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Topology of quantizable dynamical systems
and the algebra of observables

Norman E. HURT (*)

Ann. Inst. H. Poincare,
Vol. XVI, no 3, 1972,

Section A :

Physique théorique

ABSTRACT. - Following H. Poincaré, G. Birkhoff and G. Reeb, a class
of dynamical systems, called fibered dynamical systems, is studied. If

the total space is a homotopy sphere, then the fibered dynamical system
is homotopically equivalent to a quantizable dynamical system, namely
the harmonic oscillator. And a manifold homotopically equivalent
to the phase space of a harmonic oscillator gives rise to infinitely many
differentiably distinct quantizable dynamical systems. Other results

on the topology of fibered and quantizable dynamical systems are

reviewed. Finally the only possible candidates for total spaces of quanti-
zable dynamical systems, under the requirement that the total spaces
are odd dimensional simply connected Finslerian Bx-manifolds, are shown
to be homotopy spheres.

RESUME. - D’après H. Poincaré, G. Birkhoff et G. Reeb, on étudie
une classe de systèmes dynamiques appelée les systèmes dynamiques
fibres. Soit que l’espace total soit une sphere homotopique, le système
dynamique fibre est equivalent homotopiquement, à un système dyna-
mique qui est quantifiable; en particulier à l’oscillateur harmonique. La
variété qui est équivalente homotopiquement à l’espace phase de l’oscil-
lateur harmonique nous donne une infinite de systèmes dynamiques qui
soit differentiablement distincts et quantifiables. On examine d’autres
résultats sur la topologie de systèmes dynamiques fibres qui sont quanti-
fiables. Finalement, les seuls espaces totaux des systèmes dynamiques
qui sont quantifiables simplement connexes finslériennes B-xvariétés
de dimensions impaire sont des spheres de homotopie.

(*) This research was supported in part by NSF GP-20856.
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INTRODUCTION

There is recurrent interest among physicists in the topology of dyna-
mical systems. For example, Misner and Wheeler [35] noted that electric
and magnetic charges could be interpreted via de Rham isomorphism
as periods in multiply connected manifolds. This involves triangulation
of the manifold. More recently Bohm, Hiley and Stuart [6] have studied
an approach to aspects of quantum theory using combinatorial mani-
folds. (Confer also the papers by Penrose, Hiley, Atkin and Bastin
in Quantum Theory and Beyond, ed. T. Bastin, Cambridge University
Press, 1971, p. 147-226.)
We study below the problems which arise if a dynamical system is

no longer differentiably equivalent but merely topological equivalent
to the harmonic oscillator, which is a quantizable dynamical system.
The algebra of observables or dynamical variables, A, for a classical dyna-
mical system is generally taken to be the collection of C" functions on
the phase space M (c f. Mackey [32], Souriau [46]). The question then
arises whether or not the topology of M affects the algebra of observables A.
Recall briefly that a topological manifold is a Hausdorff space with a
countable basis such that each point x in M has a neighborhood homeo-
morphic with an open subset of Rn. And a differentiable manifold
can be viewed as a ringed Hausdorff space (M, A) 2014 i. e. M is a Hausdorff
space and A, the di f ferentiable structure, is the sheaf whose fiber A.~ is
the local commutative associative algebra of germs of continuous func-
tions at x in M with unity Ix in A,.. Certain axioms are placed on
(M, A) - (cf. [16]). Two differentiable manifolds (M, A) and (N, B)
are differentiably isomorphic or diffeomorphic if M and N are homeo-
morphic and A is isomorphic to B.

One question is : should it be excepted that there is associated to each
dynamical system, whose phase space is a specific topological manifold M,
at most one algebra of observables, up to a diffeomorphism? In topology
this was an open question until 1956 when Milnor [33] showed that the
standard seven dimensional sphere S ~ has several inequivalent differen-
tiable structures; that is, several compact oriented differentiable mani-
folds homeomorphic to S ~ but each carrying a differentiable structure
not equivalent to the standard differentiable structure of S~, and the ~~7
nondiffeomorphic to S ~ . In 1960 Munkres [38] showed that any topo-
logical manifold M of dimension / 3, and in 1962 Stallings [48] showed
that any euclidean space Rn (n ~ 4), has a differentiable structure which
is unique up to diffeomorphism.

A triangulation on a topological manifold 3I is a finite simplicial complex
K and a homeomorphism h of the geometric realization K i of K onto M
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(c f. [47]). Under a certain axiom (c f. [39], [47]) this is called a combina-
torial triangulation, and a maximal set of combinatorially equivalent
combinatorial triangulations is called a combinatorial structure. A

topological manifold with a specific combinatorial structure is called

a combinatorial manifold. It is unknown whether every topological
manifold admits a triangulation or whether a triangulated manifold
admits one or more combinatorial structures; however by the Cairns-
Whitehead theorem there is associated with every differentiable manifold
a specific differentiable combinatorial structure (i. e. h restricted to any
closed simplex of K is a diffeomorphism).
A second question is : should it be expected that there is associated

with each dynamical system, with phase space a specific topological
manifold M, at least one algebra of observables? Again in topology
this was an open problem until 1960 when Kervaire [27] constructed
an example of a combinatorial manifold which admits no differentiable
structure. This has some interesting implications for the approaches
cited in the first paragraph.
An abstract dynamical system in the sense of Birkhoff and Poincare

is a differentiable manifold E and a vector field Z on E. Under suitable

conditions, e. g. E compact, Z generates the action of a topological
group G on E. Thus the general theory of dynamical systems concerns
the study of topological transformation groups on E. An especially
interesting class of dynamical systems (E, G) are those for which G = S1
acts differentiably and freely on E. This arises in the case of Hamil-
tonian dynamical systems and also in our study [22]-[26] of quantizable
dynamical systems (QDS). Namely the harmonic oscillator with equal
periods is QDS of the form ~ : Sl - - C P (n). The aim of this

paper is to study the topology of these special dynamical systems (E, G),
where G = Sl acts freely, and their relationship to QDSs. Indirectly
results are obtained regarding the algebras of observables on manifolds,
in particular for QDSs Sl -+ E - M whose orbit spaces M are topolo-
gically equivalent to the orbit space C P (n) of the QDS ;. In para-
graph 1 fibered dynamical systems (FDSs) are introduced. In para-
graph 2 the topology of FDSs and QDSs is studied. Our main tool

is the recent work in transformation groups on homotpoy spheres. In

paragraph 3 Bx-manifolds are reviewed. These manifolds were first
introduced into the study of dynamical systems by Reeb [41], [42]. Their

relationship to QD Ss is studied.

Notations. - We denote by Sn, the n dimensional sphere, RP (n),
the n dimensional real projective space, C P (n), the n = 2 m dimensional
complex projective space, QP (n), the n = 4 m dimensional quaternion
projective space, and CaP (2), the 16 dimensional Cayley projective
plane.
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1. FIBERED DYNAMICAL SYSTEMS

Let (E, Z) be a dynamical that is, E is a differentiable mani-
fold of dimension n + 1 and Z is a Cx nonnull vector field on E.
Assume the foliation associated to Z is proper with finite period - that
is, it generates a global one-parameter group G of transformations on E
with a finite period by

(For notations, cf. [25].) Then G = Sl and cv : E is a Coc map,
denoting the action of Lie group G on E, and satisfies cvts (x) = 9t (x))
and 9idG (x) = x for x in E, t, s in G. Thus for each t, E 2014~ E is a

diffeomorphism. Conversely, if 9t is a 1-parameter group of transfor-
mations, then

is a CX) vector field on E which generates Thus let (E, o, G) denote
this transformation group or dynamical system. E is called the total

space of the dynamical system.
Assume now that the action o is free - that is, c~t (x) = x implies

t = idG. Let ~ = M be the orbit space, i. e. M = in E ; . Then

by Gleason’s lemma [13] G - E -+ M is a principal toral bundle and M
is a differentiable manifold of dimension n. In this case (E, o, G)
is called a fibered dynamical system (FDS) (cf. Hurt [25]). Thus by [25]
(Thm. 3. 2) if G - E - M is a FDS, then there is a connection form on E
with respect to which every smooth path in M has horizontal lifts.

Given two fibered dynamical systems (E, o, G) and (E’, 9’, G), then
map f : E - E’ is called equivariant if f ~?t (x) = c?t ( f (x)). Two fibered

dynamical systems are said to be topologically equivalent (resp. di f feren-
tiably equivalent) if there is an equivariant, homeomorphism (resp. diffeo-
morphism) f : E - E’, i. e. homeomorphism (resp. diffeomorphism) f
such that the following diagram is commutative :
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(cf. Smale [45]). Since f maps each orbit of E into an orbit of E’, it is
direct to show:

PROPOSITION I , I. - Lel (E, ?, G) and (E’, q’, G) be lwo fibered dyna-
mical systems. An equivariant diffeomorphism f : E - E’ induces a

diffeomorphism f : M = £ -+ M’ = E’ G’ such that lhe following diagram
is commutative :

And conversely, a diffeomorphism f : Nf ~- M’ induces an equivariant
diffeomorphism f such that (1.1) is commutative. Thus, equivalence classes
of differentiably equivalent fibered dynamical systems are in one-one corres-

pondence with diffeormorphism classes o f manifolds M = 

A homoto py sphere in is a closed, simply connected oriented n-dimen-
sional differentiable manifold with the same homotopy as the standard
sphere Sn 2014 L e. 7r, (In) ~ 7:, (Sn) for i ~ n (c f. [49]). Recall that

Tri (Sn) = 0 for i  n and 7rn = Z. A homotopy complex projective
space M is a closed differentiable simply connected manifold of real dimen-
sion 2 n such that for i ~ 2 n. Clearly C P (n)
is a homotopy complex projective space. An integral cohomology complex
projective space is a space with the same integral cohomology as C P (n),

i. e. H* (M; Z) 2014 H* (C P (n); Z). Thus H* (M ; Z) = Z[03B1] 03B1n+1 the quotient
of Z [a], the polynomial ring over Z in one indeterminant o: of degree 2

(M:; Z)], over the ideal generated by that is, a truncated
polynomial ring over Z generated by a of degree two and height n + 1
(c f. [47]). A homotopy complex projective space is a closed simply
connected integral cohomology complex projective space; but an integral
cohomology complex projective space is not necessarily a homotopy
complex projective space as it may not be simply connected.
A principal G-bundle ~ : G - E - M is called n-universal if E is arcwise

connected and 7ri (E) = 0 for 1 ~ i  n ; then 7r, (M) ~ 7:,-i (G) for
1 L i L n 1. Let 03B6 be an n-universal bundle, let X be a CW-complex
of dimension  n (c f. [47]), let [X, M] be the set of homotopy classes
of maps of X into M, and let Hl (X, 9 (G)) be the equivalence classes
of principal G-bundles over X. Then the map o : [X, 1Vf] -~ Hi (X, (9 (G))
defined by o :[/’]2014 f*;, the induced bundle over X (cf. [49], § 10),
is a bijection (c f. [49], p. 101].



208 NORMAN E. HURT

2. TOPOLOGY OF QUANTIZABLE
AND FIBERED DYNAMICAL SYSTEMS

A quantizable dynamical system (E, Z) is an odd dimensional,
proper regular contact manifold E with a finite period, where Z is the
associated vector field of the contact structure. (For notations, c f. [25].)
Z generates a free action of G = Sl on E; thus (E, Z, G) is a FDS. Fur-

thermore, principal toral bundle over a symplec-

tic manifold Q) and Q determines an integral cocycle on M. That

is, Q is a 2-form on M with dQ = 0, (Q)n = Q /B... 0 and
" 

n 
~ "

Q E H2 (M; Z) under de Rham isomorphism. Theorem 6 . 6 of [25] states :

PROPOSITION 2 .1. - If (M, Q) is a symplectic manifold and the closed
2-form Q represents an integral cohomology class on M, then there exists
a QDS y; : G -~- E -~ M o v er M.

If the contact structure on E is normal, i. e. E is a Sasakian manifold

(c f. [25]), then by [25] (Prop. 6 . 7) the phase space M is a Hodge manifold;
and conversely by [25] (Cor. 6.8) there is canonically associated to every
Hodge manifold a normal QDS. The classical example of a normal

simply connected compact QDS is ~ : G - S’n+1 - CP (n).
Abbreviate homotopy complex projective space by H C P (n). Then

from the definition of a H C P (n) we have
PROPOSITION 2.2. - If M is an H C P (n), then there is a QDS r, :

M.

Proof. - The generator 03B1~H2 (M, Z) under de Rham isomorphism
corresponds to an integral closed 2-form and clearly 0. The
result follows then from Proposition 2.1.

Let Y) : G2014~E2014~Mbea simply connected QDS and let

be the classical QDS. If M is homeomorphic to CP (n) or if M is an
H C P (n), then by the homotopy sequences of the fibrations Yj and i we
have 7:, (E) ~ rr, (S’n+1) for i &#x3E; 1. Since E is simply connected, E is
thus homotopically equivalent to so E is homeomorphic to S2n+1
by Smale [44] for n ~ 2. To summarize we state

PROPOSITION 2 . 3. E 2014~ M is a simply connected QDS where M
is an HCP (n), then E is a homotopy sphere.

If Ni’° is a compact Kahler manifold which is homeomorphic to CP (n),
then by Kodaira [30] M is a Hodge manifold. Thus by [25] (Cor. 6.8)



209TOPOLOGY OF QUANTIZABLE DYNAMICAL SYSTEMS

there is a normal QDS G 2014~ E - M over M and by Proposition 2.3
above we have

PROPOSITION 2.4. a compact Kähler manifold homeomor-
phic fo C P (n), then there is a normal QDS G -~ E - M over M and
7:, (E) rv 7r, (S2n+l) for i &#x3E; 1.

Consider now the FD Ss ( s’n+1, o, G) with total spaces the homotopy
spheres ~’n+1. Since ; : G -~ S’n+~ --~- C P (n) is (2 n + 1)-universal,
then as noted in paragraph 1, r; (CP (n))  03C0i-1 (G) for i 2 n; and

the principal G-bundle -n : G ~ 03A32n+1 ~ M = 03A32n+1 G is classified by a
map f : M - C P (n). That is f* ç = Y. By the homotopy exact sequence
of the fiber bundle r, and the spectral sequences of ~, ~, we have :
?r~ (M) rv 7r,_i (G) for i ~ 2 n, M is simply connected, and

Thus H~ (M; Z) ~ H~ (C P (n) ; Z) and by the Whitehead theorem ([2]),
p. 307) M is homotopically equivalent to CP (n), since M and CP (n)
are simply connected. Conversely if M is an H C P (n) and f : M - C P (n)
is the homotopy equivalence, then f * ~ is a homotopy sphere with a free
differentiable action by G such that M is the orbit space. And by Propo-
sition 2 .1, f * ~ is a QDS. To summarize :

PROPOSITION 2 . 5. G) is a FDS then Y) : G -~ s 2n+1 -+ M
is homotopically equivalent to the classical QDS’ ~ : G - CP (n).
And conversely, if M is an H C P (n), then there is canonically associated
a QDS G -~ E - Mover M where E is a homotopy sphere.
By Proposition 1.1 we have

PROPOSITION 2.6. - Differentiable equivalence classes of FDSs
(12n+1, 9, G) are in one-one correspondence with diffeomorphism classes

of manifolds homotopically equivalent to CP (n).
Cf. [9], Proposition 3.2.
W. C. Hsiang [19] has shown that there are infinitely many differen-

tiable manifolds Mn of the same homotopy type as C P (n) distinguished
by the first rational Pontrjagin class pi (M) for n ~ 4. By Proposi-
tion 2.6 we have

PROPOSITION 2 . 7. - There are infinitely many differentiably distinct
QDSs with total spaces being homotopy spheres for n ~ 4. And
since pi (M) is a topological invariant, each diffeomorphism class is a homeo-
morphism class ! 1
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Thus even if a dynamical system is homotopically equivalent to the
harmonic oscillator with equal periods, there are infinitely many differen-
tiably nonisomorphic phase spaces and algebras of observables (M, A).

Montgomery and Yang [36] showed

PROPOSITION 2.8. - There are infinitely many differentiably inequi-
valent FDSs (~, o, G); in fact, the diffeomorphism classes o f (1:B 9, G)
form an in finite cyclic group. Again the orbit spaces have distinct

p so each diffeomorphism class is a homeomorphism class.

In addition by [37] Theorem 1, we have

PROPOSITION 2.9. - There are exactly 10 oriented homotopy 7-spheres
not di f feomorphic to one another such that .for each of them (1:7, o, G)
is a FDS.

In particular Montgomery and Yang [37] showed that if (1:B o, G)
is a FDS then 1: 7 is diffeomorphic to k 1:;1 for some k = 0, + 4, J~ 6,
±8, ±10 or 14 (mod 28) where is the Milnor 7-sphere (c f. [28]).
And if (1:ï, o, G) is one of these FDS, then by Proposition 2 . 8 there
are infinitely many topologically distinct actions which can be distin-

guished by pi (M).
Hsiang and Hsiang [20] showed

PROPOSITION 2.10. - There are infinitely many differentiably distinct
FDSs (S1’, o, G).
However not every homotopy sphere can be the total space of a FDS

since Lee [3] showed

PROPOSITION 2.11. - There exist homotopy spheres for k ~ 1
which do not admit free di f ferentiable S1-action.

(Regarding the classification of combinatorial HCP (n) confer D. Sulli-
van’s, Geometric Seminar Notes, Princeton, 1967.)
Much more is known regarding the topology of the total space E of

a QDS if further restrictions are made on E. We review briefly the type
of results now available. Recall from [25] that a QDS admits a positive
definite Riemannian metric g. Then the sectional curvature of a plane P
spanned by X, Y is

where R is the Riemannian curvature tensor.

LEMMA (Goldberg [14]) 2.12. - If a normal QDS Z) has positive
sectional curvature, then fhe base space ~Z has positive sectional curvature.
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From Lemma 2.12 the following two Propositions arise directly
from work of Bishop and Goldberg [4].

PROPOSITION (Goldberg [14]) 2.13. - If (E, Z) is a complete normal
QDS of positive curvature, then b~ (E) = dim H2 (E ; R) = 0.

C f. Tanno [50].

PROPOSITION (Goldberg [14]) 2.14. - If (E, Z) is a complete 5-dimen-
sional simply connected normal QDS o f positive sectional curvature then E
has the same homotopy as S~.

C f. Tanno [50].
In addition

PROPOSITION (Goldberg [14]) 2.15. - A complete simply connected
normal QDS of positive sectional curvature and constant scalar curvature
is isometric to a sphere.

C f. Tanno and Moskal in [50].

PROPOSITION (Goldberg [15]) 2.16. - If (E, Z) is a compact normal
QDS with nonnegative sectional curvature, then b~ (E) = 0.

Recall from [22] Theorem A that a contact manifold E, homogeneous
with respect to a connected Lie group G, is a regular contact manifold,
so a QDS. If in addition E is compact and simply connected, then by [7],
[25], Theorem C, and [23], Prop. 6. 7, E is a normal QDS. If (E, Z)
is a homogeneous QDS and is Riemannian symmetric, then (E, Z) is

called a symmetric QDS.

PROPOSITION (Goldberg [15]) 2.17. - If (E, Z) is a simply connected
(normal) symmetric QDS, then E is isometric with a sphere.

PROPOSITION (Blair and Goldberg [5]) 2.18. - The fundamental
group 03C01 (E) of a compact symmetric normal QDS is finite.

PROPOSITION (Golberg [15]) 2.19. - A compact torsion free 5-dimen-
sional normal QDS with negative sectional curvature is a homotopy sphere.

C f. Tanno [50].
Using the notations of [25], let (M, o, Z, g) denote the contact metric

structure on E. Then doo (X, Y) = kg (o X, Y) where k is a positive
constant. Let h = inf K (X, C X) X 1 Z and (X, 03A6 X) form ortho-
normal basis of plane P}.
Then

PROPOSITION (Harada [17]) 2. 20. - If (E, Z) is a compact normal QDS
with h &#x3E; k’, then 7:1 (E) is cyclic.
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3. Bx--MANIFOLDS
AND QUANTIZABLE DYNAMICAL SYSTEMS

Let p : T (M) 2014~ M be the tangent bundle over a manifold M and
let (M) - M be the subbundle of nonnull vectors. A C° map
L : T (M) - R wich is C:X: on ~ (M) and which is positively homogeneous
of degree one is called Lagrangian. The function E : T (M) - R+
given by E = L2 is called the energy. E is positively homogeneous
of degree 2, C1 on T (M), C" on L (M), and has canonically associated to
it a homogeneous of degree zero symmetric covariant tensor of rank

two, g : ~2 p-10 T(M) ~ R given in local coordinates by gij = 1 2 d’ E ~Xj
If this g is positive definite, then (M, L) is called a Finslerian manifold.
Clearly a Riemannian manifold is a Finslerian manifold.

Let [a, b] c R. Then a geodesic g : [a, b] -~ M is a geodesic loop if

g (a) = g (b) (with self-intersections permitted). A closed or periodic
geodesic is a non-constant geodesic loop with g’ (a) = g’ (b). A geodesic
is simple if g on [a, b] is injective.
The QDS ~ : S’i - CP (n) has certain special properties.

Namely there exists a point x in E = such that :

3.1 ‘~ all geodesics through x are closed,
~ ° ) 

( . simple and of the same length.

In fact, for every point x in E and for every nonnull X in T (E).~, the
geodesics g with g’ (a) = X are geodesic loops, closed, simple and of
the same length. Manifolds for which there exists a point x in E with
property (3 .1) are called 

LEMMA (Dazord [11]) 3.1. - Finslerian Bx-manifolds are compact.
The (Morse) index /. of a geodesic with initial point a is the number

of conjugate points, counted with multiplicity, of point a on the geodesic
arc g (t) for a  t  b.

LEMMA (Dazord [11]) 3. 2. - If E is a Finslerian Bx-manifolds, then
all geodesics from x have the same index /.. I f ~. &#x3E; 0, then ~:1 (E) = 0;
and if I. = 0, then 03C01 (E) = 0 or Z2.

In Cartan’s study of symmetric spaces he found

THEOREM (Cartan [10]) 3.3. - The irreducible Riemannian symmetric
spaces of rank one, namely C P (n + 1), Q P (n + 1), Ca P (2),
are Riemannian B.r-manifolds; and these are the only Riemannian 
folds among the Riemannian symmetric manifolds.
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Bott [8] and Samelson [43] in the Riemannian case and Dazord [11]
in the Finslerian case have studied the cohomological properties of Bz-
manifolds and they have found :

THEOREM (Bott-Samelson-Dazord) 3 . 4. - If E is a PinslerianBx.-mani-
fold, and

(1) i f dim E = 2, then the universal covering o f E is homeomorphic
to S’ and TTi (E) = 0 or Z, ;

(2) if dim E ~ 3, and

(a) = 0, then the universal covering of E is homological
sphere;

(b) &#x3E; 0, then E is simply connected and the integral cohomo-
logy ring H* (E; Z) is a truncated polynomial ring generated

by a (homogeneous) element X of degree }. + 1. That is,

H* (En;Z) = Z[03B1] 03B1m+1. Or in other words Hk(k+1) (E ; Z) == Z

for k = 0, 1, 2, ..., m, Hp (E ; Z) = 0 otherwise, and

n = 7n (~ + 1). j
Cf. also Nakagawa [40], and Allamigeon [3].

According to results of Adem [2], Milnor [34] and Adams [1], if a mani-
fold has an integral cohomology ring

then either 03B12 = 0 and deg (a) = dim E, or 0::2 ~ 0 and À = deg (a) 2014 1
is equal to 0, 1, 3, or 7. (Adem [2] showed that if deg a = 2n, a2 ~ 0
and n ~ 3, then ~c~3 = 0.) Thus = 7, then n = 16. Summarizing
we have

LEMMA 3.5. - If E satisfies (3 . 2), then one of the following holds :
(a) 2, = 0, n = m, and

(b) ~,=l,n=2m, and

(c) I. = 3, n = 4 m, and

ANN. INST. POINCARE, A-XVI-3 15
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and

(e) i. = n - 1, m = 1, and

From Lemma 3.5 and Theorem 3.4 every simply connected Finsle-
rian Br-manifold has the same integral cohomology ring as Cartan’s
irreducible symmetric spaces of rank one in Theorem 3 . 3 ; and a non
simply connected Bx-manifold has H* (En ; Z)  H* (R P (n); Z).

Certain other results are known. Under restrictions on the conjugate
locus, E in case (b) of Lemma 3 . 5 has the same homotopy type as C P (n)
(c f. Klingenberg [29]). However, Eells and Kuiper [12] have constructed
compact simply connected manifolds with the same integral cohomology
as Q P (n) and Ca P (2), but which do not have the same homotopy
type. Varga [51] has shown that even dimensional homogeneous Rieman-
nian B.r-manifolds are homeomorphic to symmetric spaces of rank one.
By the Bott-Samelson-Dazord Theorem the only possible candidates

for QDSs whose total space is an odd dimensional simply connected
Finslerian Bx-manifold are the odd dimensional integral cohomology
spheres [case (e) of Lemma 3.5]. By the Hurewicz and Whitehead
theorems (c f. [21], [47]), E is a homotopy sphere and so homeomorphic to
a sphere for n / 5 by Smale [44]. Which homotopy spheres are actually
total spaces of QDSs or even FDSs remains, in general, an open question
as ~ as seen in paragraph 2. Harada [18] has shown that compact
normal QDSs (E, Z) with h &#x3E; k2 (cf. 9 2) have a structure very similar
to Finslerian Bx-manifolds. Under the added condition that E has

minimal diameter 7r, then E is a Finslerian Br-manifolds but in fact
isometric to S2n+1 with constant curvature 1.
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