ANNALES DE L'I. H. P., SECTION A

J. MANUCEAU

A. VERBEURE

The theorem on unitary equivalence of Fock representations

Annales de l'I. H. P., section A, tome 16, n° 2 (1972), p. 87-91 http://www.numdam.org/item?id=AIHPA 1972 16 2 87 0>

© Gauthier-Villars, 1972, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The theorem on Unitary Equivalence of Fock Representations

by

J. MANUCEAU

Faculté des Sciences Saint-Charles, 13-Marseille 3e (France)

and A. VERBEURE

Instituut voor Theoretische Fysica, Universiteit Leuven (Belgium).

ABSTRACT. — We prove that two Fock states ω_J and ω_K (not necessarily gauge invariant) on the CAR-algebra are unitarily equivalent if and only if |J-K| is a Hilbert-Schmidt operator. We calculate explicitly the norm difference $\|\omega_J-\omega_K\|$.

Let (H, s) be a separable Euclidean space and J and K complex structures on (H, s), i. e.

$$J^{+} = -J;$$
 $J^{2} = -1,$ $K^{+} = -K;$ $K^{2} = -1.$

Consider the operators

$$P = [J, K]_+; Q = [J, K]_-$$

and let $P=U\mid P\mid$, $Q=V\mid Q\mid$ be their polar decompositions, $\mid Q\mid$, $\mid P\mid$ and U commute with J and K; consequently the dimension of Ker P is even or infinite; Q is a normal operator, therefore V can be chosen such that $V^+=-V$, $V^2-=1$. The same notations as in [1] are used: $\alpha=\overline{\alpha(H,s)}$ is the CAR-algebra and ω_J is any pure quasi-free state on α ; J satisfies: $J^+=-J$, $J^2=-1$.

Theorem 1. — Let the operator P be diagonalizable [i. e. $(\psi_i)_{i \in \mathbb{N}}$ orthonormal basis of H such that $P \psi_i = \mu_i \psi_i$, $\mu_i \in \mathbb{R}$ (reals)], then there exists a family of subspaces $(H_n)_{n \in \mathbb{N}}$ of H invariant under J and K such that:

(i)
$$H = \bigoplus_{n=0}^{\infty} H_n$$
;

(ii) dim H_0 and dim H_1 is even or infinite, dim $H_n = 4$ for $n \ge 2$;

(iii)
$$P = \sum_{n} \lambda_n p_n$$
, where $P_n H = H_n$; $\lambda_0 = -2$, $\lambda_1 = 2$ and $-2 < \lambda_n < 2$ for $n \ge 2$.

Proof. — Let F = Ker Q; F and F^{\perp} (orthogonal complement of F for s) are invariant for J and K.

- (a) Suppose $F^1=\{0\}$; then $JK=\frac{P}{2}$ is unitary and Hermitian, there exists a decomposition $F=H_0+H_1$ such that $P=-P_0+P_1$, where P_0 and P_1 are the orthogonal projection operators on H_0 respectively H_1 , which are invariant under J and K and therefore dim H_0 and dim H_1 is even or infinite.
- (b) Suppose $F=\{\,0\,\}$, let H_α be subspaces of H such that $PH_\alpha=\lambda_\alpha\,H_\alpha$. Because $[P,J]_-=[P,K]_-=0$, the subspaces H_α are invariant for J and K. Remark that $P^2+Q^+Q=4$, $Q^+Q=|Q|^2$; therefore |Q| has the same proper subspaces H_α as |P|. Let $|Q|H_\alpha=\mu_\alpha\,H_\alpha$, then $\lambda_\alpha^2+\mu_\alpha^2=4$ for all α . Take any $\psi_\lambda\!\in\!H_\lambda$ and consider the subspaces H_{ψ_λ} generated by the real orthogonal set $\{\psi_\lambda,V\,\psi_\lambda,J\,\psi_\lambda,J\,V\,\psi_\lambda\}$. It is clear that H_{ψ_λ} is a real subspace invariant under J and K of dimension four.

In general $H = F + F^{\perp}$ the results of (a) and (b) prove the theorem.

Q. E. D.

Lemma. — Let π_J and π_K be the Fock representations associated with J respectively K. If π_J and π_K are unitarily equivalent then [J, K]₊ has — 2 as the only accumulation point of its spectrum.

Proof. — Let $\{\psi_j\}_{j\in\mathbb{N}}$ be any infinite orthonormal set of H and

$$L_n = \frac{-i}{n} \sum_{j=1}^n B(\psi_j) B(J \psi_j),$$

then

$$(\Omega_{J}, \pi_{J}(L_{n}) \Omega_{J}) = \omega_{J}(L_{n}) = 1.$$

Using Schwartz's inequality, we have

$$\parallel \pi_{\mathtt{J}} \left(\mathrm{L}_{n}
ight) \Omega_{\mathtt{J}} \parallel = 1 \qquad ext{furthermore} \quad \left\| \left[\prod_{i=1}^{k} \mathrm{B} \left(\psi_{i}
ight), \mathrm{L}_{n} \right]_{-} \right\| \leq rac{k}{n}$$

proving

$$1 - \frac{k}{n} \leq \left\| \pi_{\mathtt{J}} \left(\mathbf{L}_{n} \right) \prod_{i=1}^{k} \pi_{\mathtt{J}} \left(\mathbf{B} \left(\psi_{i} \right) \right) \Omega_{\mathtt{J}} \right\| \leq 1 + \frac{k}{n},$$

i. e. $\pi_{J}(L_n)$ tends strongly to one for n tending to infinity. Because π_{J} and π_{K} are unitarily equivalent $\pi_{K}(L_n)$ tends strongly to one on \mathcal{H}_{K} and therefore weakly.

Further the expression

$$\omega_{\mathtt{K}}(\mathtt{L}_n) = (\Omega_{\mathtt{K}}, \pi_{\mathtt{K}}(\mathtt{L}_n) \Omega_{\mathtt{K}}) = -\frac{1}{2n} \sum_{i=1}^n s (\mathtt{P} \psi_i, \psi_i)$$

must tend to one for all orthonormal sets $(\psi_i)_{i \in \mathbb{N}}$ which is possible if P has no accumulation points in its spectrum different from -2.

Q. E. D.

Theorem 2. — If ω_J and ω_K are pure quasi-free states, then π_J and π_K are unitarily equivalent iff |J - K| is a Hilbert-Schmidt operator.

Proof. — By Theorem 1,

$$H = \bigoplus_{n=0}^{\infty} H_n;$$
 $P = \sum_{n=0}^{\infty} \lambda_n P_n;$ $P_n H = H_n,$

where dim $H_n = 4$ for $n \ge 2$. By the lemma, dim $H_1 < \infty$. Let $\{\Phi_1, \ldots, \Phi_r; J \Phi_1, \ldots, J \Phi_r\}$ be an orthonormal basis of H_1 and

$$u_1 = \prod_{k=1}^r \mathbf{B} (\Phi_k).$$

In each H_n $(n \ge 2)$ we choose the following orthonormal basis $(\psi_n, V \psi_n, J \psi_n, JV \psi_n)$, where ψ_n is any normalized vector of H_n and let

$$u_n = B(J \psi_n) B(\psi'_n),$$

where

$$\psi'_n = \frac{1}{(2-\lambda_n)^{\frac{1}{2}}} (J \psi_n + K \psi_n).$$

If u_0 is the unit of $\overline{\alpha}$ (H_0, s) , then for all $n \ge 0$ and all $x \in \overline{\alpha}$ (H_n, s) ,

$$\omega_{K}(x) = \omega_{J}(u_{n}^{*} x u_{n}).$$

In order that $U = \bigotimes_{n=0}^{\infty} \pi_{J_n}(u_n)$ is an unitary operator on $\mathcal{H}_{J} = \bigotimes_{n=0}^{\infty} \mathcal{H}_{J_n}(J_n)$ is the restriction of J to H_n) it is necessary and sufficient that

$$U \Omega_{\mathbf{J}} \in \mathcal{H}_{\mathbf{J}} \text{ i. e.} = \prod_{n=2}^{\infty} (\Omega_{\mathbf{J}_n}, \, \pi_{\mathbf{J}_n} (u_n) \, \Omega_{\mathbf{J}_n}) = \prod_{n=2}^{\infty} \frac{1}{2} (2 - \lambda_n)^{\frac{1}{2}}$$

does not vanish. But

$$\begin{split} \prod_{n=2}^{\infty} \frac{1}{2} (2 - \lambda_n)^{\frac{1}{2}} \neq 0 & \Leftrightarrow & \prod_{n=2}^{\infty} \left(\frac{1}{2} - \frac{\lambda_n}{4} \right) \neq 0 \\ & \Leftrightarrow & \frac{1}{4} \sum_{n=2}^{\infty} (2 + \lambda_n) < \infty & \Leftrightarrow & \operatorname{Tr} (2 + P) < \infty. \end{split}$$

Otherwise $(J - K)^+ (J - K) = 2 + P$, therefore π_J and π_K are unitarily equivalent if |J - K| is a Hilbert-Schmidt operator.

Conversely, suppose that | J - K | is not a Hilbert-Schmidt operator,

hence
$$\prod_{i=2}^{\infty}\left(\frac{1}{2}-\frac{\lambda_i}{4}\right)=0$$
. Let $\mathrm{E}_{n,m}=\bigoplus_{i=n}^{m}\mathrm{H}_i$; the restrictions of $\omega_{\mathbf{j}}$

and ω_K to $\mathcal{A}\left(E_{n,m},s\right)$ remain pure states unitarily equivalent because

if
$$U_{n,m} = \prod_{i=n} u_i$$
, then

$$\forall x \in \mathfrak{A} (E_{n,m}, s), \quad \omega_{J}(x) = \omega_{K} (u_{n,m} x u_{n,m}^{*}) \quad [1]$$

Hence by Lemma 2.4 of [2]

Denote by α (E_n, s)^c the commutant of α (E_n, s) in α . By lemma 2.3 of [2],

$$\|(\omega_{\mathtt{J}} - \omega_{\mathtt{K}})\| (\Sigma_{\mathtt{N}}, s)^{c}\| = \|(\omega_{\mathtt{J}} - \omega_{\mathtt{K}})\| \overline{\alpha(E_{\mathtt{N}}, s)}\|$$

Since $\overline{\alpha(E_n^1, s)}$ is the inductive limit of $\alpha(E_{n,m}, s)$ when $m \to \infty$, we have

$$\|(\omega_{\mathtt{J}} - \omega_{\mathtt{K}}) \mid \mathfrak{A}(\mathsf{E}_{n}, s)^{c}\| = \lim_{m \to \infty} \|(\omega_{\mathtt{J}} - \omega_{\mathtt{K}}) \mid \mathfrak{A}(\mathsf{E}_{n,m}, s)\| = 2.$$

By lemma 2.1 of [2] π_{J} and π_{K} are not unitarily equivalent.

Q. E. D.

Corollary. — The representations π_1 and π_K are unitarily equivalent if $\| \omega_1 - \omega_K \| < 2$, and

$$\| \left\| \left\| \left\| \omega_{\mathtt{J}} - \omega_{\mathtt{K}} \right\| = 2 \Bigg(1 - \prod_{i=1}^{\mathtt{x}} \left(rac{1}{2} - rac{\lambda_i}{4}
ight) \Bigg)^{rac{1}{2}} \cdot$$

Proof. — Lemma 2.1 of [2] proves that if π_J is not unitarily equivalent with π_K , then $\|\omega_J - \omega_K\| = 2$. Otherwise if π_J and π_K are equivalent, it follows from the calculations done in Theorem 2, that

$$\| \omega_{\mathtt{J}} - \omega_{\mathtt{K}} \| = 2 \left(1 - \prod_{i=1}^{\infty} \left(\frac{1}{2} - \frac{\lambda_i}{4} \right) \right)^{\frac{1}{2}}.$$

Q. E. D.

REFERENCES

[1] E. Balslev, J. Manuceau and A. Verbeure, Commun. math. Phys., 8, 1968, p. 315.

[2] R. T. Powers and E. Sørtmer, Commun. math. Phys., vol. 16, 1970, p. 1.

(Manuscrit reçu le 6 juillet 1971.)