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Section A :

Physique théorique.

ABSTRACT. - The concept of Partial Conservation of the Axial-vector
Current (PCAC) is analysed in an attempt to extend it to incorporate
dynamics. In particular the property of slow variation (smoothness)
of the pion amplitudes defined by PCAC in the external four-momentum
squared is studied, and it is found that the simplest, mathematically
well defined form of smoothness is not possible for a universal dynamical
formulation of PCAC.
Some a priori new candidates for the interpolating pion field expressed

in terms of the basic current operators are also considered, but are
found to be equivalent to the PCAC pion field.

Finally we propose a modified formulation of PCAC which does not
face the troubles met earlier in the analysis.

1. INTRODUCTION

The current algebra (CA) commutation relations of Gell-Mann [1]
can be considered as an equal-time sub-algebra of the algebra of obser-
vable field operators for the hadron system. A natural way to exploit
this algebra is to calculate its possible representations. Despite much
effort very little progress has so far been made in this direction, even for
the non-relativistic CA models [2]. At an early stage another philosophy
was therefore developed. Instead of looking for the possible represen-
tations of the equal-time algebra, one feeds in the partial knowledge of
the spectrality of the current operators that one knows from the weak
interaction data.
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Inside this philosophy the notion of Partial Conservation of the Axial-
vector Current operator (PCAC) ([3], [4], [5]) plays a dominant role in
that it connects the weak interaction axial-vector current operator
.~~ ~ (x) (i = 1, 2, 3; ~.==0, 1, 2, 3) to the interpolating pion field

operator p~ (x) by the relation

Equation (1.1) which can be considered as a defining relation for the
pion field operator in view of the works by Haag [6], Nishijima [7] and
Zimmermann [8] on the arbitrariness of the interpolating field operators
relative to the S-matrix, is further supplemented with a slow variation
assumption on the behaviour of the hadron amplitude in the external
four-momentum squared of the pions when defined by the field (1.1).
The property of slow variation will be called " smoothness " in the

following.
The technique developed by Adler [9] to utilize PCAC in hadron

physics, the so-called soft-pion technique, later systematized in the
form of " effective Lagrangians ", relates the hadronic pion amplitude
at zero pion mass and four-momentum, to the weak axial-vector ampli-
tudes. Despite the interesting results obtained by this method, the
approach cannot be considered as satisfactory, since it gives rise to

knowledge of the amplitude only at one point, thus giving at most a
sort of normalization scheme for amplitudes. It therefore seems natural
to try to extend and generalize the notion of PCAC to incorporate into
the scheme at least some dynamical features. In the present paper we
will discuss some of the difficulties met in undertaking this task.

In the first part of the paper we consider the smoothness property,
and discuss various extensions of it in order to incorporate dynamics. In
section 5 we point out that independently of the definition of the pion
field operator, the required smoothness property cannot be universally
fulfiled.

In section 6 we then discuss other candidates for the pion field operator
than (1.1) and show that inside a big class of models, they are all equi-
valent to the pion field operator in (1.1). Lastly we show how to modify
the smoothness assumption so as to circumvent the troubles met in
section 5.

2. THE FIELD THEORETIC BACK-GROUND

We will discuss PCAC inside the general theory of quantized fields.
Since the dependence of the amplitudes in the four-momentum variables
will be of concern we will mostly work at the level of the LSZ forma-
lism [10], which can be justified by the Haag-Ruelle theory ([6], [11]).
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In fact, since we know that

where P~ is the projection operator on the one pion state, we can construct
operators ~i (t) that applied to the vacuum state Q converges strongly
as t - ~ oo to the external field operators (x) and (x).

In general, however, one must consider equation (1.1) in a stronger
sense namely that and cpi (x) are in the same Borchers class
of relatively local S-equivalent field operators. This among other things
requires that and cp~ (x) transform under the same represen-
tation of the Poincare-group. To prove that this is actually the case
in field theoretical models seems to be a difficult problem and in the
following we will assume that this is the case.

It is clear from the types of algorithms used in CA to utilize the

divergence of the axial-vector current as an interpolating pion field ope-
rator [12] that one cannot project out the pion amplitudes by applying
the Klein-Gordon operator on the fields, since the contribution from
the current commutator (which does not contain the pion singula-
rities) will then vanish. PCAC therefore also contains an assumption
about the behaviour of the matrix-elements of d, in the vicinity
of the pion mass-shell, and this is what makes it possible to utilize the

partial knowledge of the spectrality of 5 (x).
The discussion in the following two sections will be concerned with

the problem of how to define the assumption on the variation of the

amplitude in the vicinity of the mass-shell.

3. WHAT IS SMOOTHNESS ?

Let us write down the relation obtained by sandwiching the relation

between nucleon states. We have [13] :

where K (q2) is the 7r N form factor, is the pion decay constant, G is
the 7r N coupling constant, gA (q2) the axial-vector form factor, hA (q2)
the non pion pole part of the induced pseudoscalar form factor, mx is
the pion mass and M is the nucleon mass.
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The soft pion technique says that we should take q = 0, hence q2 = 0.
This gives ([3], [4], [5], [ 14]) :

which shows that the hadronic matrix-element GK (0) can be calculated
at an unphysical piont from the knowledge of gA (0) and f~. To get
contact with physics one invokes smoothness to justify the approximation
GK (0) ~ GK (mit) == G, the « physical 

" value.

If we instead expand equation (3.2) around q2 = m; and identify
coefficients we get :

We can now define the smoothness assumption as the requirement

We then get from (3.4 b) the relation

Thus we can calculate the physical hadron matrix-element GK (mi)
in terms of the weak interaction parameters gA (mi), (mi) and f1t.
This method clearly generalizes the soft-pion method. It is trivial to

remark that one can make the stronger hypothesis of the vanishing
(or neglibility) of any number of the higher derivatives. This will have

some interest, as we shall see later. In the following we will discuss
the nature of the smoothness assumption (3.5).
We first notice that

where  r2 )’1t N is the mean-square radius of the hadronic charge distri-
bution of the nucleon. To assume that this is negligibly small means

essentially that the pions are coupled to the nucleons as if the latter

were piont particles. As we shall see later, this indicates that the nature

of the smoothness assumption is to linearize the pion interaction. In

the soft pion approach this is expressed in the tree approximation,
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which replaces the smoothness assumption in the algorithms for effective
Lagrangians. ’ ,

The extension of the smoothness assumption discussed above to more
complicated processes was done in reference [13], but in order not to
obscure the nature of the PCAC assumption by CA we shall illustrate
below the method with a different example.

4. UNIFORM SMOOTHNESS

Consider the matrix-element

describing axial-vector production of pions by nucleons.
The kinematics is given by s = (P + k)2 and t = (P’ - P)2, k is the

four-momentum of the axi.al-vector current, q that of the pion with
isospin index j, and the r, s are the Pauli-matrices describing the isospin
properties of the amplitude.
By splitting off the pion pole at k2 = mic we get

where

are the (on mass-shell) pion nucleon scattering amplitudes.
By taking the divergence of equation (4.1) and using (3.I) as well

as (4 . 2) we get

where we have introduced the abbreviation C1t = ~. Expanding bothV2
sides around k2 = ~~ and identifying coefficients gives

ANN. INST. POINCARE, A-XVI-4 20
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Equation (4 . 4 a) is just a verification of the HNZ theorem ([6], [7], [8]),
and shows that the pion field has been correctly normalized. The

smoothness assumption which is relevant to this case is the following one :

uniformly in s for fixed t, or in other words that the left hand side of

equation (4 . 4 b) can be neglected for all s and fixed t. We then get the
relation

This relation thus holds for all s with t fixed.

G~ is decomposed into invariants as follows [15] :

Here Fi = Fi (mi, s, t) and the expansion holds for both the isospin
odd and even amplitudes. Insertion of (4.7) into (4.6) gives

This general relation expresses the 7r N amplitudes A (:t:) and B(::t) in

terms of the weak interaction amplitudes for any s and fixed t.

At this piont it should be noticed, that in contrast, the soft-pion
method in this case is completely ambigous, since it is not clear to which

physical piont one should continue the corresponding soft-pion result
for the x N amplitudes. In our case there is a precise statement on the
nature of the smoothness assumption and no ambiguity occurs.
. The relations (4.8 a) and (4.8 b) can be used in several ways.

If we calculate the Born-terms explicitly it is easy to see that

which is the content of Adler’s consistency condition [9] here at the

physical threshold and on the pion mass-shell.
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One should, however, also remember that the relations (4.8 a)
and (4.8 b) go in both directions. Thus they can be used to get infor-
mation about the behaviour of the weak amplitudes as well. As an
example let us parametrize the high-energy behaviour of the amplitudes

and B-) by the Regge-pole model. We have

where 11 = 1 (S - M2 - mic) and ap (0) is the intercept at t = 0 of
the p-trajectory. From this f ollows that when 11 - oo we have

The experimental value of ap (0) is ocp (0) ~0.5.
The behaviour of the amplitude F(-) (mi, 1J, 0) as 1J -+ 00 together witl

the crossing relation

then leads to the superconvergence relation [16] :

This relation is an independent test of uniform smoothness in the
high-energy region.

5. PROBLEMS WITH SMOOTHNESS

It is tempting to try to sharpen the uniform smoothness assumption
used in section 4 above to

and in the general case to require that all pion amplitudes should satisfy
similar relations, what we would call " exact uniform smoothness ".
Such a requirement does not seem to clash in any obvious way with
the S-matrix formalism in the LSZ [10] scheme, since the physical
S-matrix elements do not depend on the value of the derivatives of the
amplitudes.
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Unfortunately this scheme does not work, as can be seen from a study
of the pion electromagnetic form factor [17]. This is of course strictly
speaking not an S-matrix element, but in a theory with currents it seems
resonable that one also should be able to consider such matrix-elements.

Let us define the off mass-shell form factor by the LSZ formula 
’

Now

On the other hand, using the commutation relations

gives the Ward-Takahashi identity

where

Ap (p2) is the time ordered two-piont function of the pion field operator
in momentum space.

If we put p’2 = m~ and differentiate both sides of (5.5) with respect
to p2 at p2 = mi we get :

Hence if dF2 (mi. m203C0, Q = 0 for all t we get

This is clearly unacceptable, and excludes essentially any ?r-n: inter-
action in the isospin 1 channel. This was anticipated in section 4.

Unfortunately uniform smoothness does not work either in this case

since it requires
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But since F2 (m~, m~, t) = 0 from current conservation this gives again
equation (5.7).
The absence of the x-7r interactions shows that PCAC has the effect

of linearizing the pion interactions. Hence one should expect troubles
with PCAC in the sector of Hilbert space with baryonic number B = 0.
For B ~ 0, however, this approximation can still be valuable, corres-

ponding to the idea that the mesonic effects are of order 2014 where M is
some baryonic mass, compared to the direct coupling. This makes sense
in the sectors B ~ 0 but not in the sector B = 0.

6. MODIFICATIONS OF PCAC

In view of the difficulties discussed above it is clear that we must

modify PCAC if we want to incorporate dynamics into it. Especially,
we must find another definition of smoothness, since the troubles in
section 5 are independent of how we define the pion field. We start,
however, by investigating some alternative possibilities to define the

pion field operator in terms of current operators.

A. Smoother pion fields

Since we are concerned with the properties of the pion field off the
mass-shell it is natural to study the sub-class 63’ c 63 of the Borchers’
class [18] (13 of S-equivalent local, relatively local pion field operators
given by

where (a) is a polynomial of degree N ~ 0, and is the Klein-
Gordon operator.
Our form of smoothness as developed in sections 4 and 5 gives rise to

the normalization of two coefficients in ~ (a). Let

then the mass-shell value of the S-matrix-elements gives

as in (3.1). The 7r N vertex allows us to take
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Thus for the 77 N vertex the smoothness property is exactly fulfiled
by construction.

B. Composite pion field operators

Following Nishijima [7] and Zimmermann [8] we can choose for 03C6i (x)
any local object that has the correct transformation properties. Thus

we may consider pion fields of the form [9’~ (x) is the isospin current] :

or any other combination of internal quantum-numbers that gives rise
to correct isospin and space reflection properties. For some combinations
of strangeness changing currents (6.4) might however not exist.
The construction of the pion field above gives an operator that is

local and relatively local to the currents. One would therefore expect it
to be in the Borchers’ class of d, (x). Indeed if the leading singula-
rity of (6.4) is given by the Bjorken expansion [19] it is easy to check
that both in the U (6) X U (6) quark-model current algebra and in the
algebra of fields model, the expression (6.4) is exactly equivalent.
to d, 3’f5 (x).
The conditions for not getting a new field has been investigated inside

perturbation theory by Nishijima ([20], [21]) . He finds that a new
field is not introduced if

(1) The self-energy diverges ;
(2) The vertex function is convergent or less divergent than the self-

energy.

These conditions are not immediately translatable to non perturbative
field theory but from the experience with models the conjecture is that
for strong interactions the construction above does not give a new
field, or at least not a field outside the type of subclass of the Borchers’
class of the original field described in A.

C. Modified PCAC

Having seen above that the choice of pion field is rather limited inside
the philosophy sketched in the introduction we want to show how one
can modify both definition (1.1) and the smoothness condition to circum-
vent the problem of the pion electromagnetic form factor.
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We define the interpolating pion field by the formula

This is clearly a special case of V3’ with

With this pion field we can take smoothness to mean that the second
order derivative of the amplitude with respect to the external four-momentum
squared of the pion is negligibly small. In the case of the pion electro-
magnetic form factor we get

which does not seem to contradict physics.
~ d2 K

For the 7r N form factor we now get by putting (m£) = 0 :

Since the derivatives of the weak amplitudes enter in this expression,
it shows that the price we have to pay is that we must have a more
detailed knowledge of the spectrality of the currents.
The extension of the above formalism to other amplitudes and to

the case of uniform smoothness described in section 4 is straight forward.
The corresponding expressions to (4.8 a) and (4.8 b) for A (:f::) and 

will now involve derivatives of the amplitudes F~::!::).
As before we can also in this case use a particular member of (13’ to let

the new smoothness assumption be satisfied by construction for the
pion-nucleon vertex. The ultimate test of the above scheme must of
course come from experiment when we can reliably determine the deri-
vatives of the matrix-elements of the currents.

, 7. DISCUSSION AND CONCLUSIONS

Our analysis of PCAC has its origin in a critisism of the soft pion
method, as giving no dynamical information of the hadron physics,
although the input is in principle a complete knowledge of the weak
interaction matrix-elements.
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We have in particular concentrated upon the question of how to
formulate the smoothness assumption in PCAC, which is introduced
in order to utilize the full knowledge of the spectrality of the weak
axial-vector current. The discussion in sections 3 and 4 is based upon
the idea that as little as possible should be assumed about the off mass-
shell behaviour of the pion amplitudes. Thus it is natural to consider
the derivatives of the amplitudes at the pion mass-shell. The most
economical (from the piont of view of the input) assumption about the
smallness of the first order derivative with respect to the external four-
momentum squared of the pion amplitude was extended in section 4
to " uniform smoothness ". This concept gives rise to powerful dyna-
mical relations between weak and strong interaction amplitudes.
However, in section 5 we found that this form of the smoothness assump-
tion runs into troubles with the dynamics of the pion electromagnetic
form factor, and that the smoothness condition essentially linearizes
the pion interactions. Although this might still be a good approximation
in the sectors of Hilbert space where the baryon number is different
from zero, it clearly asks for a modification of PCAC.

After having shown that the possible candidates for the pion field
inside a theory of currents are essentially limited to a particular subclass
of the Borchers’ class of ~ ~~ J (x) we formulated in section 6 C a new
smoothness condition, which circumvented the troubles with the pion
electromagnetic form factor. This new formulation of PCAC, however,
requires a more detailed knowledge of the matrix-elements of the weak
axial-vector current and is thus correspondingly less useful at present.

In conclusion we therefore find, that the idea to universally connect
strong and weak interaction amplitudes in a dynamical way via PCAC
is, although not in principle impossible (in the form described in

section 6 C), however, at present not practically feasible. For restricted

cases application of the stronger form of uniform smoothness described
in section 4 might still be useful.
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