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An Action Principle
in General Relativistic Magnetohydrodynamics

Gérard A. MAUGIN *

Ann. Inst. Henri Poincare,
Vol. XVI, no 3, 1972,

Section A :

Physique théorique.

SUMMARY. 2014 An action principle is presented in the Eulerian descrip-
tion for general relativistic magnetohydrodynamics. A generalized
Clebsch’s representation is thus obtained for the fluid, current and the
specific enthalpy from which a Crocco-Varsonyi’s theorem, the Euler
equations of motion, a Bernoullian theorem and another remarkable
from of the action principle where the matter Lagrangian is nothing
but the thermodynamical pressure, follow. The case of general MHD
(with nonlinear electromagnetic constitutive equations) and the case of
perfect MHD (linear isotropic magnetic constitutive equation) are exa-
mined. Jump relations are obtained on an equal foot with the field

equations. The differences and the points in common with an action
principle given before in the Lagrangian description are discussed.

RESUME. 2014 On présente un principe variationnel en description eule-
rienne pour la magnetohydrodynamique en relativite generale. On obtient
ainsi une representation de Clebsch generalisee du courant fluide et de
l’enthalpie specifique. On en deduit un theoreme de Crocco-Varsonyi,
les equations d’Euler du mouvement, un theoreme du genre « Bernoulli »
et une autre forme remarquable du principe d’action ou le lagrangien
de la matiere n’est autre que la pression thermodynamique. Le cas de
la MHD ou la loi de comportement électromagnétique est générale et non
lineaire et le cas de la MHD parfaite (loi de comportement magnetique
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134 G. A. MAUGIN

lineaire et isotrope) sont examines. Les conditions de discontinuite sont
obtenues en même temps que les equations du champ. Les differences
et les points communs du present article avec un principe variationnel
donne precedemment en description lagrangienne sont discutes.
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1. INTRODUCTION

A current problem of mathematical physics (and pure mathematics
by the same token) is the finding of a variational principle for a given
system of differential equations. This is not always an amusement
of mathematician, variational principles may be useful in view of appli-
cations e. g., the recent works of Whitham on wave propagation for
conservative systems (Whitham, 1967) : by analogy, they may help
to find out field equations yet unknown; they are used for setting down
the differential equations of a given problem. The latter is particularly
true of point mechanics where everyone is used to Lagrange’s equations
and the formulation of Hamilton’s principle of action.
When one goes over to continuum mechanics, one is confronted with

two possibilities : to use a Lagrangian (i. e., material or " ref erence ",
or " undeformed state ") description or an Eulerian (i. e., spatial or

" actual " or " deformed state ") description. In the former case, the

extension of Hamilton’s principle of point mechanics is straightforward.
The similarity with a system of discrete particles is complete. This

is mainly why we have established variational principles in the Lagran-
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gian description : (a) in classical continuum mechanics, following the
Cosserats’ model (1909) (nonlinear micromorphic media, cr. Maugin, 1970 ;
magnetically saturated media, Maugin and Eringen, 1972 a); (b) following
Taub’s type of action principle (Taub, 1949-1954-1957), in special rela-
tivistic continuum mechanics (polarized nonlinear elastic solids endowed
with a continuous repartition o f electronic spins, cr. Maugin and Eringen,
1972 b; Maugin, 1972 b; relativistic continua with directors, cf. Maugin
and Eringen, 1972 c) and in general relativistic continuum mechanics
(nonlinear magnetized elastic materials, cr. Maugin, 1971 g). In a later
version of his variational principle (1969) applied to general relativistic
magnetohydrodynamics, Taub uses co-moving coordinates as an artifice
to replace an explicit reliance upon the generalized Lagrangian coor-

dinates of relativistic continuum mechanics (cr. hereafter).
If one uses the so-called Eulerian description which is generally

preferred in fluid dynamics and we guess, even more in magnetohy-
drodynamics, one loses the close similarity with a system of discrete

particles. It is more difficult to construct variational principles and
one gets more involved in straight mathematical manipulations. Mathe-
matical problems are raised and it seems that " the Eulerian description
is introduced primarily as a mathematical device " (Seliger and Whitham,
1968). As these authors say, 

" variational principles in Eulerian descrip-
tion were found at first by very special methods, merely by trials and
errors ". Now, Clebsch (1859 a, b), Bateman (1929, 1944), Lin (1963),
Herivel (1955), Eckart (1963), Serrin (1959) and Seliger and Whitham
(1968) have contributed to a general background and it seems possible
to outline a fairly general procedure. A significant analogy with the
Pfaff’s problem for differential forms as been pointed out by Seliger and
Whitham (1968).

It is along these lines that we develop an action principle for general
relativistic magnetohydrodynamics (compressible fluid) in the Eulerian
description. In contrast with the variational formulation given before
(c f. Maugin, 1971 g), we vary here independently as many variables
as possible : the metric, the matter density, the four-velocity, the physical
fields such as electromagnetic fields and the Lagrange multipliers. We

do not arrive automatically at all field equations, i. e., we do not obtain

directly from the variation, the Euler equations of motion. We need

manipulate some of the equations resulting from the variation to obtain
the latter. Remark that in Maugin (1971 g), we arrived at the conser-
vation of energy-momentum on an equal foot with the Einstein equations
by considering a combined variation of the metric and the particle path
(the variation of the latter implying partly the variation of the former).
However the present variational scheme allows to get a generalized
Clebsch’s representation for the fluid current (or for the modified fluid
current in MHD) and for the enthalpy density. Direct consequences
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of those are a Crocco-Varsonyi’s type of equation (called streamline
equation by Lichnerowicz) and a Bernoullian theorem, the conditions
of establishment of which do not imply irrotationality or stationarity
but only conservation of entropy along a particle path, conservation
(or continuity) of matter and conservation of the identity of particles.
Moreover peculiar forms of the action principle can be deduced, quite
remarkable and closely related to the form given by Bateman (1929, 1944)
in classical hydrodynamics : the thermodynamical pressure is the matter
Lagrangian. Finally we must note that by taking account of more
constraints than it seems at first necessary, we have enlarged the class
of possible flows (c f. the quite general representation of the fluid current).
The contents of the article extend to general relativity the results

given by Maugin (1971 e, 1972 a) in special relativity. Of course the
same method can be used for magnetized elastic solids however, while
Eulerian descriptions are favored in fluid dynamics, one often uses indif-
ferently Lagrangian or Eulerian (or even mixed) descriptions in solid
mechanics. The emphasis must therefore be placed upon hydrodynamics.
The theory of relativistic magnetohydrodynamics presented here is

entirely consistent and self-contained, albeit the fact that the present
article constitutes in many respects both a complement and a continua-
tion to our precedent work (Maugin, 1971 g).

Notations and a precise definition of variations are given in the remain-
der of this section. Although no new material, we have recalled in
section 2 some features of the conservation of gravitational energy-
momentum. Section 3 deals with electromagnetic fields in matter

and how one can introduce these concepts in the action principle. For
the sake of generality, nonlinear constitutive equations for the electro-
magnetic fields are considered to start with. The matter Lagrangian
for a compressible charged magnetized fluid and the constraints imposed
upon the behavior of this fluid are examined in sections 4 and 5. The

action principle and the resulting equations are given and commented
upon in section 6. In section 7, the Euler equations of motion are deduced
from the equations obtained in the preceding section. We look at

the case of per fect magnetohydrodynamics in section 8, a linear consti-
tutive equation being assumed for the magnetic field. A generalized
Bernoullian theorem is given in section 9. Another possible form of
the action principle is arrived at in section 10. The list of references

given includes works which have not been referred to in the body
of the text. These works may prove useful to the reader interested in
further researches in the field.

Notations. - The notations used here are closely related to those
of precedent notes or articles (c f. Maugin, 1971 e, 1971 g). V4 is a

Riemannian four-dimensional space-time manifold whose symmetric
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metric gx3 (signature : +, +, +, -) is normal hyperbolic and assumed to
be of class C1, piecewise C3. All greek indices assume the values 1, 2, 3, 4
while latin indices, unless mentioned, take the values 1, 2 and 3.
xx (a = 1, 2, 3, timelike) are the coordinates in V4. The summation
convention on diagonally repeated indices is used throughout the article.
Brackets around a set of indices denote alternation. is the permu-
tation symbol (not a tensor). Commas or symbols d are used to denote
partial differentiation with respect to xx. Symbols v are used for the
covariant differentiation based on the metric g:x. g is the determinant
of the g:x’ s. The direct motion of a material particle is entirely described
by the mapping of class C2 { x : E3 X R ~ V4 }

where XK (K = 1, 2, 3) are a set of Lagrangian coordinates in E~, the
three-dimensional Euclidean space of reference. T is chosen to be the

propertime of the particle while c denotes the velocity of light in vacuum
(X~ are generalized Lagrangian coordinates). XK and, T are independent
variables such that the inverse motion of a particle

is well-defined and assumed to be of class C2. The world line in V4

of a particle labeled (XK) is denoted by ux is the 4-velocity such
that .

Moreover, we have

We recall that the operator of projection Px3 is defined according to
(c f. Maugin, 1971 b) :

We have symbolically the generalized Green-Gauss theorem (c f. Maugin,
1971 g), valid for an arbitrary tensor fiield V :
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where (03), (d~3) and (~) indicate respectively a closed four-dimensional
region of V+, its regular boundary whose unit exterior oriented normal
is n, and a three-dimensional discontinuity hypersurface whithin (03),
whose unit oriented normal is N~. The familiar symbolism [ ... ] denotes
the jump across (~).

DEFINITION OF VARIATIONS. - To avoid any misunderstanding in
the subsequent developments, we need a non-ambiguous definition of
the variations. Let 5 be a tensor-valued functional on V4 of the indexed
series of tensorial arguments A(i), (i) = 1, 2, ..., N (e. g., invariant

scalars, 4-vectors, 2-forms, general tensors of n-th order). Each A~
is supposed to belong to a normed linear space in which a norm

~... is well-defined (we need not go further along these topological
considerations). We suppose that 5 is continuously Frechet differen-
tiable throughout its domain of definition (with possible exceptions
on curves, two- and three-dimensional hypersurfaces within this domain).
This smoothness condition guarantees the existence of the following
Frechet derivative of 5 with respect to (c f. Tapia, 1971 ; Maugin,
1972 d), for every tensor belonging to and any
scalar parameter a :

This expression is linear in L(k) and jointly continuous in A(k) and L(k)8
The variation of ø implied by a variation of the tensorial argument A(k)
is then defined as

where  is an arbitrary parameter equal to zero in absence of pertur-
bation. In most cases. the functional dependence of ~ reduces to a
dependence on the tensorial arguments at xx and on their first spatial
derivative (in V+) i. e., degenerates into the classical Euler-

Lagrange derivative

In the sequel, the definitions (9) and (8~~ are assumed with no further
reference.
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2. EINSTEIN EQUATIONS
AND CONSERVATION OF ENERGY-MOMENTUM

’Ve recall that the field equations that govern : (a) the geometry of
the Einstein Riemannian space-time manifold; (b) the dynamical behavior
of a self-gravitating material (whose nature and constitutive equations
remain to be specified) in interaction with other fields than gravity,
e. g., electromagnetic fields ; (c) these other fields as well, can be derived
from a general variational principle whose form is

where (~3) is a closed four-dimensional region of (1) whose boundary
(dCf3) is regular enough to allow, if necessary, the use of integral vectorial
analysis. The meaning of the variation symbol (i. e., what is varied)
remains to be specified. This will be done later on. 1 is the dual of

unity or element of volume in defined as

the dxx being the elementary one-forms and the symbol /B denoting
the exterior product.

In equation (10), LG is the Lagrangian density of the gravitational
field, LF being the total Lagrangian density of other fields. A more

conventional form of equation (10) is

where the usual form of EG is given by the scalar density

in which R is the Ricci curvature defined as

(1) We are examining the interior problem.
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with

x is a constant proportional to Newton’s gravitational constant k

(x= 201420142014 ). A useful form of equation (13) is ( cf. Mitskevich, 1969,

p. 60; or Weber, 1961, p. 72)

with

The first expression -1G is only a function of and its first deriva-
tives Other variations apart, let us consider a variation of the
metric Assuming that in £F = ~,~ g LF only and its first
derivatives appear and, for the time being, the variations of vanish-

ing on (dU3) [equivalently the material and the fields fill up the whole

space-time manifold and we do not consider contributions at infinity (2)]
then, the Euler-Lagrange equations corresponding to are none

other than the Einstein field equations

where

or, according to (17), (18) and usual computations (c f. Landau and
Lifshitz, 1962)

where the Einstein-Cartan tensor A:x and the stress-energy-momentum
tensor have been defined by

(=) This must be dealt with carefully in cosmology, depending on the type of universe
considered.
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According to Bianchi’s identities,

the equations

follow from equation (21). Equation (23) is the usual form of the conser-
vation of energy and momentum (for instance, in special relativity with
curvilinear coordinates in the space-time manifold of Minkowski M4).
It does not however include clearly the conservation of energy and momen-
tum of the gravitational field, the definition of the two latter quantities
being somewhat loose. Following a classical method of analytical
mechanics (c f. Weber, 1962, p. 45), it is possible to construct a conser-
vation law which includes the gravitational effects on an equal foot with
those of other fields. Define a canonical stress-energy-momentum
pseudotensor of the gravitational field by

then, it is easily shown from (20) that

which is the conservation law looked for.

Before going to our specific subject, let us remark that :

(a) In most cases encountered, ~p depends only on the g:x’s and not
on their derivatives. We may thus replace the Euler-Lagrange deri-
vative in equation (22) ~ by the partial derivative and write

(b) It is most convenient in order to calculate from a known form
of ~F to note that, of course, physically, the represent the gravi-
tational potentials but also, from a mathematical viewpoint, that the
metric of V’ associates a one-form with a tangent vector or, quoting
J. A. Wheeler (1962, 1968), is a " prescription to get a squared length
from a tangent vector " and " a machine into which to drop two-vectors
if taking a scalar product " i. e., v and w being respectively a tangent
vector and a one-form (e~ denoting the basis tangent vectors and dxx
the basis one-forms), one has
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The symbolism  ....... &#x3E; which represents the inner product, makes
use of the metric while the symbolism (..., ... ~ makes no use of the
metric. Hence u being a tangent vector and F and G being two two-
forms, an independent variation of g03B103B2 yields

(c) Finally, the forthcoming variations are useful in the derivation
of the expression (26) :

In presence of a three-dimensional discontinuity hypersurface (~)
within (~), using the Generalized Green-Gauss theorem (6) and discar-
ding the contribution on the boundary (d~) [since variations shall be
taken identically zero on (c~~)], we will write after (18) and (19) :

Independent variations of ~ in the surface term of this expression
would yield, by setting the coefficients of and 0 separately
equal to zero (c f. Maugin, 1971 g; Taub, 1957)

across (I). These two jump relations are identically satisfied if one
assumes the Lichnerowicz’s conditions of continuity for g:x (C1, piece-
wise C3).

3. ELECTROMAGNETIC FIELD

Let F be the magnetic flux two-form, G be the electric displacement-
magnetic intensitg two-form and J the 4-electric current. In a curved
Riemannian space-time manifold, the Maxwell equations read :
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Equations (33) are valid everywhere in while (32) are valid only in
matter [in free space, (32) takes the form : Vp = 0]. Since Fx3
and G~~ are skew-symmetric, equations (32) and (33) can be written
as

Equation (35) implies the existence of a one-form A called the electro-
magnetic potential from which F is defined by

Corresponding to equations (34) and (35), we have the jump relations
across the discontinuity hypersurface (~) :

if there is no surface current on (2:).
Following the expose of our note (c f. Maugin, 1972 a), we consider

the invariant of the electromagnetic field

and, using equation (34) as a constraint for which a Lagrange multiplier
A~ is introduced, consider the integral invariant

Independant variations of A« in equation (39) yield, of course,

equation (34) while, identifying Aa with the 4-electromagnetic potential,
equation (35) is identically satisfied. Upon using equations (11), (36),
noting (3)

and using the definitions of inner products given in (27), we write
equation (39) as

(3) W and ? are different from those defined in Maugin, 1971 g.
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where§we have defined

That is, equation (39) can be written in the form already given to IG.
What is the effect of a variation of the metric upon the integral 
Discarding for the time being the case for which a discontinuity hyper-
surface exists within (B), the variations of g03B103B2 vanishing on (~B) and
using the results (28)-(29), we get after some calculations

i. e., setting

we have indeed

which does agree with the general formula (26). is the stress-

energy-momentum tensor that results from the electromagnetic field
in presence of matter. A form almost similar has been used by Grot
and Eringen (1966 a, b), Grot (1970), Maugin and Eringen (1972 b)
and Maugin (1971 f, g; 1972 a, b, c). Its form differs from that of the
Maxwell tensor used by different authors. Although the Pirandellian
assumption " to each one his truth 

" is never more salient than in

dealing with the choice of the form of it can be shown by applying
well-chosen Legendre transformations that some of these forms and
the one given here are equivalent. This question is delayed until we
have introduced the notion of internal energy of the material medium
in presence of electromagnetic fields. It will be examined in another

paper. Presently, the appearance of the invariant  A, J ~ in 
is rather peculiar although we note that currents and potentials appear
in electromagnetic energy-momentum tensors of other theories e. g.,
Mie’s theory of electrodynamics (c f. Sen, 1968, p. 41). In any case,
as will be shown in section 7, the present treatment is entirely self-
contained and needs no reference to other treatments except for the
sake of comparison.

It is of interest for the sequel to consider the case of the discontinuity
hypersurface (~). Assuming as before that variations vanish on (do3),
we can drop the surface contribution on but, applying the
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theorem (6), will be written :

in which the symbol Q9 indicates the tensorial product. Of course,

An independent variation of A in the second term of equation (46),
would yield the jump relation (37)1.

Another variation shall be considered in the sequel. Let be

an independent variation of the magnetic flux two-form. The resulting
variation in equation (41) is

4. THE MATTER LAGRANGIAN

Let p, E and Y) be respectively the proper density of matter, the
relativistic internal energy density per unit of proper mass ( E reduces

to the internal energy density of classical continuum mechanics in a
local rest frame) and the proper density of entropy. E takes account

of the presence of matter, in the present case, of a perfect compressible
fluid hence the classical dependence of e upon p and r. We also consider
that e takes partly account of the interactions between this fluid and
the electromagnetic fields from which follows the notion of polarization-
magnetization, a synthesized entity in four-dimensional formalism.
Note however that e does not account for the rest energy. We thus
write :

The first term p c2 is the invariant which takes care of the rest

energy.
We now examine the effects upon Im of independent variations of

and First, we have

second,
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third,

The effect of a variation of the metric is more involved since the quantity
p is, as pointed out above, an invariant. Thus we can write

That is, a variation of gxp induces a variation of the matter density p.
From equations (53) and (29), we then have

It follows that

Now use the thermodynamical differential equation for a polarized-
magnetized perfect fluid (c f. Maugin, 1972 a; Fokker, 1939)

in which e is the proper thermodynamical temperature, p is the thermody-
namical pressure, and 1: is the polarization-magnetization two-form per
unit volume and 7: the magnetization two-form per unit of proper
mass,

Equivalently, introducing the proper density of magneto-enthalpy i

by the relation (c f. Fokker, 1939) (’) : :

(4) This is nothing but a Legendre transformation with i as generating function

canonical transformation with variables 1 and F03B103B2). Another possibility consists

in carrying out a Legendre transformation with another generating function (cano-
nical transformation with variables r, and F~). In the latter case, we would introduce

in lieu of i, a proper density of magneto-Helmholtz free energy function ~’ by

the present treatment would then become closer to that given in Maugin (1971 g).
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equation (57) can be written

hence, considering

Upon use of equations (58), the variations (50)-(52) and (56) read :

Note that 1m does not depend explicity on ux, thus

5. CONSTRAINTS

We now examine the constraints imposed upon the behavior of the
material under consideration and upon the flow of this material.

(a) The 4-velocity has a constant length. That is,

(b) As time goes on, the flow respects the continuity equation usually
written as

(c) The flow is isentropic i. e., along a world line we have

or, using equation (68),
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In order to respect this condition, the Joule term of electric dissipation
must vanish. This is satisfied if the four-electric current Jx introduced
in equations (32) is due only to convection or, in other words, is pro-
portional to the 4-velocity (5)

This implies that an independent variation of the 4-velocity yields a
variation of I,em, equal to [discarding contributions on the boundary
(du3) and the case of the discontinuity hypersurface (~)]

Remark that the constraint (69) does not imply in general that the
flow is irrotational [it is well-known that, in classical gaz dynamics,
beyond a curved shock surface, we have an equation similar to (69)
along streamlines while, ~ differing from a streamline to another, the
flow is rotational, c f. Crocco-Varsonyi’s theorem].

(d) The identity of a particle labeled (XK) is preserved as time goes
on (i. e., in the language of classical continuum mechanics, the variation
is carried out in the Eulerian description). We have [cr. eq. (2)~]

or, using equation (68),

This is known as a Lin’s constraint (cr. Lin, 1963).
To take account of the constraints (67), (68), (70) and (74), we introduce

six Lagrange multipliers f, c1, u~ and eK (K = 1, 2, 3) and construct
the integral invariant

This expression is convenient for varying independently f, él, 63 and

eK since we have at once : oy I* + (67), aa I* 1-+ (68), o~ I* + (70),
I* r+ (74). In order to vary independently p, u~ and ~, it is more

convenient to sum by parts in equation (75) and, using the definition

(5) q may take positive or negative values, e. g., for electrons, e being the electric
charge (e &#x3E; 0) per electron and no the number of electrons (baryions of rest mass mo)

, 
&#x26;

per unit of proper volume, we have :q = - e no = - e2014’
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of the covariant divergence of a four-vector M,

to write equation (75) in the following form :

with

Neglecting the contributions on the boundary (d~) but considering
a discontinuity hypersurface (I), we can write equation (77) in the
form :

Let us examine what is implied by independent variations in the
surface term of equation (80),

First, note that the continuity equation (68) implies across (~) (c f.
Maugin, 1971 g) :

Hence, equation (81) can be written

Then, independent variations of G~ and CK, with p ~/2014 ~ 7~ 0 (6),
yield

(6) Obviously p u(N) B2014 ~ ~ 0 since, from equation (81) [a superposed bar indicating
the mean value on (S)] :

(2~) being within (~~), we assume that there is some flow across (~), i. e., p # 0, 0.

ANN. INST. POINCARE, A-XVI-3 11
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The first of these is obviously verified for isentropic flows. The second
one is identically satisfied since, along the world line which goes

through (1:), the inverse motion has been assumed to be of class C2.

Independent variations of p and u~ in equation (81) yield, on account
of equation (82)

across (I). The field equations valid in (~) that correspond to

equations (85) will be given below. Independent variations of 

need not be considered here because of the presence of p ~2014 ~ in the
original equation (81) [c f. eq. (54)]. Since N is unity, taking the inner
product of (85)~ with Nx, we get the unique equation

Finally we examine the implications of independent variations of

the different variables as far as the 4-volume term of equation (77) is
concerned. On account of the fact that most of the terms have been
introduced as constraints and with (28), we get immediately :

with

Of course,
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6. THE ACTION PRINCIPLE

We can now put together the results of the foregoing sections. The
total action considered is

where the different expressions of the right-hand-side are respectively
given by equations (30), (46), (49) and (75) or (80). The independent
variations considered are those of p, u~, ~, f, 03 and ~~.
Collecting the results (22)1, (43), (48), (62)-(66) and (87)-(92), for arbi-
trary variations, we obtain the field equations in (~B) (interior problem)

In equation (94), we have used the definition (26) which, on account
of the results (44)-(45), (65) and (87), gives

in which is given by equation (44). The form of f will be given
here after.
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COMMENTS :

(a) The ten equations (94) are Einstein’s field equations. Equation (95)
is the electromagnetic constitutive equation given here in a general
nonlinear form. The polarization-magnetization two-form is derived
from a potential, the relativistic internal energy. Dropping the second
term of the right-hand-side of equation (96) which is zero after equa-
tion (99), the equation (96) gives a definition of the specific magneto-
enthalpy as a linear combination of the proper time derivatives of the
Lagrange multipliers introduced to take account of the continuity equa-
tion, the isentropy condition along a streamline and the Lin’s constraint,
this up to a constant (the rest energy per unit of proper mass, c2) and
a quantity known as the energy of a magnetic doublet.

(b) The significance of equation (97) is made clear if one drops the
electromagnetic effects. In these conditions of a perfect fluid scheme,
equation (97) reads :

which, by analogy with the treatment of classical hydrodynamics
(c f. Clebsch, 1859 a, b; Seliger and Whitham, 1958), may be called a
Clebsch’s representation of the 4-velocity. This representation is quite
general since, although the flow is isentropic (along streamlines), no
irrotationality is implied. Indeed, define the fluid current C[3 by

The vorticity tensor and the space-like vorticity 4-vector are then

defined as (Lichnerowicz, 1955)

The latters are obviously different from zero after equation (104) (c f.
section 7). Note the analogy of e:1. with a 4-current potential (in classical
hydrodynamics, velocity potential) since, if the flow were isentropic
throughout the whole region (03) (and not only along streamlines), we
would have

as a consequence of full isentropy and continuity. Thus, we may say
that, by introducing more constraints (Lin’s constraints) in the formu-
lation, we succeeded in enlarging the class of possible flows. With
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electromagnetic fields taken into account, equation (104) is replaced
by

N

where C~ is what we have called the modi fied current of the fluid. In
~

this definition, we have used the notation f (modi fied index) in lieu
of f, reserving the symbol f to the case for which there are no electro-
magnetic fields, i. e., according to Maugin (1971 e), when manipulations
of equations (96) and (97) yield

The quantity k defined by (109)~ is characteristic of the behavior of
the fluid in convection.

Equation (109)1 1 is then called the Clebsch’s representation of the
modified current. It generalizes to general relativity the énoncé given
by Maugin (1971 e) in special relativity. The modified index f is then

. 
determined as follows. Contracting equation (97) with u~ and taking
account of equations (99), (96), (32)1, (36) and (71)i, we find

in which equation, i is given by equation (59). Thus,

Noting

where, in (113)1) we assumed the validity of equation (71)I, we get by
inversion of the definition of 63

In absence of electromagnetic fields, this equation reduces to the
classical result (c f. Lichnerowicz, 1955)
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from which it is shown that the streamline equation is solution of the
extremal of the homothetical metric

The same result holds true for the case (109)1 with

As a consequence of the continuity equation (68) and the conservation
of charge equation (32)~, equation (71)1 1 being valid, it is well-known

that the quantity k defined by equation (109)~ is constant along a stream-
line (c f. Lichnerowicz, 1955, p. 55), i. e.,

Some simple identities which may prove useful in further studies
can be deduced from the definitions (109). For instance,

which is obtained by taking the proper time derivative of equation (109)1
and then the inner product of the result with ux [while taking account
of equations (3)2 and (117)]. Another interesting result which reflects
the significance of the definition (109)1 is obtained by taking the diver-
gence of equation (109)1 and assuming the Lorentz gauge for the electro-
magnetic potential Ax i. e.,

we get

in which we took account of equation (68) and used the definition (4).
Integrating equation (120) over a four-dimensional region of V’

and using the Green-Gauss theorem (6) in absence of discontinuity
hypersurface, we get
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In absence of electromagnetic fields, this reads :

i. e., the flux of fluid current across is equal to the volume integral over (~)
o f the time variation o f the index along all streamlines passing through 
Equation (121) generalizes this statement. Moreover if the fluid scheme

is said to be homogeneous from the point of view of convection, i. e.,
= 0, then equation (121) takes a form identical to that of

equation (122), Cx and f replacing Cx and f respectively. Nevertheless
one must not read in an equation of the type (122) more than is contained
in it. Equation (109)t 1 is a mere definition and the derivation of equa-
tion (122) requires the equation of continuity (100) to be valid, i. e.,

equation (122) is equivalent to equation (100) or rather to the integral
form given precedently [Maugin, 1971 e, equation (2.27)].

Finally, using the definition (109)1, we get an equation equivalent
to equation (111 ) which gives the form of the last term of the
second volume integral of equation (39) :

(c) Equation (98) gives a representation of the thermodynamical
temperature as the proper time derivative of an invariant scalar. In

fact, we have incidentally found the " physical 
" 

meaning of the strange
thermodynamical variable 0 that, following von Laue (1921) and

Taub (1957), we had introduced in another type of variational formula-
tion (Maugin, 1971 g; Maugin and Eringen, 1972 b). Indeed according
to the definition (8)2, we could write

The second expression follows from equation (1). Or, with the result (98),

But equation (2.19) of Maugin (1971 g), that made use of the same
type of variational definition, was

Thus, the variable 0 is, up to a constant, nothing but minus the Lagrange
multiplier which takes care of the isentropy condition (70) in the present
treatment.
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There is no need to comment upon equations (99) through (102).

(d) We must remark that, in contrast with the treatments given by
Maugin (1971 g) and Maugin and Eringen (1972 b), we did not arrive
at the Maxwell equations during the variational process [obviously,
these were accounted for at the starting point when we chose the
form (39) for the action representing the electromagnetic participation]
nor did we arrive at the streamline equations (or Euler equations of the
motion) while in the other approaches mentioned above, they were
obtained on an equal foot with, for instance, equation (94), by consi-
dering combined variations of the metric and of the particle path
in V4. Of course, according. to Bianchi’s identities, equation (23)
follows from equation (94) and, using the result (112) and by projection
with the help of Pvx onto a three-dimensional submanifold Vi
(c f. Maugin, 1971 b), we would get the desired equations. It is more

learning to get these equations by manipulating equations (96)-(97)
which result from the present formulation. This will be done in a

subsequent section.

(e) Note that the jump relations across (2), that correspond to the
field equations (94), (96), (97), (100), (101) and (102) have been given
before; they are equations (31), (85)1, (86), (82), (84)1 1 and (84)~ res-

pectively.

( f ) Finally, let us recall the " physical " meaning which has been
granted to the different Lagrange multipliers introduced along the
treatment. The 4-electromagnetic potential Ax takes account of the
Maxwell’s equations (32)1. f is the modified index of the fluid. êl

is a scalar fluid current potential. ó3 is linked in some way to the
variable 0 introduced earlier in other treatments. As to eK, it is not

possible to determine its value because of its symmetric appearance
in the two equations (96) and (97). As Seliger and Whitham (1968)
point out, Lin’s device is somewhat artificial and remains somewhat

mysterious from a strictly mathematical point of view although its

necessity seems to be firmly established. The only thing we can say
about the èK’s is that they are constant along streamlines, i. e.,

This follows from equations (78) if we consider an independent variation
of XK (~). Let us remark that the Cp’s always appear in a summation
with X~. The fact that we introduced three multipliers eK is therefore

C) This is why we used the suggestive symbol eh for these multipliers, i. e., a nota-
tion very close to the streamline notation (~BK).
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irrelevant. Only one scalar quantity that we could call " name " of
the particle, so one multiplier e(narne) need be introduced to obtain a
representation of the form of (97) in order to assure of a sufnciently
large class of flows.

7. EULER EQUATIONS OF MOTION

Let us show that these equations follow from equations (96)-(97).
First define the commutators

For a scalar t1., the Riemann curvature tensor is not involved and

N

Now, define the modified vorticity tensor ~2x,3 by

From this definition and equation (109)1, we get

Contract this expression with C~ = f ux and use the results (98), (69)~
and (127) to get

This equation of the Crocco-Varsonyi type is similar to the streamline
equation of Lichnerowicz [1967, eq. (21.4)]. If we contract

with the modified current CX instead of Ca, we should get after the
definition (109)1

but this form yields no interesting consequences.
We now transform both sides of equation (132). From equation (60)

we get
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The transformation of the left-hand-side is more lengthy. We have

in which we used equations (8)2 and (3) 1, have assumed the homogeneity
from the point of view of convection, i. e., V~ k = 0 [a condition stronger
than (117)] and finally made use of equation (71) 1. But,

Thus, collecting the two last terms of equations (136) and (137) and
using (36), we get

B ,

According to equation (111),

Then, carrying the result (139) into equation (138) and combining the
results (138) and (134) into equation (132), we obtain

in which we used the definition Cg = fup. The Euler equations of the
motion are the three independent equations obtained by projection
of equation (140) onto Vi with the help of the projector (5)1. Using
the property (5)4 and the fact that

which follows from (5)-", we get
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in which we have defined the 4-electric field 6; by

The different terms of equation (141) have the following meaning.
The left-hand-side is the acceleration term [which, in an inertial frame,
at the limit c + oo, yields the three-dimensional term p D~ . In

the right-hand-side, we have the pressure term, the Lorentz term f1u
and the Stern-Gerlach term fls-G) (c f. Maugin, 1971 g) defined as

The last term which is of the ~~ pressure gradient 
" 

type and involves
the invariant ( A, J ~ is peculiar. It is however consistent with the

general treatment since, as can be easily checked after some algebra,
equation (141) is nothing but

where is given by equation (103) or equation (112).
The projection of equation (140) along the time direction, i. e., the

equation obtained by contraction with u~ would yield what we called
the conservation of energy equation (c f. Maugin, 1971 g). It is none

other than equation (57) (8).

(8) Indeed take ~ ~ 2014 in equation (57). We note that 2014 = 0 along a streamline.
Thus equation (57) reads :

More generally, this equation should read [cr. Maugin, 1971 g, eq. (4.20)]

where t03B103B2 is the relativistic stress tensor (electromagnetic and heat conduction effects
excluded) is the relativistic rate of strain tensor (c f. Maugin, 1971 b)

For a perfect compressible fluid, take

but, from the continuity equation (100), we get V~ u~ = 2014 ~ (In ?), thus equation (b)
yields equation (a).

Q. E. D.
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8. CASE OF PERFECT MAGNETOHYDRODYNAMICS

In the case perfect magnetohydrodynamics, we assume that the

perfect fluid has an infinite conductivity. A consequence of this fact
is that the 4-electric current 6« must be taken equal to zero in order
to assure of the finiteness of the total electric current (convection +
conduction), c f. Lichnerowicz, 1967, p. 93. Although we did not take
account of conduction, we shall assume that the latter condition is

realized, i. e., C’)

The Lorentz term disappears from equation (141). Moreover, we shall
take (1 °)

hence,

(9) In an inertial frome, the 4-vector assumes the space-time decomposition
(cr. Grot and Eringen, 1966 a)

with obvious notations. Equation (145) requires in an inertial frame for small 3
that

The first of these is the classical Ohm’s law of three-dimensional magnetohydro-
dynamics (cf. Cabannes, 1970, p. 12) for infinite conductivity. The second of equa-
tions (b) asserts for the case of pure convection that the electric dissipation vanishes
since

Thus, equation (145) does not require in general that E vanishes but in a rest frame.
The electric field is only due to convected magnetic field.

The covariant equation (146) says that the time-like component of the 4-electro-
magnetic potential vanishes, i. e., for small ~,

thus, E is determined only by the 3-magnetic potential vector A. This is consistent

with equation (b)l above.
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and equation (141) reduces to

Now introduce the general decompositions of and F~~ by
(c f. Grot and Eringen, 1966 a) 

’

which reduce to

for the case of perfect magnetohydrodynamics. After some lengthy
algebra, we get (11) :

x3
(") The general form of ? and without term involving ( A, J ~ computed

from equations (148) would be

where
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Finally we must make some hypotheses in regard with the electro-
magnetic constitutive equation. The simplest case is that of a linear
constitutive equation. The inductions depend linearly on the fields.
For the isotropic case and for perfect magnetohydrodynamics, we shall
set

Here ~ is the constant magnetic permeability. According to the last
definition of (148), we then have

But instead of the function dependence e (p, YJ, we can consider

E (p, r,, ó3~), Then equation (95) reduces to

(c f. Grot, 1970). For instance, we may take (12)

from which equation (153) follows. On account of (146) and (152),
the modified index f can be written in that case as

of which the last term is the energy density of a magnetic doublet.
With equations (151)-(155) valid, we obtain from equation (150) :

in which we have defined the projected operator of covariant differentia-
*

tion ,;, by

For small velocities, this reduces to the classical spatial differential

operator ~k (k = 1, 2, 3) since u03B3 03B3 ~ 0 from equation (5)4.

(1~) Equation (154) is nothing but a special contact transformation.
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Of course, equation (156) differs from that given by Lichnerowicz
(1967, p. 93) since the invariants in front of in the original defini-
tions of are different. Moreover the metric signature is taken

to be (+, +, +, -) hence a plus sign in front of u~ u,3.
Within the frame of this simplified model of magnetohydrodynamics,

the total stress-energy-momentum tensor (112) takes the form

where f and are given by equations (155) and (156)1 respecti-
vely. Or (13)

The 4-velocity is an eigenvector of this energy-momentum tensor since,
using (155) and the equation u~ = 0, one finds

The eigenvalue m is clearly minus the sum of the rest energy, the
internal energy E (p, YJ) and the magnetic energy.
Remark now that with the foregoing assumptions, the Maxwell’s

equations (32)1 i are reduced to

which imply some interesting consequences (c f. Lichnerowicz, 1967,
p. 94).

In conclusion of this section, we have obtained the complete set of
equations for the interior problem in perfect general relativistic magne-
tohydrodynamics. They are the Einstein’s equations, the Euler equa-
tions of motion, the conservation of energy equation and the Maxwell’s
equations (161). For this scheme, the total energy-momentum tensor

(13) Authors interested in astrophysical applications of magnetohydrodynamics
take y = 1 since the magnetic permeability differs slightly from unity (c f. Landau
and Lifshitz, 1960, p. 213). With this assumption, equation (159) can be written
in the form used by almost every astrophysicist

with
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is given by equation (159) and the fluid index by equation (155). The

corresponding boundary equations are obtained by letting the disconti-
nuity hypersurface (I) coincide with the boundary of (~3).

In the last two sections of this article, we shall return to the general
case treated in the foregoing sections.

9. A BERNOULLIAN THEOREM

In classical hydrodynamics, a straightforward consequence of the
Clebsch’s representation of the fluid velocity is the existence of a Bernoul-
lian theorem (c f. Lamb, 1932; Seliger and Whitham, 1968), i. e., a theorem
f la Bernoulli and not a theorem of Bernoulli since the conditions of vali-

dity of the so-called theorem along a streamline are quite general : neither
stationarity nor irrotationality are implied. Only insentropy along
streamlines is required. The same holds true in relativistic hydrody-
namics. Indeed with equations (4) and (3)~, we recall that equation (97)
when contracted with u~ yields the time-like component of the Clebsch’s
representation

along a streamline. This is the Bernoullian theorem looked for. To
materialize this assumption, it is sufficient : (a) to go to flat space-time
and thus make appear the Newtonian gravitational potential; (b) to
take the slow motion limit c oo. For the flat space-time approxi-
mation, we take

hence,

where U is the Newtonian gravitational potential. Then, note that

wherre t is the Newtonian absolute time and v is the three-dimensional

velocity of the fluid. Also,
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where .. is the electric potential. We denote by ~*, p*, ~*, p*, E,
B and M, the internal energy density, the pressure, the entropy density
and the matter density of classical continuum mechanics and the three-
dimensional electric field, magnetic field and magnetization vector :
tl * and ó3* the corresponding values of c1 and ó3. p is a scalar density.
p* is the classical matter density measured in a laboratory, e. g., wind
tunnel (c f. Landau and Lifshitz, 1959, chapter 15). Thus,

Finally f is given by equation (111). Collecting these approximations,
we can write equation (162) as

along a streamline. This equation, except for the constant c2 (rest
energy) inherent to the limiting process of relativistic theories, is similar
to the result quoted by Lamb (1932). For the case of perfect magne-
tohydrodynamics, we may use the decomposition (154) for the internal
energy e* and equation (165) reads, dropping the purely relativistic

term c2

10. ANOTHER FORM OF THE ACTION PRINCIPLE

We shall derive here a form of the action principle given in the fore-
going sections, which is closely related to that given by Bateman (1929,
1944) for isentropic flows in classical hydrodynamics.
Let us consider equation (78). On account of the variational result

(96), we can write

Hence,

ANN. INST. POINCARE, A-XVI-3 12
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The last relation follows from equation (59). Of course, according to
equation (60), we can consider p to be a function of i, r, and since

equation (60) is nothing but

with

The total Lagrangian density is then written as

We now consider the case for which there is no discontinuity hypersur-
face (2:), the variations of all arguments defined according to equation (8)a,
vanishing on the boundary The term involving in equation
(171)2 can be integrated by parts. Using equation (36), we have

in which we used the relation = - G:X~. Equations
(171)2 and (172) are equivalent. If Ax is varied independently in equa-
tion (171)2, the Maxwell’s equations (32)1 1 follow while, if is varied

independently in equation (172), equations (32)1 and (36) being now
assumed, we get in (63), setting equal to zero the coefficient of on"[3

or,

that does agree with equation (170):3. So much for the electromagnetic
variations. The variations of the metric and those with respect to i
and Y, are more involved. We shall be satisfied with indicating the
method. We need use the thermodynamical relations (170)1-2 and the
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representations (c f. Maugin, 1971 e) for u~ and i :

In the second of these relations, u[3 is given by the first one. Then one
can show that independant variations of v?, V3 and eK would yield
a system of variational equations equivalent ot the system (96)-(102).
In varying the metric one must take account of the effect on p of
this variation (c f. the variation of p in section 4).

In absence of electromagnetic fields, the expression (171)~ reduces to

Ap disappears from equation (175), and f is replaced by f = 1 + 
For the special relativistic case, this reduces to the result enunciated
in Maugin (1971 e), I, e., we have the action principle in M,
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