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Section A :

Physique théorique.

ABSTRACT. - We consider a uniformly bounded sequence { v (L) }
( j = 1, 2, ... ) of positive numbers depending on a parameter L. The
numbers Y; (L) become « dense » when L - oo in the sense that the weak
limit of the measure

exists (~ denotes Dirac’s delta), and their sum V(L) = ~ Yj (L) tends
/=l

to 00 when L -+ 00. In particular this situation arises when v, (L) = 

(/ == 1, 2, ...), c (A;) being a non negative continuous bounded function
falling more rapidly than /r~ as A- -+ oo.
Then denning the numbers
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196 G. FANO AND G. GALLAVOTTI

which are generated by the infinite product

we study the existence of some limits of the type

We prove that a necessary and sufficient condition for the existence
of such limits is the existence of the limit measure v, and we find simple
relations among g, ~, etc. The above problems have been suggested
in connection with some recent research in quantum statistical mechanics,
where they find some applications. Extensions to more general sequences
{ Y j (L) } are discussed.

1. Introduction and notations

The analysis of the mathematical structure of the thermodynamic
limit of superconducting systems has recently [1] given rise to some

problems which seem of interest for the pure mathematician. The

following situation has been met :
Consider a function c (k) defined on the positive real axis and call

RL = / k : k = = 1, 2, 3, ...} a lattice on the positive axis
with spacing -.2014. .

Given a positive integer n we define

where kj E RL.
These numbers are the coefficients of the power series expansion of

the following function :
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The assumptions on c (k) such that (1.1), (1.2) make sense will be
discussed later in detail. For the sake of clarity in defining the problem,
in this section we make very stringent assumptions : we assume c (k)
to be a continuous bounded monotonic function decreasing at least
as (s &#x3E; 0) as k -~ + oo.
The physical interpretation of the above objects suggests the inves-

tigation of the asymptotic properties of the numbers aL as L - oo,
n - 00.

Simple combinatorial arguments using the decomposition of a permu-
tation into a product of cycles [2] lead to :

where (1)

It f ollows that

Therefore if L - oo and n is constant we see that the asymptotic
behaviour of an is dominated by the first term of Equation (1.5). If

L - oo but [ tends to a constant value d  + oo, then this is no longer
true since the number of terms contributing to the R. H. S. of

Equation (1.3) is rapidly increasing with n. Let us call T. limit (2)
the limit performed when L - 00, [-+ d, 0 L d L oo. We

see that the study of the asymptotic properties of the coefficients an
in the T. limit makes sense and is non trivial. A simple use of Stirling’s
formula shows that the logarithm of the first term on the R. H. S. of

Equation (1.5) is asymptotically proportional to L in the T. limit.

(1) We shall often use symbols of the type 0 (x), O’ (x), 0" (x), Oi (x), to denote
functions which tend to zero as x - 0.

(2) « T » stands for « Thermodynamic ».
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This suggests asking whether the T. limit

exists.

The consideration of the « leading » term in Equation (1.5) suggests
asking whether the limit

exists. Another interesting question is the following : suppose we

fix a point kQ E RL and define

~L
where ~ 

0 

means that the set ki, ..., kn j contains the nwe expect

that aL (ki) and an have the same asymptotic properties in the T. limit.
More precisely, we can ask whether the f ollowing limit exists

ko being a positive number. If all the above limit exist, are they uniform
in d ? And can we find an « explicit » expression for their values ?

Section 2 recalls and generalizes the results of [ 1], and is meant to

provide the basic technical tools for the proof of the main theorem of
the paper which is presented in Section 3.
The methods of Section 2 are combinatorial techniques used in [3], [1];

they give results stronger than usual since it is possible to give a closed
form to lim L -1 log f L (z) [see Eq. (1. 2)]. Clearly

Section 3 can be read independently from Section 2 provided one

accepts theorem 1 and inequality (2.14). This Section is devoted to

the study of the following general problem : the questions raised in

Equations (1.6), (1.7), (1.8), (1.9) can be regarded as concerning the
asymptotic behaviour of sums over a set of points which becomes « uni-
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formly dense » on the positive real axis. A similar but more general
problem of « dense sums » can be formulated as follows : let L denote

a real number and give for each L a sequence of positive numbers
( y j (L) ) (j = 1, 2, ...); suppose

Consider then the infinite product

which implicitely defines the aL. Clearly if we choose y/ (L) = c (203C0j L)
we obtain Equation (1.2), and V (L) becomes equal to 03C3L1 [see Eq. (1.4)],
which is asymptotically proportional to L.
Assume that V (L) -+ oo as L - oo, and let us investigate the asym-

totic properties of the coefficients an in the general case. Intuitively
we expect that the role before played by L will now be played by V (L).
Indeed we shall show that a necessary and sufficient condition in order

that Equations (1.6), (1.7), (1.9) hold [with L replaced by V (L)] is

that, defining a measure [J-L (de) over the positive real axis as

(à denotes the Dirac’s 0), the following limit exists :

In other words, for any continuous bounded function cp (c) we must
have

Notice that, due to the identity c (dc) = 1, there are always (3)

convergent subsequences of measures even if the limit (1.14) does not
exist.
The fact that Equation (1.14) is a necessary and sufficient condition

for the existence of T. limits like T. log an constitutes a strong

generalization of the analogous result obtained in [ 1] concerning the
case of a bounded monotonic function. As will be seen in para-

(3) Notice that because of (1.11) the integration is over [0, A].
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graph 4, given an arbitrary non-negative piecewise continuous
function c, it is possible to group together points of the k-axis at which c

assumes the same value, by means of the relation L - c 2
Since the points ~~~ (L) become « dense » when L - oo in such a way
that the limit (1.14) exists, we obtain the above mentioned generalization
of the results of [1]. Finally, the following extension of Theorem 1
of [1] is obtained : we prove that all the T. limits (1.6) through (1.9)
exist even when c is singular for k ~ 0, provided log [ 1 + c (k)] ] is inte-

grable on [0, s] for some s &#x3E; 0.

2. This Section is devoted to the proof of the existence of the limits

[(1. 6) a (1. 9)]. Since part of the techniques used are standard in modern
statistical mechanics, and part of the details can be found in [1], we shall
omit the more elementary steps of the proof.
THEOREM 1. - Let c (k) be a non-negative decreasing function defined

on (0, + oo) and suppose :

Then the limits (1.6), (1. 7) exist and the limit (1. 9) exists in all

points ko where c is continuous. Furthermore, defining

dl the above limits are uniform in d for d belonging to any interval
d1, d2 ], where 0  di  d*.

Proof. - Let us prove first the following inequality

Since the lattice RsL = k : k ==- -L’ ~~ = 1, 2, 3, ... ) can be decomposed
as RL~ R’L, where RL is obtained simply shifting the points of RL of
an amount ’~ to the left, we can write
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Due to the decreasing character of c, when we substitute in the last

summation RL in the place of RL, the value of the sum decreases. Setting
n - ni = n2, we obtain inequality (2 .1 ). In particular for n = 2 m,
and picking only the term with ni = m, we have

Let us set now G (L, n) == r log a~, and consider the sequences

where Lo &#x3E; 0 and dLo is integer. From (2. 3) it follows that the sequence
{ G (Li, ni) is strictly increasing. Let us now assume that sup c (k)  oo.

Then, since 03A3c (k)  oo, c is summable (4) on [0, + oo) and we have

Hence using Stirling’s inequality log n ! ~ n log n - n, we obtain
the bound

Therefore the lim G (Li, ni) = g (d) exists, and it is easy to prove,

using the arbitrarity of Lo, that the same result holds when we take
the T. limit of more general sequences than (2.4). Inequality (2 .1 )
can be generalized as (see [1])

and it can be proved without difficulty that this inequality implies the
concavity of g (d) :
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It follows the continuity of g (d) as well as the uniformity in d of the
limit (1.6) for d2], 
The limit

exists for all z &#x3E; 0 since log [1 + zc (k)]  zc (k). On the other hand
the uniformity of the convergence of G (L, n) to g (d) allows us to apply
the maximum term (or saddle point) method to find a relation between
p (z) and g (d) :

where we have called d (z) the value of d such that d log z -~- g (d) is
maximum. Indeed there exists only one such value since p is every-
where differentiable (see [1]).

Differentiating the expression d log z + g (d) with respect to d, we
we obtain

Hence from Equations (2.9), (2.10) we obtain by differentiation

which implies in particular that g (d) is differentiable in d infinitely
many times and is analytic in d in a neighborhood of 0  di   d*.

Let us prove (6) the existence of the limit (1.7) : from a direct compu-
tation (see [1]) or also using the theory of entire functions (see [4]) one
can prove that

(5) It is easy to verify that an vanishes if c has compact support and Ê is large
enough. From this follows the bound -  d*.

(s) This procedure is similar to that used by Dobrushin and Minlos (see [3]) for

proving the continuity of pressure.



203DENSE SUMS

By repeated application of this inequality we find

where a is any positive integer. Therefore

Letting

Analogously from

we get

Letting now s - 0 and using the diff erentiability of g (d) we find

where z (d) is the inverse function of d (z) [see Eq. (2.11)].
From the uniformity of the convergence of G (L, n) to g (d) it follows

the uniformity of the convergence of (2.17), (2.19), and then of the
T. limit (2. 20), for due d~], 0 ~ d~  d*.

Let us now consider the limit (1.9); from the definition (1.8) of an (ko)
it follows that

Therefore
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From the existence of the T. lim t log aLn zn it follows that aL zn,
considered as function of n, is strongly peaked around the value n = d (z) L
for L large. The same result holds for an (ko) zn. Let us now take

the T. limit of both sides of (2.22) keeping ko fixed this is possible for
instance letting L ---~ oo along the sequence Li = 2i Lo, Lo &#x3E; 0, and

assuming ko E 9 RL)’ Since only terms with d (z) L are domi-

nating in each summation, it is not surprising that

A rigorous proof of (2 . 23) has been given in [ 1] and therefore is omitted.
The proof follows from (2.14), (2.20) and implies also the uniformity
in d. On the other hand we will show later that

Assume now that ko is a continuity point for c. Then Equations (2. 23),
(2 . 24) and the uniformity of the T. limit (2 . 20) imply Equation (2 . 23)
also for ko not belonging to the set U The T. limit (1.9) exists

!==!

and is clearly uniform in de [di, A], 0  d1  d*, and in k. It
remains only to prove the inequality (2.24) : From the definition (1.8)
we have

Subtracting the analogous relation obtained interchanging ko and k
we obtain
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from which (2.24) follows. Therefore our theorem is proved under the
hypothesis sup c (k)  oo.

k

Let us now drop this restriction, so that c can be a non-summable
function. We notice that inequality (2.7) still holds, while (2.6) has
to be replaced by a different upper bound since c might be not-summable.
If we could find such an upper bound the proofs given before would
hold unchanged.

We denote by the expressions obtained from aL replacing c
respectively by c~, c~l~. Clearly from (1.1) it follows that

Notice that all = 0 for k &#x3E; n ~ since n ~ is the maximum number
of distinct k’s that fit in [0, x]. Furthermore we can write
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(e is summable on [x, -E- 00] since it is decreasing and ~ c (l~) C + 00 )-
Therefore, using Stirling’s inequality (n - ~) I ~ - e ,

which gives a bound for G (L, n) of the desired form.

The inequalities (2.14), (2.24) still hold since they are purely alge-
braic. Therefore the limits (1.7), (1.9) exist and have the same uni-
formity properties as before. The theorem is proved.
An interesting example is given by taking c (k) = k-P, p &#x3E; 1.

This example has been studied in detail in [5]. The coefficients aL have

the simple L-dependence aLn = ( 2 L 7! )n P bn, where bn does not depend
on L. The existence of the above limits allows extablishing simple
properties of the coefficients bn, like for instance

where g (d) = dp 1 - log (2 dp ; of course the right hand

sides of (2.32), (2.33) do not depend on d.
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3. Let us now consider the second problem mentioned in the intro-
duction, i. e. the problem concerning the asymptotic properties of general
« dense sums ». We shall prove the following theorem :

THEOREM 2. - Let (L) j be a sequence of non-negative numbers
depending on a parameter L. Suppose :

(i) The limit ( 1.14) exists ;

Then defining the coefficients an by formula (1.12), the limits for

L - oo, V 7L) -+ d (that we shall still call T. limits)

exist for all d  0 if and only if the limit (1.14) exists; if they exist
they are uniform in d for d], 0  d1  dp  d* where d* is the

greatest lower bound of the set of d’s such that g (d) = - oo.

Proof. - The idea underlying the proof is to construct, by using the
measure v (dc), a monotonic function k (c) with inverse c (k) such that

the set c ( /~~) ( 7 = 1, 2, ... essentially reproduces the set

{ Yy (L) j. Then it will be shown that replacing Y/ (L) with c ( v (~~ , . j ) /
in the definition of the a~ the limits (3.1), (3.2), if existent, are not
affected and then use theorem 1 to prove their existence.

Let us first assume that inf Y j (L) &#x3E; ~ &#x3E; 0. Let N be the set of
j, L

points (atoms) in the support (contained in [~, A)) of v (dc) which have
non zero measure. N is countable since v is normalized.

If E denotes an interval, then

This formula suggests the definition of the monotonic function
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Let c (k) be the inverse of k (c) [this function has discontinuities
where k (c) is constant but is otherwise unambiguosly defined] ; k (c) = 0
for c ~ A and c (k) = 0 for k &#x3E; k (0), but c (k (0)) ~ ~ &#x3E; 0.
The set of points where c (k) has discontinuities is at mostd enumerable;

to each of these points kj, ( j = 1, 2, ... ) there corresponds an interval
with endpoints cj, c~ . Call M this denumerable set of c’ s. Divide the
interval [~, A) into the union of a finite number’ of semiopen intervals

(for i = 1, 2, ... , T,) such that for t = 1, 2, ..., ~

and  e. Then by the Alexandroff theorem (see [6]), and using
that lim L({03B4i})=0, the weak convergence of c to v (dc)

implies that

It follows that the number of y/ (L) belonging to Oi+l) is asympto-
tically given by

On the other hand in the interval [k k (Oi)] fall a number

of points of the set 2= j ( j = 1, 2, ...), and since

we see that lim 1 for each interval Oi+l) such that
L~ NL

k Uy- ~ (Ui+1) &#x3E; o.

We shall now construct a new lattice of ( j = 1, 2, ...)
with V- (L) L V (L) in such a way that :

(1) lim V(L) V-(L)=1;
(2) the number Ñr: of points of the lattice falling in Of, [0+1) is not

greater than 

(3) no points of the lattice is a discontinuity point of c.
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Let us set bi = k(03B4i)-k(03B4i+1) for t = 1, 2, ... , T,. We define
2 7T

where 2 &#x3E; Y)L &#x3E; 1. Relation (1) is clearly satisfied. Let us check
relation (2). We have

where |0394 I  1 and Y)L &#x3E; 1. Hence for L large enough

It remains to prove that it is possible to choose Y}L in such a way that
also condition (3) is verified. Clearly there exists a real number A such

that all 1, 2, ... and k ~ denotes again a discontinuity point
for c) are irrationals; and any lattice with spacing r A (r rational) has
empty intersection with the set 
We define a~ and an- through Equation (1.1) by letting k run through

the set of indeces Finally let an*
be the number

where the yj (L) are the elements of the countable set

and the points Yk (L) have been chosen in such a way that in each inter-
val [o~, 1;+1) the number of points belonging to the sets { yj (L) } and
j Y j (L) } respectively are equal. This choice is clearly possible (and
can be performed in an infinite number of ways) since NL ~ Ñi in each
interval [O~, Oi+i) [see condition (2)]. Therefore we can extablish a
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one-to-one mapping between the points yj (L) and Yj (L) belonging
to the same interval Since the intervals ~i+1) have been

chosen so that log  s we find

and hence, using the inequality

we obtain

Furthermore, from Equation (3.11) it follows that

where the meaning of ak’ is obvious.

On the other hand for each interval [O~, ~+1) we have

because

since lim V(L) V-(L) == 1. Taking into account that all 03B3’03BA (L) are not

greater than A, we obtain the bound
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where

Therefore

where in the last step the inequality (2.14) has been used. Extending
the summation up to infinity, we obtain

Since the limits T. lim ~2014~ log ~T === ~ (~) and T. lim ~ exist

and are uniform in d and independent on s Theorem 1), it follows

that

uniformly for 0  di  d*. On the other hand from

Equation (3.12) we have

so that finally we obtain

and by combining (3.17) with the uniformity and s independence of
the limit (3.16) (at fixed s), we deduce the uniformity in d2]
of the limit (3.18).

It is now clear the reason for introducing the spacing 203C0 V-(L): if we

had chosen V (L) in the place of V- (L), in some interval Oi4-1) we
would have NL &#x3E; NL, in other intervals NL  NL, so that it would have
been impossible to use a formula of the type (3.15).

ANN. INST. POINCARE, A-xvII-3 15
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Having proved the existence of the limit (3.18) we can easily obtain
the remaining results ; we can write

where in the last step we have applied the saddle-point method (see [1],
formulae (70), (71)]. The maximum is attained in only one point d (z) ;
g (d) is differentiable and we have

Formulae (3.20) through (3.22) can be proved by the same procedure
used for proving Theorem 1.

We drop now the condition inf Y j (L) &#x3E; ç &#x3E; 0, assuming only that
L,j

the v-measure of the origin is zero. In the following we will see that
even this assumption is not needed.

Let ê &#x3E; 0 denote any number such that v (j s }) = 0. We divide
the set (L), j = 1, 2, ... j } in two subsets : the set of Y j such that

and the set of Y j such that Y j  s. Then defining an’ t in the
usual way but considering only the Y j ~ s and by considering the
Y j  e, we have
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Therefore, by the inequality (2.14) we can write

and since

we have, by the Alexandroff theorem [6] applied to [0, s) :

Therefore from (3.24) it follows that

where we have denoted by gy and z3 the quantities analogous to g and z

obtained considering only the 03B3j s. Since zy (d) = exp dg~ dd is continuous
when s - 0 and v (ds) ~~0 0 by assumption, it follows that the limit
(3.18) exists also in this case, and is uniform. The existence of the
limit (3.22) follows easily applying the same techniques as before.
We now drop the condition that the v-measure of the origin is zero.

We set :

We consider first the particular case when lim ymax (L) = 0, and

we keep the conditions (i) through (iv) of Theorem 2. Then we shall

prove that the limit

exists and is given by
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Let us prove Equation (3.30). We call « elementary mapping » a
mapping T of the sequence vy (L) } into another sequence in such a

way that : (1) Only two y’ s, say ya and yp (yz &#x3E; yp), are modified.

2) Ya -¿- ya + A, y~ -~ Y~ - A (A &#x3E; 0). Clearly these elementary
mappings leave V (L) invariant. Suppose now for simplicity that

y (L) - nmax is an integer; (otherwise only minor modifications are

Ymax
needed). It is clear that by means of an appropiate sequence of elementary
mappings it is possible to transform ~y~ (L) } into a sequence (L) }
having nmax elements equal to all others being zero. Let an denote

the expression (L) ... Y/, (L). a;L can be evaluated explicitly,

and gives . 

°" ° 

Let us now verify that under an elementary mapping the value of an
decreases. We can write

Under an elementary mapping, the variations of the second and

third term of Equation (3.32) cancel, the fourth term does not change
and the first term decreases since

Therefore ~ ~ ~; on the other hand ~ ~ ~ . Hence

Using Stirling’s formula, and the condition lim 03B3max (L) = 0, it is easy

to deduce from Equation (3.31) that log (d).

Since also ~ log ~~ tends to the same limit, we obtain the result
(3.30).
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Consider now the general case

where the v’-measure of the origin is zero. Suppose êm is a positive
sequence such that lim êm = 0 and such that 1)’ ({ = 0 for m = 1, 2, ...

m~oc

(i. e. such that v’ has no atoms at the points From Equation (1.14)
and the Alexandroff theorem it follows that

Notice that lim  v’ (dc) = 0. For given m, there exists an L (m)
o

such that for L &#x3E; L (m), Om 1  2014? lim L (m) = + oo, and the( ) L m ~ 

( )

sequence L (m) is increasing. We call m (L) the inverse function of

L (m). Clearly m (L) - 00 as L - X); theref ore lim = 0. Let

now ~; (L) denote the characteristic function (thought as a function
of j) :

We decompose the sequence (L) } into the union of the two

sequences

Clearly defining the measures

we have, using (3. 36) and  m 1 (L) ’ ,
(3 . 40) weak lim vlO) &#x3E; (dc) = a l (c) dc; weak lim 1JP) = (1 - a) v’ (dc).
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We denote by aAL the expressions obtained from a~ replacing
j Y; (L) j respectively by {-~ (L)} and y} (L) {. We have, as usual :

In order to find the T. n lim 1 V(L) lo aL we use the maximum termn V(L) =d

method. Since lim = 0 we van apply Equation (3 . 30). Therefore
L ~ ~o

Since T/ ({ 0 {) = 0 we know that the

exists. Therefore

It follows from Equation (3.41) that

and the maximum can be determined by differentiating the R. H. S.
of Equation (3.44) with respect to o. The remaining results [Eq. (3. 21),
(3.22)] follow easily.

Finally we notice that the conditions of convergence of c [J-L (dc) - v (dc)
as L - oo is not only sufficient for the results of Theorem 2 to hold but
also necessary. In fact the measures c are positive and normalized
measures on the compact [0, Therefore they form a weakly sequen-
tially compact set, and if there were two different subsequences conver-
ging respectively to vi 1 and v o (111 # the limits
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would differ over the two sequences and would yield different g (d)’s.

(Expanding the logarithm in powers of z we find that the transform

v (dc) -E- ze) uniquely determines v .
4. Further results and concluding remarks

1. In Theorem 2 we have not included the natural generalization
of the formula (1.9). This generalization is provided by the following
Theorem :

THEOREM 3. - Let c be a point internal lo an interval (ci, c2) where
k (c) is strictly decreasing and continuous. Then the above limit is uniform
in d for 0  d  d* and has the value

This result can be somewhat generalized to include also points which
are continuity points for both c (k) and k (c). However we omit the
proofs related to these results since they easily reduce to the ones
presented for Theorem 1.

2. The results obtained in paragraph 3 allow us to drop the hypothesis
of monotonicity of the function c that was used in proving the Theorem 1.

Indeed let c (k) be a non-negative piecewise continuous function
defined for k &#x3E; 0; we suppose that A = sup c (k)  + oo and sup
c (k) k1+y  oo for some s &#x3E; 0 and some ki. 

k 

We set vy (L) = c for j = 1, 2, ... and we consider the measure

Suppose now that cp (c) is a continuous bounded function defined on
the interval [0, A]. We have
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Hence the weak limit for L - oo of 03BDL exists and defines a measure v
such that

Therefore the numbers (L) are such that Equation (1.14) is satisfied,
and we can apply Theorem 2 : the limits (3.1), (3.2), (3.45) exist and
this implies the existence of the analogous limits (1.6) through (1.9).
In this way a strong generalization of Theorem 1 has been obtained.

3. Theorem 2 has been proved under the condition sup Y j (L)  + oo.
j, L

Of course it is possible to generalize this condition and replace it by
additional assumptions on the measures [l-L and their limits as L - oo.
These new assumptions can be found by considering the set yy (L) ~ }
divided in two parts :

Then we define

and we require that the measures

converge weakly to a mesure 03BD (de) over all the bounded closed intervals

[0, A  + oo, and that sup f log (1 + c)  + 00.

We do not reproduce here the purely technical calculations necessary
to prove this generalization of Theorem 2.

4. Finally we want to mention that it remains an open question
whether or not some of the results that we have obtained still hold

when the function c [or the numbers Yj (L)] are allowed to be negative.
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