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Section A :

Physique théorique.

ABSTRACT. - Let K be a commutative field of characteristic zero.
The Weyl algebra of degree n over K is defined as the associative algebra
An (K) whose generators satisfy the canonical commutation relations

for a system with n degrees of freedom. It is shown that if B lies in a

certain class of subalgebras of the quotient field of An (K), then

where A is a subalgebra of B, C (A, B) the commutant of A in B and
DimK denotes a dimension introduced by Gel’fand and Kirillov [1].
Applications and possible generalizations of this result are discussed.

RÉsUMÉ. - Soit K un corps commutatif de caracteristique 0. L’algèbre
de Weyl d’indice n sur K est définie comme l’algèbre associative An (K)
à generateurs satisfaisant les relations de commutation a n degrés de
liberte. Au cas où B est continue dans une certaine classe de subalgèbres
du corps des fractions de An (K), il est démontré que

où A est une subalgèbre de B, C (A, B) le commutant de A dans B,
et Dimp est une dimension définie par Gel’fand et Kirillov [1]. On examine
les utilisations et les généralisations eventuelles de ce résultat.

(*) Work supported by the National Science Foundation under N. S. F. Grant No.
GP-31359.

(**) Permanent address : Department of Physics and Astronomy, Tel-Aviv Univer-
sity, Ramat Aviv, Israel.
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1. INTRODUCTION

Let K be a commutative field of characteristic zero. For example
the complex numbers C. By the Weyl algebra of degree n over K,
we mean the associative algebra An (K) (or simply An) on K defined
by generators q;, pj (i, j == 1, 2, ..., n), with relations

.... - - ., r -- f l J

When n = 1, we drop the subscripts on q and p.
We may recognize (1.1) as being the defining relation of the canonical

commutation relations or of the nilpotent Lie algebra whose enveloping
algebra, quotient the ideal generated by 12 - 1, is An. Again (1.1) is
recovered if on the algebra of smooth functions in the variables pi,

pz, ..., pn, we make the identification : 7/ = -2014(/ == 1, 2, ..., n). ,
The Weyl algebra is important in all of these roles.

Let A be a subalgebra of An over K. Let a denote a finite collection
of elements of A. Let d (a, m) denote the dimension of the space of
polynomials over K of degree at most m, taken from elements of a.
Following Gel’fand and Kirillov [1], we define

where lim denotes the least upper bound.

These authors have shown that

More generally we have established a result : [2], Theorem 3.5, which
can be expressed in the form.

THEOREM 1.1. - Let A, B be subalgebras of A,L such that [a, b] = 0,
for all aeA, Then

Actually the theorem referred to does not imply Theorem 1.1, though
in its proof (1.4) is implicit. In any case here we establish a more
general result than Theorem 1.1.
Theorem 1.1 has a number of weaker forms. Firstly we may

omit 2 n from the right hand side of (1.4). Secondly it implies
DimK A ~ n, when A is commutative. Finally it asserts the existence
of certain polynomial relations between the elements of the given subal-
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gebras. Indeed it was in this form that our results were originally
stated.
Theorem 1.1 has a number of applications. It implies [1] the non-

isomorphism of A,n with An for m ~ n. [In fact (1.3) suffices for this
purpose.] It is useful in the construction of generators of a Lie algebra
from elements of An ([1]-[5]). It applies to the study of endomor-

phisms [6] (i. e. canonical transformations) of An.
Our present objective is to obtain generalizations of Theorem 1.1

by extending An to a larger algebra. We could do this by taking formal
power series; but we believe this choice to be inappropriate, for then
independent of n, there is a sense in which the resulting algebra is iso-
morphic to the algebra of all bounded operators on some infinite dimen-
sional Hilbert space. Consequently n loses its meaning. Instead
recall that An has no zero divisors [7] and define the quotient field Rn of An
through

with the identification, x = y given nonzero a E An, such
that ax, and ax = ay.
That Rn is a field is a consequence of the fact that An satisfies the left

Ore condition. That is for all a, b E An, there exist c, d E An such that

Then, f or example,

The validity of (1.5) is generally demonstrated ([1], [7]) by appealing
to the Notherian property of An. In a more elementary fashion it can
also be verified by monomial counting [4], a technique which extends
to the enveloping algebra of any Lie algebra.

In attempting to generalize Theorem 1.1 to Rn, we might question
whether (1.2) is still an appropriate definition of dimension. Indeed
for Rn, Gel’fand and Kirillov [1] introduce a modification of (1.2) which
essentially allows for the introduction of a common divisor b of the

components of a. With this change they show that (1.3) remains
valid when Rn replaces An. For our purposes this modification is inap-
propriate since the introduction of b upsets the commutativity hypo-
thesis of Theorem 1.1.

For Rn itself, Theorem 1.1 fails. Yet we believe (c f. Section 4) that
it may still be possible to establish one of its weaker forms. For the

present we restrict our attention to a subalgebra of Rn for which Theo-
rem 1.1 can be demonstrated. For this purpose let ad a (a E 
denote the map of Rn into Rn given by (ad a) b = [a, b].

ANN. INST. POINCARE, A-XVII-4 23
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DEFINITION 1 .2. - A subalgebra B of Rn is said to have nilpotent
quotient if for every finite collection of elements bi, ba, ..., bn~B,
there exists a E An, such that abi~An and for some positive integer k,

a) b1 = 0 for all i.

Example 1. - Let Pn denote the algebra over K generated by
qh qa, ..., qn. Define

Then B is a subalgebra of Rn with nilpotent quotient. Indeed in the

definition we may choose a E Pn and then the hypothesis is an easy
consequence of (1.1). Bn may be considered as an algebra of differential
operators over rational functions.

Example 2. - Define B c R1, through

B = rational in q2p, a polynomial in p j.

Since (ad~; q2p) p = 0, B has nilpotent quotient.
For n = 1, we give a partial characterization (Theorem 3 . 6) of algebras

having nilpotent quotient.

Theorem 1.1 can be demonstrated for algebras with nilpotent quotient
since it is straightforward to control the degree of the common divisor
of given elements. In general for Rn, this problem reduces to finding
good estimates for the degrees of c, d appearing in the Ore condition (1.5)
in terms of the degrees of a, b. Neither existence proofs mentioned
above are useful for this purpose. We have been able to obtain an explicit
formula for c, d which is more useful. Then, for example, given A
a commutative subalgebra of R1, the relation : DimK A / 1, reduces
to establishing certain determinantal identities. Unfortunately we

have been unable to verify these except in the simplest cases and it
remains a question for further analysis.

2. THE POISSON BRACKET

AND THE EXTERIOR PRODUCT

Let R (Xm) (respectively D (X"’)) denote the algebra of rational (respec-
tively analytic) functions over K in the m variables : Xi, X2, ..., X"Z.
Given F, G 6 R (X’~t), we define their Poisson bracket through the
formal differentiation
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Let /B denote the exterior product [8]. This defines a distributive,
associative, antysimmetric, non-degenerate product on the 2 n dimensional
vector space over R (X2n) spanned by dX1 (i = 1, 2, ..., 2 n).

LEMMA 2.1. - Let r be an integer : 0  r  2 n + 1. Given

F;, (X2n) ( j == 1, 2, ..., r; k - 1, 2, ..., 2 n + 1 - r), lviih

{ Fj, = 0, for all j, k. Then either A 0, dGk = 0.
. 

/=:i 1 ~==1 1

Proof. - Assume neither conclusion holds. Since Fj, Gk are rational
and the determinant is a polynomial function, there must be at least
one point in the X space where neither product vanishes. This obser-

vation reduces the proof to the case when the given functions are linear
homogeneous, which is a straightforward computation.
Let denote a linear subspace of R (X2n) closed under Poisson

bracket, where : r = dim dM,. and dMr denotes the linear space of diffe-
rentials dF(F~Mr). Let Ns denote a second such subspace. 1I,.
and Ns are said to be in involution [9] given F, G l = 0, for all F E Mr,
GeN.,. Then through the above lemma : r + s L 2 n. This inequality
lies at the basis of Theorem 1.1. To examine the condition for equality,
we remark that given MrC D (X2n), there exists [9] an Ns c D (X’n)
in involution with Mr, such that r + s = 2 n. (No assertion is made
here concerning global definition of the elements of N., see also example
below).
Yet the corresponding statement for R (X2n) is false unless n = 1.

For example, take K = C, n = 2, r = 1, and let M, be complex mul-
tiples of the function

Then (X~) and is a one dimensional linear space closed
under Poisson bracket. We remark that F may be identified with the
classical Hamiltonian for the two dimensional harmonic oscillator with
incommensurable frequencies. Set

This change of variables is a contact transformation and F = Y1 + Y~.
It follows that N = { G e D (X’) : F,G j J = 0 ~ } is the set of all analytic
functions of Yi, Y2, Y;&#x3E; - Y4. When a is rational, say x == 2014

n

(m. n integers), then tan m (Y~ 2014 (X4) and there exists an

N:~ c R (X4) in involution with Mi. Otherwise this fails to hold. Indeed

choose a linear contact transformation to reduce F to the form

Xi X3 + a X2 X4 and observe.
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LEMMA 2 . 2. - Define N = ; FeR (X4) : ~ F, + x X2 X } = 0 }.
Given x irrational, then N is generated by Xl X3 and X2 X~.

Proof. - Choose We may write F = Gw H (G, H polynomial).
Through the hypothesis of the lemma

Write

and

Define Xi X~ Gr; to be the leading term of G. Let X1 X~ Hkl be
the leading term of H. Through (2.2) we obtain

which implies : k = r, s = I, since x is irrational. Set H’ = HGrs - GH,~
and F’ = G-l H’. Then F’ E N, and so if H’ ~ 0, its leading term must
be of the form X~ X~ H;.,, which impossible. Hence II’ == 0 and

F = which proves the lemma.

Define FeR (Xm) to be homogeneous of degree s given

LEMMA 2.3. - Let S be a subset o/’ R (X"’). Let r be an integer :

o  r  m. Given G~R(Xm), dG~ 0, such that dG /B ()B, = 0,

/br all F¿ E S. Then

(1) /B dFj == 0, /br all Fj~ S.
/=i

(2) Given that the elements o/’ S are homogeneous o/’ degree s ~ 0, then

Proof. - (1) Let dS denote the subspace over K spanned by dF (Fe S).
It suffices to shown that dS is at most r dimensional. Assume dim

dS &#x3E; r. Let ei ~ : t = 1, 2, ..., 2 n, be a basis for dR(X2n) such that
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= 1, 2, ..., r. Write

Through the hypothesis of the lemma and the non-degeneracy of A a
simple calculation shows that each hi must vanish. Hence dG = 0, a
contradiction which proves the assertion.

r+1 I

(2) Identification of the component of dXk in dFj, multiplication

by Xk, summation over k, use of (1) and (2.3) gives (2).

LEMMA 2.4. - Let S c R (Xnt) be a subset o f homogeneous polynomials
o f degree k and let G E R (Xm) be a homogeneous polynomial of degree l.

Given /B d F‘ - 0, for all Fi E S, 0  r L m. Then either

Proof. - Through the hypothesis

Given k - 1 ~ 0, Lemma 2. 3. 2 applied to the hypothesis shows
that the second term in the right hand side of (2 . 4) vanishes. Hence (1 ).
Otherwise, exterior multiplication of (2.4) by gives
after a little rearrangement

for all F,eS. Taking Lemma 2.3.1 into account we obtain (2).
We can now state and prove the central dimensionality estimate

required for Theorem 1.1.

THEOREM 2.5. - Let m, n, r, s be non-negative integers. Let 
be a linear subspace o{ R (X") of homogeneous rational functions of degree m
having as common divisor a polynomial HeR (Xn) of degree s. Given

=0, /br all then
~=1
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Proof. - Given G E set F = GH. By hypothesis, F is a homo-
geneous polynomial of degree m ~-- s. When m ~ 0, m -~- s ~ s, so by~ 

the hypothesis and Lemma 2.4.1, it follows that A dF; = 0, for all Fi.

Then [2], Lemma 3.3 applies and we obtain the top line of (2.5).
When m = 0, similar use of [2], Lemma 3.3, taking Lemma 2.4.2

into account, gives the bottom line of (2.5).

3. MAIN THEOREMS

Through (1.1) it is immediate that the monomials in the qi and p;
(i, j = 1, 2, ..., n), with the qi to the left form a basis for A,,. With

respect to this basis, each a E An may be considered as a polynomial
in the 2 n variables : Xi (i = 1, 2, ..., 2 n), identifying : X ~ = qi ;

== Pi (i = 1, 2, ..., n). Let Fa denote the leading term of this

polynomial. Then Fa is a homogeneous polynomial of the Xi. Given a,
b E An, the following formulae derive from (1. 2).
For all ~, ,3 e K,

given that the right hand side does not vanish and deg F« = deg Fb;

given deg F,, &#x3E; deg Fi and x ~ 0;

Given a, b ~ 0, either

or,

Let xeR". We may write x = a-i b (a, beAn). Then (c f. [I],
Lemma 4) F~ Fb is independent of the particular choice of a, b for
which x = a-I b. Indeed set x = c-I d (c, d e An). Through the left
Ore condition (1.5) there exists e, such that ea = fc. Right
multiplication by x gives eb = fd. Taking (3.3) into account we obtain
from these two relations that F~ Fb = F~ Fd, as required. Set
F. = Fa Fb. A similar use of the left Ore condition and (3 .1 )-(3 . 5)
establishes the lemma below.

LEMMA 3.1. - Formulae (3 .1)-(3 . 5) extend to the elements o f Rn.
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COROLLARY. - Given x, y e Rn with [x, y] = 0, then ( Fr, F3- = 0.
The above result allows the application of the results of Section 2

to Rn. Thus we show :

THEOREM 3 . 3. - Let A be a subalgebra of Rn with nilpotent quotient.
Set Mr _ ~ ( F, : where r = dim dM,.. Then DimK A = r.

Remark. - Through Lemma 3.1, Mr is closed under Poisson bracket.

Proo f. - Establish DimK A L r. Let x denote an s-tuple of elements
xl, ..., xs eA. By hypothesis and Definition 1. 2, there exists a,

bi, b2, ..., bs E An, such that : xi = a-I bZ; (adk a) bi = 0 (i = 1, 2, ..., s),
for some positive integer k. Set u = Sup deg Fbi; v = deg Fa. Let m

be a positive integer. Let z be a polynomial of degree at most m in the
x~. Let 1 be an integer, 1 ~ k. Denote by La, Ra respectively, left
and right multiplication by a. Then

From this formula, it follows that there exists bi such that

al xi = bji aL-k. Hence z e An. Set c = akm z. Through (3 . 3) :

Then applying Theorem 2.5 to the hypothesis of the theorem, taking
(3.6) into account, gives

Since the square bracketed term is independent of m and x is arbi-
trary we obtain, recalling (1. 2), that DimK A ~ r.

Establish DimR A ~ r. Through the hypothesis of the theorem,
r

there exists x,, x~, ..., x,. e A, such that : A 0. Suppose
i=l

that there exists a ~ A, such that deg Fa &#x3E; 0. Then for some positive
integer I, deg &#x3E; 0, for all i. Furthermore Falxi = Fal Fxi, by (3 . 3),

~ 

’ ~ 

~ 

r 

~ 

and since deg Fal # 0, we obtain /B 0, through Lemma 2.4.1.
i=1

Choose positive integers ti, so that ti deg is independent of i. Set

Yi = (a~ Then y1 E A, and
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for all i, j. Through (3.1)-(3.3), (3.7) and Lemma 3.1, it is easily
established that the monomials rj 2=, ..., non-negative
integers ! are linearly independent. Set y = ..., Then

d (y, m)  r + r &#x3E; mr, which implies : Dimp A ~ r.
A similar argument applies given aeA, with deg Fa  0. Otherwise

we may assume deg = 0, for all i. Set x = (xi, X2, ..., Then

by (3 .1)-(3 . 3) and Lemma 3 .1, it follows that d (x, m) ~ &#x3E; mr.

Hence DimK A ~ r, and the theorem is proved.
Let A, B be subalgebras of Rn, with A c B. Define

Combining Lemma 2.1, Corollary 3.2 and Theorem 3.3, we obtain
the following generalization of Theorem 1.1.

THEOREM 3 . 4. - Let B be a subalgebra of Rn with nilpotent quotient.
Let A be a subalgebra of B. Then

It is false in general that the right hand side of (3.8) can be replaced
by DimK B. For example, let A, B be generated by qi, On the other

hand, it is a simple consequence of Theorem 3.3, that DimK Bn = 2 n
(cf. Introduction, Example 1), so when B = Bn, DimK B may replace
the right hand side of (3.8).

It is false in general that we can assert equality in (3.8), except when
n = 1 and B = Ai or Bi. Indeed through Theorem 3.3, a necessary
(though not obviously sufficient) condition for this to hold is the following.
Namely that there exist a subspace Ns of R (X2n) in involution with
the Mr of the hypothesis of Theorem 3.3, such that s + r = 2 n. When
K = C, n = 2, B = A~ or B ~ and A is generated by qi pi 1 --;- oc q2 p~
(x irrational), this condition is excluded by Lemma 2.2. Indeed it

is not hard to show that C (A, B) is generated by qi pi, q2 P2, by direct
computation, so that Dimp C (A, B) = 2. When x is rational, say

x = m , then q11 pn2 E C (A, B). Then by Theorems 3 . 3 and 3 . 4,

DimK C (A, B) = 3.
We close this section with a partial characterization of algebras with

nilpotent quotient.
An element a E An is said to be strictly nilpotent if for each 

there exists a positive integer k such that a) b = 0. Let Gn denote
the group of all automorphisms of An. When n = 1, we have [10],
Theorem 9.1.
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THEOREM 3.5 (Dixmier). - Let Given a strictly nilpotent,
there exists 03C6~G1, such that o (a) E Pi.
Let o be an endomorphism of Ai. We have : ker o = 0 } ([6]~

Prop. 2.1). Let o* denote the extension of o to an endomorphism of Ri
defined through :

THEOREM 3. 6. - Let B c R i have nilpotent quotient. Given A~,
there exists S? ~ Gi, such that ~* (B) c Bi.

Proof. - We may suppose that B ~ Ai, so there exists xeB, 
Consider the 3-tuple (x, q, p). Through Definition 1.2, there exists

aeAi, such that ax~ Al and (adk a) q = a) p = 0, for some positive
integer k. Since q, p generate Ai, it follows that a is strictly nilpotent.
Hence by Theorem 3 . 5, there exists geG1, such that o(a)~Pi. We
may assume 9 (a) =q. Of 9* B i, there exists y e B, such that 9* (~) ~ B 1.
Consider the 4-tuple (x, y, q, p). As before there exists b ~ Ai, such that br,
by~A1 and e for some BeG1. show that 9 (b)ePh which
contradicts the choice of y.

By choice of o we may write

where the F,n are polynomial. Since b, bx E Ai, we have

which on substitution in (3.9) gives

Recalling (1.1) it follows, by step-wise removal of top order terms
from the left hand side of (3 .10), that p (b) q-t eAi. Set o (b) q-l = c
and == ~. Then ~~ eGi and by choice of 0,

Through knowledge [10] of Gr, it is readily
verified that i implies that ~-1 (q)eP1. Hence ceP1, which

implies as required.
This theorem does not provide a complete characterization of subal-

gebras of Ri with nilpotent quotient. Thus Example 2 of the introduc-
tion violates its conclusion.
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4. FURTHER REMARKS

Let Cn denote the subalgebra of Rn over K generated by q;, pj,

py~ (i, j, ==1,2, ..., n). Cn does not have nilpotent quotient, nor

does Cn contain Bn. We have shown that DimK Cn = 3 n. We conjec-
ture that Theorem 1.1 applies to Cn with 2 n replaced by 3 n in the right
hand side of (1.4), and that DimK A ~ n, given A a commutative subal-
gebra of We have verified these statements for n = 1. For n &#x3E; 1,
we have not yet been able to resolve an additional technicality which
arises and the best estimate we can so far make for the right hand side
of (1.4) is 4 n - 2 (n &#x3E; 1).
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