the G-structures G ( V) and G (W) if the induced
bundle map

(where f* denotes the tangent map) maps G-frames into G-frames. For
Galilei structures this is easily seen to be equivalent to the conditions

The map f is called a G-automorphism if W = V. A vector field X on V
is an infinitesimal G-automorphism if it generates a local 1-parameter
group of G-automorphisms. For Galilei structures this condition is

equivalent to

A G-structure is called locally flat if it is locally isomorphic to the standard
flat G-structure.
Let H be any horizontal system on G ( V), i. e. an (n -)- 1)-dimensional

differential system such that is mapped onto T~(~) V by 7:~
for all p~G(V). Define CH : G ~ Hom (Rn+1  Rn+1, Rn+1) by

Cn (x, {ea}) C  ~) = 03B6  ~/d03B8&#x3E; where 0 = (03B80, 03B8A) and 03B6 is the

unique vector field on G such that 03B6 (p) E Hp for all p ~G and

i -J6 = i~R"~~. For any two horizontal systems H and H’ the anti-
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symmetric linear map Cn (p) - CH, (p) satisfies

for some T E Hom (Rn+1, g). Therefore the equivalence class C (p)
of C~i (p) E Hom A Rn+l) modulo d Hom g) is inde-

pendent of H and defines a function

called the first structure function of ç.
The first structure function commutes with a G-automorphism f

in the sense that o f = Cr. It always vanishes for the standard flat
G-structure. Thus a necessary condition for local flatness is that C = 0.
Such G-structures are called first order flat (f. o. f). They are particularly
important because first order flatness is a necessary and sufficient

condition for the existence of a torsion free connection on ~ (V). While
all pseudo-Riemannian structures are f. o. f. (because = 0), for Galilei
structures this is a non trivial restriction. We have

THEOREM 4. - A Galilei manifold is first order flat iff d~ - 0.

Proo f :

(i) Let H be a horizontal system on ~o and

~ = r,r Then 03B6 03B8 = 03B6 implies 03B6 = 03B603B1 d + K03B1a d with

03B603B1 = 03B6r er and Ku depending on H. Now

implies C~l = 2 e~ e3 thus C~l = 0 iff d~ = 0.

(ii) On the other hand C = 0 iff Cn (p) = dT for some T for all choices
of H. But componentwise T = g°) satisfies

[see (2.2)]. Therefore the only nonzero components are T~, and

T~, = Now C = 0 iff there exists such Hom gO)
such that C ~ ~ = (~T)~ - - + T;,.. Thus C = 0 implies

by (11).

(iii) Now suppose c° ’ = 0, then the equations
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have the solutions

and

which satisfy (11) for arbitrary C~~ and Together with (i) this
completes the proof. 0
To find sufficient conditions for local flatness one would in general

investigate higher order structure functions. For a group of infinite

type, however, this does not necessarily lead to all needed conditions.
But because the Galilei structures are so closely related to Riemannian
structures satifsactory necessary and sufficient conditions can be found
directly.
For any f. o. f. Galilei manifold the differential system S is integrable;

we denote again its maximal connected integral manifolds by ~. Then
we have

THEOREM 5. - A Galilei mani fold is locally flat i ff (a) it is first order
flat, i. e. satisfies d~.~ = 0, and (b) the induced Riemannian metrics on all ~~~
are locally flal.

Proo f :

(i) Local flatness implies (a) and (b) by (4) and (6), respectively.

(ii) If dv = 0 then there exists locally a function such that == dr°
and It == f XO = t ~ are regular hypersurfaces (since ~ never vanishes).
Let y be the induced Riemannian metric. By (b) (It ~), is locally flat
as a Riemannian manifold. Thus, for fixed t, a local coordinate system

can be found such that = Now with (XO, x~) as local coordi-
nates of V (1) implies that = 0 and the definition of y that 
is the inverse of (~AB). i. e. y~~ = This coordinate system provides
the local isomorphism with the standard flat structure (4) and (5). 0
One major difference between Galilei and Lorentz structures is the

maximal dimension of the group of automorphisms admitted. For pseudo-
Riemannian structures, as for all G-structures of finite type this group
is necessarily a finite dimensional Lie group (c f. Sternberg [19], p. 347).
In particular, the group of automorphisms of the flat Lorentz structure
is simply the inhomogeneous Lorentz group LO, that is, the semi-direct
product of with the group L° defining the structure. For the
Galilei structure the group of automorphisms of the flat structure is
not finite dimensional, but is still easily computed and found to be what
has been called the kinematical group, the group of Euclidean trans for-
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mations (Toupin [20]) or the group of non inertial Cartesian transformations
(Trautman [21]).
Let (x2) be the standard coordinate system of 1 and

a diffeomorphism. Then

[see (7)] and f is a Galilei automorphism iff

i. e. iff

,

while is arbitrary. There follows now easilyxl’

THEOREM 6. - The automorphisms o f the standard flat Galilei structure
on are given by

with e = const. E R and (J~) E SO (n). The infinitesimal automorphisms
are o f the form

with E = const. and + = o. 0

The fact that (14) is the group of automorphisms of the flat Galilei
structure while the inhomogeneous Galilei group is obtained only as
group of automorphisms of the flat Galilei structure together with a
flat connection was pointed out by Toupin [20] (in the older terminology).
For Lorentz structures these two groups of automorphisms coincide.

4. CONNECTIONS ON A GALILEI MANIFOLD

A Galilei connection (3) for a Galilei manifold V is a connection on c~ (V);
it is characterized by its connection form o, a g«-valued 1-form on ’i7°
satisfying

(5) This name was used differently by Toupin [20].
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and

where ~ denotes again the action of G° on the principal bundle qf° and
A is the vertical vector field on qf° induced by (c f., for example,
Kobayashi and Nomizu [12], chapter 2). It follows that an arbitrary
linear connection r for V is a Galilei connection iff the covariant deri-
vatives and 03C6 vanish, i. e. if in local coordinates

and

From (4) it follows that the torsion tensor T~ = r~ 2014 satisfies

which provides a direct proof of the earlier stated fact that a Galilei
manifold must satisfy d~~ == 0 in order to admit a torsion free connec-
tion. Unless this is the case there appears to be no particularly distin-
guished condition that can be imposed on the torsion. The torsion
of a Galilei connection can be arbitrarily prescribed, subject to (5).
For the rest of the paper we restrict ourselves to f. o. f. Galilei mani-

folds with symmetric connections. Contrary to the situation for Lorentz
structures equations (3) and (4) do not determine a unique symmetric
connection, but an explicit particular solution can be written down
in terms of an arbitrarily chosen (and fixed) timelike unit vector field
u = ux dx- namely 1’» :

where ~.~ ~x3 , is defined by y~ 0 and - 2014 ~ uJ3 - ~,.~3 ax is
the projection parallel to u of T,r V onto Then, by the way, the

integral curves of u are geodesics with respect to r.
On the other hand, suppose S = F’ 2014 r is the difference of two sym-

metric Galilei connections and thus a tensor. Then the only restrictions
on S are that it be symmetric in its covariant indices and that it satisfy

r~ .

The general solution of equations (7), however, can be written in the form

(6) r in (6) agrees with the connection li’ of Toupin ([20, p. 197) in the case of flat a

Galilei structure.
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for an arbitrary 2-form x = 2 1 dz" /B dx;3 on V. These remarks

prove

THEOREM 7. - The symmetric Galilei connections on a first order flat
Galilei manifold V are in one-to-one correspondence with the set Q2 (V)
of all 2-forms on V. If r is any symmetric Galilei connection any other

symmetric Galilei connection r is of the form

for some x~03A92 (V). 0

(Cf. Dombrowski and Horneffer [7]).
In any f. o. f. Galilei manifold local coordinates can be introduced

such that - o~ and hence == 0. We call this an adapted coordi-
nate system. If, moreover, the timelike unit vector field u is chosen
to be given by ua === ~~ (whence Yxo = 0 and y~~ == ~) then the
most general connection has according to (6) and (9) the components

Noting that 03B3AB are just the local components of the induced Riemannian
metric on 03A3t in this adapted coordinate system, one derives easily (c f. [13]).

THEOREM 8. - The submanifolds 03A3t are autoparallel (hence totally
geodesic) and the connection induced on ~t by any symmectric Galilei
connection on V coincides with the Levi-Cività conneclion of the induced
Riemannian metric. D
The curvature tensor of a symmetric Galilei connection satisfies,

in addition to the Ricci and Bianchi identities,

the additional relations

and

which follow from (3) and (4) by covariant differentiation and antisym-
metrization. The Ricci tensor = is symmetric as a conse-
quence of (12) and (13).
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If these relations are written in an adapted coordinate system it
is not hard to count the independent components of the curvature tensor
at any one point. There are (1/12) n2 (n + 1) (n + 5) of them, which
is (1/6) n (n2 - 1) more than for the curvature tensor of an (n + 1)-dimen-
sional pseudo-Riemannian manifold.

This indicates that a generalized Newtonian gravitation theory should
probably not be formulated in terms of an arbitrary Galilei connection
on space-time. Rather, if the field equations are to resemble those
of General Relativity on Lorentz manifolds, then the connections on
the Galilei manifold must be restricted a priori. A useful restriction

(imposing the missing symmetries on the curvature tensor) seems to
be the following.

Call a symmetric Galilei connection Newtonian (and the Galilei mani-
fold together with such a connection a Newtonian manifold) if the curva-
ture satisfies

Equations (14) together with the Ricci identities imply that

and if these conditions are applied to the components of the
curvature tensor in an adapted coordinate system there remain just
(1/12) (n + 1)’ [(n + 1)~ - 1] independent components at a point
as in the pseudo-Riemannian case.

Conditions (14) in terms of r read

which with (10) becomes in an adapted coordinate system

that is

Thus

THEOREM 9. - On any first order flat Galilei manifold V there exists a
Newtonian connection. The set of Newtonian connections is in one-to-one
correspondence with the set of closed 2-forms on V.

Proof. - Choose a timelike unit vector field u and the connection r
defined by (6) in terms of u. (Clearly if u is given on all of V then r
is globally defined although (6) was formulated in terms of local coor-
dinates.) Then, in an adapted coordinate system r has the form (10)
with x = 0. In particular, (17) is satisfied. This proves existence.
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All other Newtonian connections are obtained by adding to r a tensor S
of the form (8) whit x satisfying (17). 0

In particular, the special Galilei connection associated to a timelike
unit vector field by (6) is thus Newtonian. This result in a somewhat
different formulation is also due to Dombrowski and Horneffer [7].
The rest of this section is devoted to a comparison of Einstein’s and

Newton’s gravitation theories. If the field equations of a Galilei cova-
riant gravitation theory are formulated on a general four dimensional
Newtonian manifold as closely analogous to Einstein’s equations as

possible then the classical Newtonian gravitational field results, at least
if two additional, physical assumptions are made. The first is, that in
the Newtonian theory only the matter density p, not, however, the energy
density and stresses act a source of the gravitational field (i. e. the connec-
tion). Secondly, an asymptotic or global condition seems necessary.

One adopts the field equations

which are equivalent to = if G:x = R:x 2014 ~ ~ (’(po- 
and has

THEOREM 10. - A four dimensional Newtonian manifold V satisfying-
equations (18) for a given (scalar) matter density p is a locally flat Galilei
manifold. The connection r interpreted as gravitational field, is equivalent
to a classical Newtonian gravitational field with a potential U satisfying
the Poisson equation

provided that r falls 0 ff asymptotically on the space-sections 03A3t or that

H’(~,t,R) = 0.

Proof. - We consider the connection as a gravitational force field

in the standard way by interpreting - r~c dx~ as the A-component
of the force on the particle of unit mass in a particular Cartesian coordi-
nate system. (This will be elaborated somewhat in the next section.)
The first part of the theorem follows from the

LEMMA. - For a four dimensional Galilei manifold with a symmetric
Galilei connection r the following are equivalent :

(a) R03B103B2 = 03B303B103C1 03B303B203C3 Rpû = 0,
(b) = 2 c~~~ for some 
(c) the Galilei structure is locally flat.
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Proo f. - In an adapted coordinate system (a) and (b) are equivalent
to R ~B = 0 which implies that the Ricci curvature of the space sections
is zero. Since they are three dimensional they are locally flat. The

equivalence with (c) now follows from Theorem 5.
We can now find a flat (7) local coordinate system such that vx = ox,
= 8g o B and the induced metric on 03A3t = According

to (10) we then have for the most general Galilei connection

which gives for the Ricci tensor components

Equations (18) applied to the components imply fLA = 0,
equations (15) together with (20) give ð[A = 0. The 2-form

dxA A dx’e on ~~ is thus harmonic and a mild form of asymptotical
flatness (for the connection, hence for or a global condition like

H2 R) = 0 assures that it vanishes. We now interpret E A xo~

as a vector field on the locally Euclidean manifold ~t; then (16) gives
EEJ = 0 implying that locally Ex = ðA U for a function U. The

field equations (18) applied to Roo then reduce to (19). This proves
the theorem. 0

Remark. - The condition

of Trautman [21, 22], imposed on a symmetric Galilei connection, already
implies a locally flat Galilei structure and the existence of a classical
Newtonian gravitational potential field. In particular, it implies (18)
up to the interpretation of p. No global condition is needed in this
case. Trautman’s second condition, ~~ = 0, seems redundant.

Replacing (21) by (14) and (18) we have achieved a better analogy
of the Newtonian and Einsteinian gravitation theories. It seems likely
that if a sequence of Lorentz structures on a given manifold V has a
Galilei structure qf° as a limit then the corresponding Levi-Civita
connections tend to a Newtonian connection compatible with ~ Note

also that for Lorentz manifolds (14) is always satisfied while (21) implies
flat space.

0 Flat with respect to the Galilei structure, not the connection.
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5. CANONICAL DYNAMICS

OF A POINT PARTICLE IN GALILEI

AND LORENTZ SPACE-TIMES

This last section contains a simple application of the developed space-
time formalism to the Hamiltonian description of a point particle subject
to external forces.

In the Galilei case the following formalism is not restricted to point
particles but will describe any system with a Lagrangean of the form
L = T - V where V is a function defined on the (n + 1)-dimensional
manifold R X Q (with Q the classical configuration manifold) and T,
the kinetic energy, a function quadratic in the velocities and defined
on R x TQ.
Apart from the new formalism this material is, of course, very classical.

It has, in particular, been treated by Havas [10] (for flat space-times)
and by Horneffer [11] for general Galilei manifolds. (Cf. also Sniatycki
and Tulczyjew [17].)
We consider a system of n degrees of freedom and assume it satisfies

a second order equation for the position variables. Classically (c f.,
for example, Abraham and Marsden [ 1]) it is described by an n-dimensioal
configuration manifold Q (coordinates xA) and a vector field X on R x TQ

(coordinates f x~, v~) of the form X = d 4- + FA t, xB vB) 2014,r" , , / dl àxA 

where t is interpreted as the time. The motions are then the (parame-
trized) integral curves y : R - R x T Q of X and are described in Q
alone by the solutions of

Since the use of any fixed time is not convenient for our purpose
we describe the same system in the homogeneous formalism. That is,
a motion is given by an unparametrized curve y in configuration space-
time V (diffeomorphic to R x Q) that would satisfy (1) if a time coordinate t
was distinguished and chosen as curve paramenter. This means that

instead of a vector field X on R X T Q there is given an integrable two
dimensional differential system E on T V of the form
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where 03B603B1 is a given function of xx and v03B1 (a fibre coordinate system of T V),
= d and d . = 20142014’ Such a differential system E on T V shall

be called a second order system over V.
The condition that E be integrable, i. e. by Frobenius’s theorem that

for two vector fields X and Y parallel to E also [XY] be parallel to E
implies that 03B603B1 must be homogeneous of second order in vx in the sense that

or, equivalently,

for some functions p and v on T V [since, according to (2), ~ is only
determined up to a term parallel to The leaves of the foliation
defined by E on T V (i. e. the maximal connected integral manifolds)
project then onto the unparametrized curves y in V that satisfy the
second order equation, and, on the other hand, these leaves are generated
by the lifts of y’s into T V with respect to all possible parametrizations.

If a fixed time t = x° is given and used as curve parameter the quan-
tities ~ are obtained from a given force law F~ by the relation

arbitrary. Similarly, a given E determines a unique set of F~’s.
Clearly, for purposes of explicit integration the homogeneous formulation
is not convenient. But it does facilitate the study of the evolution
of mechanical systems in space-time independently from the specific
(Galileian or Lorentzian) structure of the latter.

It is well known that the quantities ç2 as well as the F ~ do not trans-
form like vectors under configuration space coordinate transformations.
Since this is inconvenient in view of the general use of tensor calculus
we will resort to the following device. Let a velocity dependent tensor
field K over V be an expression .

whose components may depend on vx, but transform like ordinary tensor
components under coordinate transformation in V (8). If the covariant

derivative V K with respect to a given connection r on V is defined by

(8) More intrinsically, K can be defined as a map K : T V-~T~(V) such that

o K = ~~ where ~~, j- and 7}-" are the projections of the bundles T V and T~ ( V),
respectively.
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where the first term on the right is formally the usual covariant derivative
of K (with the v(X-dependence ignored) then one observes that VK
is a again velocity dependent tensor field over V, as well as

In particular, Q = vx dx is velocity dependent vector field and satisfies

Now the mechanical system can be described by covariant equations
of motion.

THEROEM 11. - Let E be a given second order system over con figuration
space-time V. For any chosen connection r on V there exists a velocity
dependent vector field f = fa dx over V, determined up to a term parallel
to v = va. da such that

for some )B. The motions o f E are then the (unparametrized) solution curves
of

where £" = £§/ , ’denotes the covariant derivalive with respect 10 £ and p
is an arbitrary function o/’ r.

Proof :
(i) Suppose ~ (.r, ~) is given subject to (3). Let -~ ~~ (.c?) be

a V-coordinate transformation. Then

whence

Combining this with the transformation law for Txa and (9), considered
as definition of f shows that f is a velocity dependent vector field.

(ii) An integral curve y : -r -+- (r (r), ~ (r)) of a general vector field X
parallel to E satisfies
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whence

that is

since f x is second order homogeneous in va in the same sense as ~x. 0

Whenever the configuration space-time has a well defined concept
of a timelike unit vector one can restrict the velocities of a motion to
unit vectors, or, in other words use proper time as the curve parameter.
In particular, for V equipped with a Galilei or Lorentz structure, let

respectively. Then, if r is chosen to be a symmetric Galilei (Lorentz)
connection

and if the arbitrary p in equations (10) is put equal to zero and the
arbitrariness in f x eliminated by

the equations of motion become

and their integral curves are automatically parametrized by world
(proper) time.

Up to this point it seemed natural to regard forces as contravariant
time dependent vector fields. The possibility of regarding them as
1-forms arises only when there is a given space-time structure on V
(or there is a given Hamiltonian). In the Lorentz case one naturally
defines f:x. = which in view of the condition (13) can also be written

where

the metric of the rest space orthogonal to vcx, is a velocity dependent
tensor over V. (All indices in the Lorentz case are raised and lowered
with respect to ~3.) It is characterized by
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An analogous velocity dependent metric of the rest space can be
introduced in Gralilei space-times, simply by replacing (- vx) in (17 a)
by c!.« :

An explicit solution as (16) in the Lorentz case cannot be obtained cova-
riantly, but if ea } is any Galilei frame and va = va 03B8a03B1 then

For later use we calculate

and

where r is any (not necessarily symmetric) Galilei connection. Equa-
tions (19) and (20) also hold in the Lorentz case, provided is replaced
by - vx. In both cases is homogeneous of order zero in vx and satis-
fies

with respect to any Galilei (Lorentz) connection.

Finally we discuss the canonical formalism for second order systems over
both, Galileian and Lorentzian, configuration space-times. The general
programme which consists of equipping the set of all motions with a
symplectic structure via introducing a suitable presymplectic form 03C9
on the evolution manifold of the system - in this case T V - has been
described previously ([14], [15]). The problem is to find a closed 2-form ~
on T V such that

In general, w is not unique for a given E. A presymplectic w always
exists at least locally. But in the physics literature almost exclusively
a special type of M is considered, namely one induced by a Lagrangean.

If L : i T V -~ R is a Lagrangean (homogeneous of first order in vx)
then w is defined by

or

with
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The Lagrangean is non degenerate iff rank = n. Then X --.J CùL = 0
implies that X is of the general form (2).

Second order systems E that are defined by (22) for a presymplectic
form of the type (24) (i. e. a form w whose restriction to the fibres of T V
vanishes) will be called Lagrangean second order systems. Actually
this is no generalization, since if w has the form (24) there always exists
(locally) a Lagrangean such that (25) holds. In particular, is always
symmetric (9). This is so, because being closed, w is locally of the form
~=2014de==2014d(x~ dxx + J.:x. whence

The last of these equations implies that there exists a function K (x, v)
such that 03BB03B1 = ~03B1 K. Therefore also 03C303B103B2 = 2014 ~03B103B2 K + ~03B2 xa. But in

order for w to define a second order system we must have

It follows that xz = d, (x~ vf3 - vf3 d# K) + K. Let L = x# v3 
- vf3 d# K

then (25) follows immediately.
For the rest of the section we only deal with Lagrangean second order

systems. First note that the 03B603B1 (up to a term parallel to va) are obtained
from

It turns out that is a velocity dependent tensor over V, but is not.

However, one checks easily that

is a velocity dependent 2-form over V, for any chosen connection r.
Then (28), together with (9) gives

The condition that dw = 0 is expressed in terms of and 03C303B103B2 by

and

(9) The point is, that there may exist a global or covariant form for oo, but not for L.
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Contracting (31) with vx and (32) with v’. and using (27) and (8) shows
that = - o-x3 and = 0, i. e. is homogeneous of
order - 1 and of order 0 in v03B3.

So far no assumption was made about the specific space-time structure
of V. The question arises which w’s (or also which forces f x) are compa-
tible with a Galilei or Lorentz structure on V, respectively. Since we
cannot require invariance of w under the group of space-time automor-
phisms without reducing all forces to zero, and there seems to be no
distinguished action of G° or L° on the fibres of T V only, this problem
appears to be non trivial. We make in the following a simple assump-
tion that looks admittedly somewhat ad hoc from the present point of
view, but actually covers all the classical Hamiltonian forces normally
considered for this type of systems.
Note that the velocity dependent tensor 03B303B103B2 is of rank n and satisfies

= 0. It would be a good candidate for except for being homo-
geneous of order 0 in instead of order-1. Thus, the simplest choice
for compatible with the appropriate space-time structure seems
to be

for the Galilei and Lorentz case, respectively (~). (Assume now that w
need be defined only on To V = (.r, v) E T VjvP ~p &#x3E; 0 j with rfp replaced
by - v, in the Lorentz case.) We call a Lagrangean E satisfying (34)
a classical Galileian (Lorenlzian) Lagrangean second order system.

Observe first that, if moreover = 0, the choice (34) for corres-

ponds to the well known free particle Lagrangean L = - va

in the Lorentz case. In the Galilei case a space-time covariant expres-
sion for L cannot be given, but it will turn out soon that the expression

L = 1 m can be obtained for a special coordinate choice.

Assume that a Galilei structure on V is f. o. f. Then we can choose r

to be a symmetric Galilei (Lorentz) connection. Equations (31) are

already satisfied for a of the form (34), as can be seen with
the help of (19). Equations (32) reduce to ~03B3w03B103B2 = 0 showing that

2 dx A dx03B2 = w is actually on ordinary 2-form on V. If, in the

Galilei case, we let r be a Newtonian connection it follows from (4.15)
that the second term in (33) vanishes, as it does for a symmetric Lorentz
connection. Thus (33) reduces to div = 0.

(1°) For the flat Galilei (Lorentz) structure this expression follows frome the inva-
riance of n) under the inhomogeneous Galilei (Lorentz) group.
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Equations (30) can now be solved for f x with the help of (17) and yield

and

for the Galilei and Lorentz case, respectively [where f x is already norma-
lized according to (13)]. For a Lorentz space-time the interpretation
is immediate.

THEOREM 12. - A classical Lagrangean second order system over a
Lorentz speca-time V describes a particle subject to the Lorentz force of
a Maxwell field iv according to xx = - gxi, D.

For Galilei configuration space-times the situation is the same, except
that, since the (Newtonian) connection is still arbitrary, any force of
type (35) can be regarded as an inertial force. To see this, define a

new connection = + Since r is Newtonian and

dib = 0 so is F according to theorems 7 and 9. But now

by (35). Thus

THEOREM 13. - The classical Lagrangean second order systems E
over a f. o. f. Galilei manifold V are in one-to-one correspondence with the
Newtonian connections r on V. The set o f motions o f E coincides with
the set o f timelike geodesics (considered as point sets) with respect to a

Newtonian connection.

To recover finally the old non homogeneous formalism we introduce
an adapted coordinate system such that rfex = o~. Then

Choosing the connection such that iv = 0 and using (4.10) yields

which can be derived according to (25) from the Lagrangean
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if
;1 i

since the connection is Newtonian. The equations of motion in this
coordinate system become

They are seen to include most « non relativistic » Lagrangean force laws.
It should be noted that in the above coordinate choice the unit vector
field u [c f. (4.6)] was tacitly left arbitrary. In many cases a choice
is possible that eliminates some of the terms in (37).
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